1
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Wu J, Oguz C, Teklemichael AA, Xu F, Stadler RV, Lucky AB, Liu S, Kaneko O, Lack J, Su XZ. Comparative genomics of Plasmodium yoelii nigeriensis N67 and N67C: genome-wide polymorphisms, differential gene expression, and drug resistance. BMC Genomics 2024; 25:1035. [PMID: 39497038 PMCID: PMC11536827 DOI: 10.1186/s12864-024-10961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The study of rodent malaria parasites has significantly advanced our understanding of malaria parasite biology and host responses to parasite infections. There are four well-characterized rodent malaria parasite species (Plasmodium yoelii, P. chabaudi, P. berghei, and P. vinckei). Each species also has multiple strains that cause different disease phenotypes. P. yoelii nigeriensis N67C and N67, two isogenic parasites, are particularly intriguing as they differ in virulence and incite different immune responses in mice. The genome of the N67 parasite has been assembled recently, but not that of N67C. This study used PacBio HiFi sequencing data to assemble the N67C genome, compared the two genomes, and performed RNA sequencing to identify polymorphisms and differentially expressed genes (DEGs). RESULTS The assembled N67C parasite genome consisted of 16 scaffolds and three contigs of approximately 22.5 Mb with 100% and 96.6% completeness based on well-characterized single-copy orthologs specific to the Apicomplexa phylum and the Plasmodium genus, respectively. A comparison between the annotated N67C and N67 genomes revealed 133 single nucleotide polymorphisms (SNPs) and 75 indels. Among the polymorphic sites, an S (N67) to N (N67C) amino acid substitution at position 114 (S114N) in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) confers resistance to pyrimethamine in mice. Additionally, 60 differentially expressed single-copy genes (DEGs) were detected after comparing mRNA levels between the two parasites. Starting with the predicted and annotated 5,681 N67C and 5,749 N67 genes, we identified 4,641 orthogroups that included at least one gene from the four P. yoelii parasites (N67, N67C, 17X, and YM), whereas 758 orthogroups showed subspecies or strain-specific patterns. CONCLUSION The identification of polymorphic sites between the N67 and N67C genomes, along with the detection of the DEGs, may provide crucial insights into the variations in parasite drug responses and disease severity between these two isogenic parasites. The functional characterization of these genetic differences and candidate genes will deepen our understanding of disease mechanisms and pave the way for developing more effective control measures against malaria.
Collapse
Affiliation(s)
- Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rachel V Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
3
|
Narwal SK, Mishra A, Devi R, Ghosh A, Choudhary HH, Mishra S. Stearoyl-CoA desaturase regulates organelle biogenesis and hepatic merozoite formation in Plasmodium berghei. Mol Microbiol 2024; 121:940-953. [PMID: 38419272 DOI: 10.1111/mmi.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.
Collapse
Affiliation(s)
- Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hadi Hasan Choudhary
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Srivastava PN, Paul P, Mishra S. Protein O-Fucosyltransferase Is Required for the Efficient Invasion of Hepatocytes by Plasmodium berghei Sporozoites. ACS Infect Dis 2024; 10:1116-1125. [PMID: 38421807 DOI: 10.1021/acsinfecdis.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The O-fucosylation of the thrombospondin type I repeat (TSR) domain is important for TSR-containing proteins' optimal folding and stability. However, the importance of Plasmodium O-fucosyltransferase 2 (POFut2) remains unclear due to two different reports. Here, we disrupted the POFut2 gene in Plasmodium berghei and demonstrated that POFut2 KO parasites develop normally in blood and mosquito stages but show reduced infectivity in mice. We found that the reduced infectivity of POFut2 KO sporozoites was due to a diminished level of TRAP that affected the parasite gliding motility and hepatocyte infectivity. Using all-atom MD simulation, we also hypothesize that O-fucosylation impacts the TSR domain's stability more than its heparin binding capacity.
Collapse
Affiliation(s)
- Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
6
|
Guo ZH, Wang YB, Wang S, Zhang Q, Huang DS. scCorrector: a robust method for integrating multi-study single-cell data. Brief Bioinform 2024; 25:bbad525. [PMID: 38271483 PMCID: PMC10810333 DOI: 10.1093/bib/bbad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The advent of single-cell sequencing technologies has revolutionized cell biology studies. However, integrative analyses of diverse single-cell data face serious challenges, including technological noise, sample heterogeneity, and different modalities and species. To address these problems, we propose scCorrector, a variational autoencoder-based model that can integrate single-cell data from different studies and map them into a common space. Specifically, we designed a Study Specific Adaptive Normalization for each study in decoder to implement these features. scCorrector substantially achieves competitive and robust performance compared with state-of-the-art methods and brings novel insights under various circumstances (e.g. various batches, multi-omics, cross-species, and development stages). In addition, the integration of single-cell data and spatial data makes it possible to transfer information between different studies, which greatly expand the narrow range of genes covered by MERFISH technology. In summary, scCorrector can efficiently integrate multi-study single-cell datasets, thereby providing broad opportunities to tackle challenges emerging from noisy resources.
