1
|
Tailor A, Bhatla SC. Polyamine depletion enhances oil body mobilization through possible regulation of oleosin degradation and aquaporin abundance on its membrane. PLANT SIGNALING & BEHAVIOR 2023; 18:2217027. [PMID: 37243675 DOI: 10.1080/15592324.2023.2217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
Oil body (OB) mobilization, a crucial event associated with early seedling growth, is delayed in response to salt stress. Previous reports suggest that careful regulation of polyamine (PA) metabolism is essential for salt stress tolerance in plants. Many aspects of PA-mediated regulation of metabolism have been uncovered. However, their role in the process of OB mobilization remains unexplored. Interestingly, the present investigations reveal a possible influence of PA homeostasis on OB mobilization, while implicating complex regulation of oleosin degradation and aquaporin abundance in OB membranes in the process. Application of PA inhibitors resulted in the accumulation of smaller OBs when compared to control (-NaCl) and the salt-stressed counterparts, suggesting a faster rate of mobilization. PA deficit also resulted in reduced retention of some larger oleosins under controlled conditions but enhanced retention of all oleosins under salt stress. Additionally, with respect to aquaporins, a higher abundance of PIP2 under PA deficit both under control and saline conditions, is correlated with a faster mobilization of OBs. Contrarily, TIP1s, and TIP2s remained almost undetectable in response to PA depletion and were differentially regulated by salt stress. The present work, thus, provides novel insights into PA homeostasis-mediated regulation of OB mobilization, oleosin degradation, and aquaporin abundance on OB membranes.
Collapse
Affiliation(s)
- Aditi Tailor
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
2
|
Bui TI, Britt EA, Muthukrishnan G, Gill SR. Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1094258. [PMID: 36714575 PMCID: PMC9880209 DOI: 10.3389/fendo.2022.1094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota regulates multiple facets of host metabolism and immunity through the production of signaling metabolites, such as polyamines which are small organic compounds that are essential to host cell growth and lymphocyte activation. Polyamines are most abundant in the intestinal lumen, where their synthesis by the gut microbiota is influenced by microbiome composition and host diet. Disruption of the host gut microbiome in metabolic syndrome and obesity-related type 2 diabetes (obesity/T2D) results in potential dysregulation of polyamine synthesis. A growing body of evidence suggests that restoration of the dysbiotic gut microbiota and polyamine synthesis is effective in ameliorating metabolic syndrome and strengthening the impaired immune responses of obesity/T2D. In this review, we discuss existing studies on gut microbiome determinants of polyamine synthesis, polyamine production in obesity/T2D, and evidence that demonstrates the potential of polyamines as a nutraceutical in obesity/T2D hosts.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emily A. Britt
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
3
|
Carpéné C, Marti L, Morin N. Increased monoamine oxidase activity and imidazoline binding sites in insulin-resistant adipocytes from obese Zucker rats. World J Biol Chem 2022; 13:15-34. [PMID: 35126867 PMCID: PMC8790288 DOI: 10.4331/wjbc.v13.i1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite overt insulin resistance, adipocytes of genetically obese Zucker rats accumulate the excess of calorie intake in the form of lipids.
AIM To investigate whether factors can replace or reinforce insulin lipogenic action by exploring glucose uptake activation by hydrogen peroxide, since it is produced by monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) in adipocytes.
METHODS 3H-2-deoxyglucose uptake (2-DG) was determined in adipocytes from obese and lean rats in response to insulin or MAO and SSAO substrates such as tyramine and benzylamine. 14C-tyramine oxidation and binding of imidazolinic radioligands [3H-Idazoxan, 3H-(2-benzofuranyl)-2-imidazoline] were studied in adipocytes, the liver, and muscle. The influence of in vivo administration of tyramine + vanadium on glucose handling was assessed in lean and obese rats.
RESULTS 2-DG uptake and lipogenesis stimulation by insulin were dampened in adipocytes from obese rats, when compared to their lean littermates. Tyramine and benzylamine activation of hexose uptake was vanadate-dependent and was also limited, while MAO was increased and SSAO decreased. These changes were adipocyte-specific and accompanied by a greater number of imidazoline I2 binding sites in the obese rat, when compared to the lean. In vitro, tyramine precluded the binding to I2 sites, while in vivo, its administration together with vanadium lowered fasting plasma levels of glucose and triacylglycerols in obese rats.
CONCLUSION The adipocytes from obese Zucker rats exhibit increased MAO activity and imidazoline binding site number. However, probably as a consequence of SSAO down-regulation, the glucose transport stimulation by tyramine is decreased as much as that of insulin in these insulin-resistant adipocytes. The adipocyte amine oxidases deserve more studies with respect to their putative contribution to the management of glucose and lipid handling.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
| | - Luc Marti
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
- Faculté de Pharmacie de Paris, Paris University, Paris 75270, France
| |
Collapse
|
4
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
5
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
6
|
Fernandez-Garcia JC, Delpino-Rius A, Samarra I, Castellano-Castillo D, Muñoz-Garach A, Bernal-Lopez MR, Queipo-Ortuño MI, Cardona F, Ramos-Molina B, Tinahones FJ. Type 2 Diabetes Is Associated with a Different Pattern of Serum Polyamines: A Case⁻Control Study from the PREDIMED-Plus Trial. J Clin Med 2019; 8:71. [PMID: 30634588 PMCID: PMC6352090 DOI: 10.3390/jcm8010071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: Polyamines are naturally occurring cationic molecules present in all living cells. Dysregulation of circulating polyamines has been reported in several conditions, but little is known about the levels of serum polyamines in chronic metabolic disorders such as type 2 diabetes (T2D). Therefore, the aim of this study was to evaluate the polyamine-related metabolome in a cohort of metabolic syndrome individuals with and without T2D. Design and methods: This was a nested case⁻control study within the PREDIMED-Plus trial that included 44 patients with T2D and 70 patients without T2D. We measured serum levels of arginine, ornithine, polyamines, and acetyl polyamines with an ultra-high performance liquid chromatography tandem mass spectrometry platform. Results: Our results showed that serum putrescine, directly generated from ornithine by the catalytic action of the biosynthetic enzyme ornithine decarboxylase, was significantly elevated in patients with T2D compared to those without T2D, and that it significantly correlated with the levels of glycosylated hemoglobin (HbA1c). Correlation analysis revealed a significantly positive association between fasting insulin levels and spermine. Multiple logistic regression analysis (adjusted for age, gender and body weight index) revealed that serum putrescine and spermine levels were associated with a higher risk of T2D. Conclusions: Our study suggests that polyamine metabolism is dysregulated in T2D, and that serum levels of putrescine and spermine are associated with glycemic control and circulating insulin levels, respectively.
Collapse
Affiliation(s)
- Jose C Fernandez-Garcia
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Antoni Delpino-Rius
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus 43204, Spain.
| | - Iris Samarra
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus 43204, Spain.
| | - Daniel Castellano-Castillo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Maria R Bernal-Lopez
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
- Department of Internal Medicine, Regional University Hospital of Malaga, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga 29010, Spain.
| | - Maria I Queipo-Ortuño
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
- Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
| | - Fernando Cardona
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga 29010, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid 28029, Spain.
| |
Collapse
|
7
|
Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 2018; 50:747-754. [PMID: 29700652 DOI: 10.1007/s00726-018-2567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
Abstract
This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Ahmad R Shebib
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Fruzsina K Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - Robert A Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
8
|
Bravo-Sagua R, Mattar P, Díaz X, Lavandero S, Cifuentes M. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications. Front Physiol 2016; 7:395. [PMID: 27660614 PMCID: PMC5014866 DOI: 10.3389/fphys.2016.00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| |
Collapse
|
9
|
Ishii I, Ikeguchi Y, Mano H, Wada M, Pegg AE, Shirahata A. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids 2011; 42:619-26. [PMID: 21809076 PMCID: PMC3266501 DOI: 10.1007/s00726-011-1037-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/26/2011] [Indexed: 11/28/2022]
Abstract
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.