Collapse
Affiliation(s)
- Zhen-Hao Guo
- College of Electronics and Information Engineering, Tongji University, Shanghai 200000, China
| | - Yan-Bin Wang
- College of Computer Science and Technology, Zhejiang University 310027, China
| | - Siguo Wang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| | - Qinhu Zhang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| | - De-Shuang Huang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| |
Collapse
|
7
|
Godin MJ, Sebastian A, Albert I, Lindner SE. Long-Read Genome Assembly and Gene Model Annotations for the Rodent Malaria Parasite Plasmodium yoelii 17XNL. J Biol Chem 2023:104871. [PMID: 37247760 PMCID: PMC10320607 DOI: 10.1016/j.jbc.2023.104871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
Malaria causes over 600 thousand fatalities each year, with most cases attributed to the human-infectious Plasmodium falciparum species. Many rodent-infectious Plasmodium species, like Plasmodium berghei and Plasmodium yoelii, have been used as model species that can expedite studies of this pathogen. P. yoelii is an especially good model for investigating the mosquito and liver stages of parasite development because key attributes closely resemble those of P. falciparum. Because of its importance, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. While a breakthrough effort, the assembly consisted of >5000 contiguous sequences that adversely impacted the annotated gene models. While other rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using PacBio DNA sequencing. In addition, we use Nanopore and Illumina RNA sequencing of mixed blood stages to create complete gene models that include coding sequences, alternate isoforms, and UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic framework for studies with this commonly used rodent malaria model species.
Collapse
Affiliation(s)
- Mitchell J Godin
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802.
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802.
| |
Collapse
|
8
|
Godin MJ, Sebastian A, Albert I, Lindner SE. Long-Read Genome Assembly and Gene Model Annotations for the Rodent Malaria Parasite Plasmodium yoelii 17XNL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523040. [PMID: 36711553 PMCID: PMC9882011 DOI: 10.1101/2023.01.06.523040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Malaria causes over 200 million infections and over 600 thousand fatalities each year, with most cases attributed to a human-infectious Plasmodium species, Plasmodium falciparum . Many rodent-infectious Plasmodium species, like Plasmodium berghei, Plasmodium chabaudi , and Plasmodium yoelii , have been used as genetically tractable model species that can expedite studies of this pathogen. In particular, P. yoelii is an especially good model for investigating the mosquito and liver stages of parasite development because key attributes closely resemble those of P. falciparum . Because of its importance to malaria research, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. While sequencing and assembling this genome was a breakthrough effort, the final assembly consisted of >5000 contiguous sequences that impacted the creation of annotated gene models. While other important rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using HiFi PacBio long-read DNA sequencing. In addition, we use Nanopore long-read direct RNA-seq and Illumina short-read sequencing of mixed blood stages to create complete gene models that include not only coding sequences but also alternate transcript isoforms, and 5' and 3' UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic and gene expression framework for studies with this commonly used rodent malaria model species.
Collapse
Affiliation(s)
- Mitchell J. Godin
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, The Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
9
|
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol 2022; 76:113-134. [PMID: 35609946 DOI: 10.1146/annurev-micro-041320-010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom;
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom;
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
10
|
Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, Snounou G, Mueller I. Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures. PLoS Negl Trop Dis 2022; 16:e0010633. [PMID: 35926062 PMCID: PMC9380936 DOI: 10.1371/journal.pntd.0010633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. Methodology/Principal findings In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito’s salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. Conclusions/Significance In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas. Plasmodium vivax is the second most common cause of malaria worldwide. It is particularly challenging for malaria elimination as it forms both active blood-stage infections, as well as asymptomatic liver-stage infections that can persist for extended periods of time. The activation of persister forms in the liver (hypnozoites) are responsible for relapsing infections occurring weeks or months following primary infection via a mosquito bite. How P. vivax persists in the liver remains a major gap in understanding of this organism. It has been hypothesized that there is pre-programming of the infectious sporozoite while it is in the salivary-glands that determines if the cell’s fate once in the liver is to progress towards immediate liver stage development or persist for long-periods as a hypnozoite. The aim of this study was to see if such differences were distinguishable at the transcript level in salivary-gland sporozoites. While we found significant variation amongst sporozoites, we did not find clear evidence that they are transcriptionally pre-programmed as has been suggested. Nevertheless, we highlight several intriguing patterns that appear to be P. vivax specific relative to non-relapsing species that cause malaria prompting further investigation.
Collapse
Affiliation(s)
- Anthony A. Ruberto
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Caitlin Bourke
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Aaron Jex
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Georges Snounou
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Ivo Mueller
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, Lance C, Ripp J, Grech J, Meissner M, Funaya C, Amino R, Frischknecht F. Plasmodium
sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Rep 2022; 23:e54719. [PMID: 35403820 PMCID: PMC9253755 DOI: 10.15252/embr.202254719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
During transmission of malaria‐causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane‐associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin‐GFP localizes at the cytoplasmic periphery and concavin(−) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(−) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(−) sporozoites are transmitted. Strikingly, motile concavin(−) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- Infectious Diseases Imaging Platform Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Pauline Formaglio
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Julianne Mendi Muthinja
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Sebastian Weber
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Danny Baltissen
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Christopher Lance
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Janessa Grech
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Markus Meissner
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Rogerio Amino
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
12
|
Xu L, Sun X, Wan X, Li K, Jian F, Li W, Jiang R, Han R, Li H, Kang X, Wang Y. Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. ACTA ACUST UNITED AC 2021; 7:1105-1114. [PMID: 34738041 PMCID: PMC8551407 DOI: 10.1016/j.aninu.2021.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Clostridium butyricum has been widely considered an antibiotic substitute in recent years. It can promote growth performance, improve the immune response and enhance the intestinal barrier function of the host. In the present study, 1-d-old Arbor Acres (AA) broilers were fed C. butyricum (1 × 109 cfu/kg) for 28 d. The transcriptomic characteristics of epithelial cells of the cecal mucosa were determined by RNA-sequence, and the cecal microbiota composition was explored by 16S ribosomal RNA gene sequencing. The changes in the intestinal mucosa of broilers were then analyzed by tissue staining. Gene Ontology (GO) annotations identified substance transport and processes and pathways that might participate in intestinal development and cell viability. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes are involved in numerous pathways related to amino acid and vitamin metabolism and antioxidant and defensive functions, among others. The relative expression of some genes associated with intestinal barrier function (claudins 2, 15, 19, and 23, tight junction proteins 1, 2, and 3 and mucin 1) was significantly increased in the treatment group (P < 0.05 or P < 0.01). Moreover, the proportion of Firmicutes was higher in the C. butyricum-treated group, whereas the proportion of Proteobacteria was higher in the control group. At the genus level, the relative abundances of Butyricicoccus and Lactobacillus, among other bacteria, were increased after C. butyricum supplementation. The tissue staining analysis showed that the cecal mucosa of broilers was significantly ameliorated after the addition of C. butyricum (P < 0.05 or P < 0.01). These results showed that dietary supplementation with C. butyricum can enhance the antioxidant capacity, mucosal barrier function, and stabilize the cecal microbiota, resulting in improving the growth performance.
Collapse
Affiliation(s)
- Laipeng Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangli Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianhua Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Keke Li
- Henan Jinbaihe Biotechnology Co., Ltd, Anyang, 455000, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| |
Collapse
|
13
|
The Plasmodium NOT1-G paralogue is an essential regulator of sexual stage maturation and parasite transmission. PLoS Biol 2021; 19:e3001434. [PMID: 34673764 PMCID: PMC8562791 DOI: 10.1371/journal.pbio.3001434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g− parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G’s essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites. Malaria parasites face two bottlenecks in their life cycle: their two transmission events. This study shows that Plasmodium has taken the unorthodox approach of duplicating the gene for the NOT1 RNA regulatory scaffold protein, allowing it to dedicate one paralog to functions that are essential for transmission from mammalian hosts to the mosquito vector.
Collapse
|
14
|
Metabolic Survival Adaptations of Plasmodium falciparum Exposed to Sublethal Doses of Fosmidomycin. Antimicrob Agents Chemother 2021; 65:AAC.02392-20. [PMID: 33495219 DOI: 10.1128/aac.02392-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
The malaria parasite Plasmodium falciparum contains the apicoplast organelle that synthesizes isoprenoids, which are metabolites necessary for posttranslational modification of Plasmodium proteins. We used fosmidomycin, an antibiotic that inhibits isoprenoid biosynthesis, to identify mechanisms that underlie the development of the parasite's adaptation to the drug at sublethal concentrations. We first determined a concentration of fosmidomycin that reduced parasite growth by ∼50% over one intraerythrocytic developmental cycle (IDC). At this dose, we maintained synchronous parasite cultures for one full IDC and collected metabolomic and transcriptomic data at multiple time points to capture global and stage-specific alterations. We integrated the data with a genome-scale metabolic model of P. falciparum to characterize the metabolic adaptations of the parasite in response to fosmidomycin treatment. Our simulations showed that, in treated parasites, the synthesis of purine-based nucleotides increased, whereas the synthesis of phosphatidylcholine during the trophozoite and schizont stages decreased. Specifically, the increased polyamine synthesis led to increased nucleotide synthesis, while the reduced methyl-group cycling led to reduced phospholipid synthesis and methyltransferase activities. These results indicate that fosmidomycin-treated parasites compensate for the loss of prenylation modifications by directly altering processes that affect nucleotide synthesis and ribosomal biogenesis to control the rate of RNA translation during the IDC. This also suggests that combination therapies with antibiotics that target the compensatory response of the parasite, such as nucleotide synthesis or ribosomal biogenesis, may be more effective than treating the parasite with fosmidomycin alone.