Collapse
Affiliation(s)
- Ikumi Ishii
- Laboratory of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Vogelgesang B, Bonnet I, Godard N, Sohm B, Perrier E. In vitro and in vivo efficacy of sulfo-carrabiose, a sugar-based cosmetic ingredient with anti-cellulite properties. Int J Cosmet Sci 2010; 33:120-5. [DOI: 10.1111/j.1468-2494.2010.00593.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Méndez JD, De Haro Hernández R, Conejo VA. Spermine increases arginase activity in the liver after carbon tetrachloride-induced hepatic injury in Long-Evans rats. Biomed Pharmacother 2006; 60:82-5. [PMID: 16459053 DOI: 10.1016/j.biopha.2005.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/06/2005] [Indexed: 11/17/2022] Open
Abstract
Arginase is the enzyme which synthesizes urea and ornithine, a precursor from which putrescine, spermidine and spermine are formed. These natural polyamines have been implicated in cell growth, replication and wound healing. The present study evaluated the possibility that spermine increases arginase activity and reduces liver damage caused by carbon tetrachloride. Intraperitoneally injected spermine at a dose of 1 mg/kg after a single intragastric administration of carbon tetrachloride (1.6 ml/kg) increased arginase activity (6.30-7.79 microg urea/mg protein per min) (P<0.05) as well as total protein content (0.29-0.37 mg/mg dry weight) in hepatic tissue, compared to the group which only received carbon tetrachloride. When liver cell damage was biochemically assessed, the carbon tetrachloride-treated group showed a 20-fold increase in serum glutamic oxaloacetate transaminase, compared to the control group (P<0.05), and this was significantly diminished by the administration of spermine (P<0.05). Serum triglycerides increased four times compared to the control group as a result of the carbon tetrachloride treatment and were diminished by spermine as well. These results indicate that spermine may play a role in the recovery of liver tissue after carbon tetrachloride-induced liver injury, maybe by increasing the synthesis of putrescine, a polyamine which has been found out to participate in the recovery of the hepatic tissue after an insult with carbon tetrachloride.
Collapse
Affiliation(s)
- José D Méndez
- Medical Research Unit in Metabolic Diseases, National Medical Center, Mexican Institute of Social Security, P.O. Box A-047, Mexico City 06703 DF, Mexico.
| | | | | |
Collapse
|
12
|
Teixeira D, Santaolaria ML, Meneu V, Alonso E. Dietary arginine slightly and variably affects tissue polyamine levels in male swiss albino mice. J Nutr 2002; 132:3715-20. [PMID: 12468612 DOI: 10.1093/jn/132.12.3715] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many key metabolic and physiologic functions involve arginine and arginine-derived metabolites. Requirements for arginine, a "conditionally essential" amino acid for most mammalian species, are met in variable proportions by dietary intake and endogenous synthesis, the latter being sufficient to fulfill arginine needs in adult humans and mice under nonpathologic conditions. However, dietary arginine restriction causes orotic aciduria and abnormal function of the urea cycle. Furthermore, the importance of dietary arginine in the maintenance of homeostasis of arginine-derived metabolites in the body has not yet been analyzed in detail. We therefore examined whether the deprivation or supplementation of dietary arginine affects tissue and circulating levels of arginine-derived polyamines. We pair-fed male Swiss albino mice (30 g) for 15 or 30 d synthetic diets containing 0, 1.12 or 2.24 g/100 g L-arginine. Tissue and blood levels of the main free polyamines, putrescine, spermidine and spermine, were measured by HPLC. In general, neither the deprivation nor the supplementation of arginine dramatically affected the levels of any of the polyamines analyzed. Variations were organ, time and polyamine specific, and most differences were in the levels of putrescine at 15 d and of spermidine at 30 d. Thus, in contrast to effects on urea cycle function, dietary arginine does not appear to be essential for the maintenance of the homeostasis of free polyamine levels in adult mice, emphasizing the importance of endogenous arginine synthesis in preserving the polyamine body pool.
Collapse
Affiliation(s)
- Deusdelia Teixeira
- Department of Biochemistry and Molecular Biology, Medical Faculty, University of Valencia, Spain
| | | | | | | |
Collapse
|