Collapse
|
15
|
Biddau M, Santha Kumar TR, Henrich P, Laine LM, Blackburn GJ, Chokkathukalam A, Li T, Lee Sim K, King L, Hoffman SL, Barrett MP, Coombs GH, McFadden GI, Fidock DA, Müller S, Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int J Parasitol 2021; 51:441-453. [PMID: 33713652 PMCID: PMC8126644 DOI: 10.1016/j.ijpara.2020.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Apicoplast LipB deletion leads to changed antioxidant expression that precedes and coincides with accelerated differentiation. 3D7 Plasmodium exhibits changes in glycolysis and tricarboxylic acid cycle activity after deletion of apicoplast LipB. When LipB is deleted from NF54 Plasmodium, the resulting parasites cannot complete their development in mosquitoes. Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Philipp Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Larissa M Laine
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Tao Li
- Sanaria Inc., Rockville, MD 20850, USA
| | | | - Lewis King
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sylke Müller
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
16
|
Müller K, Silvie O, Mollenkopf HJ, Matuschewski K. Pleiotropic Roles for the Plasmodium berghei RNA Binding Protein UIS12 in Transmission and Oocyst Maturation. Front Cell Infect Microbiol 2021; 11:624945. [PMID: 33747980 PMCID: PMC7973279 DOI: 10.3389/fcimb.2021.624945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Colonization of the mosquito host by Plasmodium parasites is achieved by sexually differentiated gametocytes. Gametocytogenesis, gamete formation and fertilization are tightly regulated processes, and translational repression is a major regulatory mechanism for stage conversion. Here, we present a characterization of a Plasmodium berghei RNA binding protein, UIS12, that contains two conserved eukaryotic RNA recognition motifs (RRM). Targeted gene deletion resulted in viable parasites that replicate normally during blood infection, but form fewer gametocytes. Upon transmission to Anopheles stephensi mosquitoes, both numbers and size of midgut-associated oocysts were reduced and their development stopped at an early time point. As a consequence, no salivary gland sporozoites were formed indicative of a complete life cycle arrest in the mosquito vector. Comparative transcript profiling in mutant and wild-type infected red blood cells revealed a decrease in transcript abundance of mRNAs coding for signature gamete-, ookinete-, and oocyst-specific proteins in uis12(-) parasites. Together, our findings indicate multiple roles for UIS12 in regulation of gene expression after blood infection in good agreement with the pleiotropic defects that terminate successful sporogony and onward transmission to a new vertebrate host.
Collapse
Affiliation(s)
- Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
17
|
Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for Transmission: Gene Regulation in Plasmodium Sporozoites. Front Cell Infect Microbiol 2021; 10:618430. [PMID: 33585284 PMCID: PMC7878544 DOI: 10.3389/fcimb.2020.618430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.
Collapse
Affiliation(s)
- Sylvie Briquet
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Carine Marinach
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Catherine Vaquero
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Neal ML, Wei L, Peterson E, Arrieta-Ortiz ML, Danziger S, Baliga N, Kaushansky A, Aitchison J. A systems-level gene regulatory network model for Plasmodium falciparum. Nucleic Acids Res 2021; 49:4891-4906. [PMID: 33450011 PMCID: PMC8136813 DOI: 10.1093/nar/gkaa1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John D Aitchison
- To whom correspondence should be addressed. Tel: +1 206 884 3125; Fax: +1 206 884 3104;
| |
Collapse
|
19
|
Wang C, Yang C, Liu J, Liu Q. NcPuf1 Is a Key Virulence Factor in Neospora caninum. Pathogens 2020; 9:pathogens9121019. [PMID: 33276672 PMCID: PMC7761618 DOI: 10.3390/pathogens9121019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neospora caninum is an apicomplexan parasite that infects many mammals and particularly causes abortion in cattle. The key factors in its wide distribution are its virulence and ability to transform between tachyzoite and bradyzoite forms. However, the factors are not well understood. Although Puf protein (named after Pumilio from Drosophila melanogaster and fem-3 binding factor from Caenorhabditis elegans) have a functionally conserved role in promoting proliferation and inhibiting differentiation in many eukaryotes, the function of the Puf proteins in N. caninum is poorly understood. METHODS The CRISPR/CAS9 system was used to identify and study the function of the Puf protein in N. caninum. RESULTS We showed that N. caninum encodes a Puf protein, which was designated NcPuf1. NcPuf1 is found in the cytoplasm in intracellular parasites and in processing bodies (P-bodies), which are reported for the first time in N. caninum in extracellular parasites. NcPuf1 is not needed for the formation of P-bodies in N. caninum. The deletion of NcPuf1 (ΔNcPuf1) does not affect the differentiation in vitro and tissue cysts formation in the mouse brain. However, ΔNcPuf1 resulted in decreases in the proliferative capacity of N. caninum in vitro and virulence in mice. CONCLUSIONS Altogether, the disruption of NcPuf1 does not affect bradyzoites differentiation, but seriously impairs tachyzoite proliferation in vitro and virulence in mice. These results can provide a theoretical basis for the development of attenuated vaccines to prevent the infection of N. caninum.
Collapse
Affiliation(s)
| | | | - Jing Liu
- Correspondence: (J.L.); (Q.L.); Tel.: +86-010-62734496 (Q.L.)
| | - Qun Liu
- Correspondence: (J.L.); (Q.L.); Tel.: +86-010-62734496 (Q.L.)
| |
Collapse
|
20
|
Romagnoli BAA, Holetz FB, Alves LR, Goldenberg S. RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:56. [PMID: 32154189 PMCID: PMC7045066 DOI: 10.3389/fcimb.2020.00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. In the case of Trypanosoma cruzi, the characterization of messenger ribonucleoprotein (mRNP) particles has allowed the identification of several classes of RNA binding proteins (RBPs), as well as non-canonical RBPs, associated with mRNA molecules. The protein composition of the mRNPs as well as the localization and functionality of the mRNAs depend on their associated proteins. mRNPs can also be organized into larger complexes forming RNA granules, which function as stress granules or P-bodies depending on the associated proteins. The fate of mRNAs in the cell, and consequently the genes expressed, depends on the set of proteins associated with the messenger molecule. These proteins allow the coordinated expression of mRNAs encoding proteins that are related in function, resulting in the formation of post-transcriptional operons. However, the puzzle posed by the combinatorial association of sets of RBPs with mRNAs and how this relates to the expressed genes remain to be elucidated. One important tool in this endeavor is the use of the CRISPR/CAS system to delete genes encoding RBPs, allowing the evaluation of their effect on the formation of mRNP complexes and associated mRNAs in the different compartments of the translation machinery. Accordingly, we recently established this methodology for T. cruzi and deleted the genes encoding RBPs containing zinc finger domains. In this manuscript, we will discuss the data obtained and the potential of the CRISPR/CAS methodology to unveil the role of RBPs in T. cruzi gene expression regulation.
Collapse
Affiliation(s)
- Bruno A A Romagnoli
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Fabiola B Holetz
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Lysangela R Alves
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Samuel Goldenberg
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| |
Collapse
|
21
|
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun 2019; 10:4964. [PMID: 31673027 PMCID: PMC6823429 DOI: 10.1038/s41467-019-12936-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition. Here, the authors report transcriptomes and proteomes of oocyst sporozoite and salivary gland sporozoite stages in rodent-infectious Plasmodium yoelii parasites and human infectious Plasmodium falciparum parasites and define two waves of translational repression during sporozoite maturation.
Collapse
|
23
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
24
|
Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J 2019; 18:330. [PMID: 31551073 PMCID: PMC6760107 DOI: 10.1186/s12936-019-2968-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.
Collapse
Affiliation(s)
- Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | - Sunil Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | | | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Walker MP, Lindner SE. Ribozyme-mediated, multiplex CRISPR gene editing and CRISPR interference (CRISPRi) in rodent-infectious Plasmodium yoelii. J Biol Chem 2019; 294:9555-9566. [PMID: 31043479 PMCID: PMC6579477 DOI: 10.1074/jbc.ra118.007121] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/23/2019] [Indexed: 11/06/2022] Open
Abstract
Malaria remains a major global health issue, affecting millions and killing hundreds of thousands of people annually. Efforts to break the transmission cycle of the causal Plasmodium parasite, and to cure those that are afflicted, rely upon functional characterization of genes essential to the parasite's growth and development. These studies are often based upon manipulations of the parasite genome to disrupt or modify a gene of interest to understand its importance and function. However, these approaches can be limited by the availability of selectable markers and the time required to generate transgenic parasites. Moreover, there also is a risk of disrupting native gene regulatory elements with the introduction of exogenous sequences. To address these limitations, we have developed CRISPR-RGR, a Streptococcus pyogenes (Sp)Cas9-based gene editing system for Plasmodium that utilizes a ribozyme-guide-ribozyme (RGR) single guide RNA (sgRNA) expression strategy with RNA polymerase II promoters. Using rodent-infectious Plasmodium yoelii, we demonstrate that both gene disruptions and coding sequence insertions are efficiently generated, producing marker-free parasites with homology arms as short as 80-100 bp. Additionally, we find that the common practice of using one sgRNA can produce both unintended plasmid integration and desired locus replacement editing events, whereas the use of two sgRNAs results in only locus replacement editing. Lastly, we show that CRISPR-RGR can be used for CRISPR interference (CRISPRi) by binding catalytically dead SpCas9 (dSpCas9) to the region upstream of a gene of interest, resulting in a position-dependent, but strand-independent reduction in gene expression. This robust and flexible system facilitates efficient genetic characterizations of rodent-infectious Plasmodium species.
Collapse
Affiliation(s)
- Michael P Walker
- From the Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Scott E Lindner
- From the Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
26
|
Vivax Sporozoite Consortium, Muller I, Jex AR, Kappe SHI, Mikolajczak SA, Sattabongkot J, Patrapuvich R, Lindner S, Flannery EL, Koepfli C, Ansell B, Lerch A, Emery-Corbin SJ, Charnaud S, Smith J, Merrienne N, Swearingen KE, Moritz RL, Petter M, Duffy MF, Chuenchob V. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int J Parasitol 2019; 49:501-513. [PMID: 31071319 PMCID: PMC9973533 DOI: 10.1016/j.ijpara.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/21/2023]
Abstract
Plasmodium vivax is the key obstacle to malaria elimination in Asia and Latin America, largely attributed to its ability to form resilient hypnozoites (sleeper cells) in the host liver that escape treatment and cause relapsing infections. The decision to form hypnozoites is made early in the liver infection and may already be set in sporozoites prior to invasion. To better understand these early stages of infection, we undertook a comprehensive transcriptomic and histone epigenetic characterization of P. vivax sporozoites. Through comparisons with recently published proteomic data for the P. vivax sporozoite, our study found that although highly transcribed, transcripts associated with functions needed for early infection of the vertebrate host are not detectable as proteins and may be regulated through translational repression. We identified differential transcription between the sporozoite and published transcriptomes of asexual blood stages and mixed versus hypnozoite-enriched liver stages. These comparisons point to multiple layers of transcriptional, post-transcriptional and post-translational control that appear active in sporozoites and to a lesser extent hypnozoites, but are largely absent in replicating liver schizonts or mixed blood stages. We also characterised histone epigenetic modifications in the P. vivax sporozoite and explored their role in regulating transcription. Collectively, these data support the hypothesis that the sporozoite is a tightly programmed stage to infect the human host and identify mechanisms for hypnozoite formation that may be further explored in liver stage models.
Collapse
Affiliation(s)
| | - Ivo Muller
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia,Malaria: Parasites & Hosts Unit, Institut Pasteur, 28
Rue de Dr. Roux, 75015, Paris, France,Department of Medical Biology, The University of Melbourne,
Victoria, 3010, Australia
| | - Aaron R. Jex
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia,Department of Medical Biology, The University of Melbourne,
Victoria, 3010, Australia,Faculty of Veterinary and Agricultural Sciences, The
University of Melbourne, Corner of Park and Flemington Road, Parkville, Victoria,
3010, Australia
| | - Stefan H. I. Kappe
- Seattle Children’s Research Institute, 307 Westlake
Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Sebastian A. Mikolajczak
- Seattle Children’s Research Institute, 307 Westlake
Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical
Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Scott Lindner
- Department of Biochemistry and Molecular Biology, Center
for Malaria Research, Pennsylvania State University, University Park, PA 16802,
USA
| | - Erika L. Flannery
- Seattle Children’s Research Institute, 307 Westlake
Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Cristian Koepfli
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia
| | - Brendan Ansell
- Faculty of Veterinary and Agricultural Sciences, The
University of Melbourne, Corner of Park and Flemington Road, Parkville, Victoria,
3010, Australia
| | - Anita Lerch
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia
| | - Sarah Charnaud
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia
| | - Jeffrey Smith
- Population Health and Immunity Division, The Walter and
Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Victoria,
3052, Australia
| | - Nicolas Merrienne
- Malaria: Parasites & Hosts Unit, Institut Pasteur, 28
Rue de Dr. Roux, 75015, Paris, France
| | | | | | - Michaela Petter
- Department of Medicine Royal Melbourne Hospital, The Peter
Doherty Institute, The University of Melbourne, 792 Elizabeth Street, Melbourne,
Victoria 3000, Australia,Institute of Microbiology, University Hospital Erlangen,
Erlangen 91054, Germany
| | - Michael F. Duffy
- Department of Medicine Royal Melbourne Hospital, The Peter
Doherty Institute, The University of Melbourne, 792 Elizabeth Street, Melbourne,
Victoria 3000, Australia
| | - Vorada Chuenchob
- Seattle Children’s Research Institute, 307 Westlake
Avenue North, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
27
|
Ramaprasad A, Subudhi AK, Culleton R, Pain A. A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites. Malar J 2019; 18:26. [PMID: 30683099 PMCID: PMC6347755 DOI: 10.1186/s12936-019-2659-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The transcriptional regulation that occurs in malaria parasites during the erythrocytic stages of infection can be studied in vivo with rodent malaria parasites propagated in mice. Time-series transcriptome profiling commonly involves the euthanasia of groups of mice at specific time points followed by the extraction of parasite RNA from whole blood samples. Current methodologies for parasite RNA extraction involve several steps and when multiple time points are profiled, these protocols are laborious, time-consuming, and require the euthanization of large cohorts of mice. RESULTS A simplified protocol has been designed for parasite RNA extraction from blood volumes as low as 20 μL (microsamples), serially bled from mice via tail snips and directly lysed with TRIzol reagent. Gene expression data derived from microsampling using RNA-seq were closely matched to those derived from larger volumes of leucocyte-depleted and saponin-treated blood obtained from euthanized mice with high reproducibility between biological replicates. Transcriptome profiling of microsamples taken at different time points during the intra-erythrocytic developmental cycle of the rodent malaria parasite Plasmodium vinckei revealed the transcriptional cascade commonly observed in malaria parasites. CONCLUSIONS Microsampling is a quick, robust and cost-efficient approach to sample collection for in vivo time-series transcriptomic studies in rodent malaria parasites.
Collapse
Affiliation(s)
- Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. .,Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Amit Kumar Subudhi
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
28
|
Hart KJ, Oberstaller J, Walker MP, Minns AM, Kennedy MF, Padykula I, Adams JH, Lindner SE. Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex. PLoS Pathog 2019; 15:e1007164. [PMID: 30703164 PMCID: PMC6355032 DOI: 10.1371/journal.ppat.1007164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
With relatively few known specific transcription factors to control the abundance of specific mRNAs, Plasmodium parasites may rely more on the regulation of transcript stability and turnover to provide sufficient gene regulation. Plasmodium transmission stages impose translational repression on specific transcripts in part to accomplish this. However, few proteins are known to participate in this process, and those that are characterized primarily affect female gametocytes. We have identified and characterized Plasmodium yoelii (Py) CCR4-1, a putative deadenylase, which plays a role in the development and activation of male gametocytes, regulates the abundance of specific mRNAs in gametocytes, and ultimately increases the efficiency of host-to-vector transmission. We find that when pyccr4-1 is deleted or its protein made catalytically inactive, there is a loss in the initial coordination of male gametocyte maturation and a reduction of parasite infectivity of the mosquito. Expression of only the N-terminal CAF1 domain of the essential CAF1 deadenylase leads to a similar phenotype. Comparative RNA-seq revealed that PyCCR4-1 affects transcripts important for transmission-related functions that are associated with male or female gametocytes, some of which directly associate with the immunoprecipitated complex. Finally, circular RT-PCR of one of the bound, dysregulated transcripts showed that deletion of the pyccr4-1 gene does not result in gross changes to its UTR or poly(A) tail length. We conclude that the two putative deadenylases of the CAF1/CCR4/NOT complex play critical and intertwined roles in gametocyte maturation and transmission.
Collapse
Affiliation(s)
- Kevin J. Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Michael P. Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Mark F. Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Ian Padykula
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| |
Collapse
|
29
|
Roth A, Adapa SR, Zhang M, Liao X, Saxena V, Goffe R, Li S, Ubalee R, Saggu GS, Pala ZR, Garg S, Davidson S, Jiang RHY, Adams JH. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 2018; 8:12183. [PMID: 30111801 PMCID: PMC6093925 DOI: 10.1038/s41598-018-30713-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires roughly 30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver-stage of malaria, we used quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotyping and RNA-seq analyses revealed key microenvironmental relationships with distinct biological functions. Most notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Collapse
Affiliation(s)
- Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Xiangyun Liao
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Vishal Saxena
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Raaven Goffe
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Suzanne Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Zarna R Pala
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shilpi Garg
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
30
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 21:1839-1852. [PMID: 29141217 DOI: 10.1016/j.celrep.2017.10.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure.
Collapse
Affiliation(s)
- Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Angela D Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy C Graham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Scott E Lindner
- Center for Malaria Research, Penn State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Graduate Program in Biosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 23:1230-1237. [PMID: 29694898 DOI: 10.1016/j.celrep.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, Albert I, Miao J, Lindner SE, Cui L. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci 2018; 131:jcs.212597. [PMID: 29487181 DOI: 10.1242/jcs.212597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Nuclear, Cytosolic, and Surface-Localized Poly(A)-Binding Proteins of Plasmodium yoelii. mSphere 2018; 3:mSphere00435-17. [PMID: 29359180 PMCID: PMC5760745 DOI: 10.1128/msphere.00435-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs. Malaria is a devastating illness that causes approximately 500,000 deaths annually. The malaria-causing parasite (Plasmodium genus) uses the process of translational repression to regulate its growth, development, and transmission. As poly(A)-binding proteins (PABP) have been identified as critical components of RNA metabolism and translational repression in model eukaryotes and in Plasmodium, we have identified and investigated two PABPs in Plasmodium yoelii, PyPABP1 and PyPABP2. In contrast to most single-celled eukaryotes, Plasmodium closely resembles metazoans and encodes both a nuclear PABP and a cytosolic PABP; here, we provide multiple lines of evidence in support of this observation. The conserved domain architectures of PyPABP1 and PyPABP2 resemble those of yeast and metazoans, while multiple independent binding assays demonstrated their ability to bind very strongly and specifically to poly(A) sequences. Interestingly, we also observed that purified PyPABP1 forms homopolymeric chains despite exhaustive RNase treatment in vitro. Finally, we show by indirect immunofluorescence assays (IFAs) that PyPABP1 and PyPABP2 are cytoplasm- and nucleus-associated PABPs during the blood stages of the life cycle. Surprisingly, however, PyPABP1 was instead observed to also be localized on the surface of transmitted salivary gland sporozoites and to be deposited in trails when parasites glide on a substrate. This is the third RNA-binding protein verified to be found on the sporozoite surface, and the data may point to an unappreciated RNA-centered interface between the host and parasite. IMPORTANCE Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs.
Collapse
|
34
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Translational Control in the Latency of Apicomplexan Parasites. Trends Parasitol 2017; 33:947-960. [PMID: 28942109 DOI: 10.1016/j.pt.2017.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. use latent stages to persist in the host, facilitate transmission, and thwart treatment of infected patients. Therefore, it is important to understand the processes driving parasite differentiation to and from quiescent stages. Here, we discuss how a family of protein kinases that phosphorylate the eukaryotic initiation factor-2 (eIF2) function in translational control and drive differentiation. This translational control culminates in reprogramming of the transcriptome to facilitate parasite transition towards latency. We also discuss how eIF2 phosphorylation contributes to the maintenance of latency and provides a crucial role in the timing of reactivation of latent parasites towards proliferative stages.
Collapse
|
36
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
Frischknecht F, Matuschewski K. Plasmodium Sporozoite Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025478. [PMID: 28108531 DOI: 10.1101/cshperspect.a025478] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium sporozoite transmission is a critical population bottleneck in parasite life-cycle progression and, hence, a target for prophylactic drugs and vaccines. The recent progress of a candidate antisporozoite subunit vaccine formulation to licensure highlights the importance of sporozoite transmission intervention in the malaria control portfolio. Sporozoites colonize mosquito salivary glands, migrate through the skin, penetrate blood vessels, breach the liver sinusoid, and invade hepatocytes. Understanding the molecular and cellular mechanisms that mediate the remarkable sporozoite journey in the invertebrate vector and the vertebrate host can inform evidence-based next-generation drug development programs and immune intervention strategies.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
38
|
Painter HJ, Carrasquilla M, Llinás M. Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum. Genome Res 2017; 27:1074-1086. [PMID: 28416533 PMCID: PMC5453321 DOI: 10.1101/gr.217356.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
To capture the transcriptional dynamics within proliferating cells, methods to differentiate nascent transcription from preexisting mRNAs are desired. One approach is to label newly synthesized mRNA transcripts in vivo through the incorporation of modified pyrimidines. However, the human malaria parasite, Plasmodium falciparum, is incapable of pyrimidine salvage for mRNA biogenesis. To capture cellular mRNA dynamics during Plasmodium development, we engineered parasites that can salvage pyrimidines through the expression of a single bifunctional yeast fusion gene, cytosine deaminase/uracil phosphoribosyltransferase (FCU). We show that expression of FCU allows for the direct incorporation of thiol-modified pyrimidines into nascent mRNAs. Using developmental stage-specific promoters to express FCU-GFP enables the biosynthetic capture and in-depth analysis of mRNA dynamics from subpopulations of cells undergoing differentiation. We demonstrate the utility of this method by examining the transcriptional dynamics of the sexual gametocyte stage transition, a process that is essential to malaria transmission between hosts. Using the pfs16 gametocyte-specific promoter to express FCU-GFP in 3D7 parasites, we found that sexual stage commitment is governed by transcriptional reprogramming and stabilization of a subset of essential gametocyte transcripts. We also measured mRNA dynamics in F12 gametocyte-deficient parasites and demonstrate that the transcriptional program required for sexual commitment and maturation is initiated but likely aborted due to the absence of the PfAP2-G transcriptional regulator and a lack of gametocyte-specific mRNA stabilization. Biosynthetic labeling of Plasmodium mRNAs is incredibly versatile, can be used to measure transcriptional dynamics at any stage of parasite development, and will allow for future applications to comprehensively measure RNA-protein interactions in the malaria parasite.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manuela Carrasquilla
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
39
|
Gómez-Díaz E, Yerbanga RS, Lefèvre T, Cohuet A, Rowley MJ, Ouedraogo JB, Corces VG. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep 2017; 7:40655. [PMID: 28091569 PMCID: PMC5238449 DOI: 10.1038/srep40655] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.
Collapse
|
40
|
Shrestha S, Li X, Ning G, Miao J, Cui L. The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum. J Cell Sci 2016; 129:3144-52. [PMID: 27383769 DOI: 10.1242/jcs.186908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023] Open
Abstract
Translation control plays an important role in the regulation of gene expression in the malaria parasite Plasmodium falciparum, especially in transition stages between the vertebrate host and mosquito vector. Here, we determined the function of the Puf-family member Puf1 (denoted as PfPuf1 for the P. falciparum protein) during P. falciparum sexual development. We show that PfPuf1 was expressed in all gametocyte stages and at higher levels in female gametocytes. PfPuf1 disruption did not interfere with the asexual erythrocyte cycle of the parasite but resulted in an approximately tenfold decrease of mature gametocytes. In the PfPuf1-disrupted lines, gametocytes appeared normal before stage III but subsequently exhibited a sharp decline in gametocytemia. This was accompanied by a concomitant accumulation of dead and dying late-stage gametocytes, which retained normal gross morphology. In addition, significantly more female gametocytes were lost in the PfPuf1-disrupted lines during development, resulting in a reversed male-to-female sex ratio. These results indicate that PfPuf1 is important for the differentiation and maintenance of gametocytes, especially female gametocytes.
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaolian Li
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Ning
- Microscopy and Cytometry Facility, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 2016; 17:147. [PMID: 27381095 PMCID: PMC4933991 DOI: 10.1186/s13059-016-1014-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
Background Gene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium’s genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum. Results Close to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite’s life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1–4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites. Conclusions Collectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1014-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Gayani Batugedara
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
42
|
Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:772-792. [PMID: 27230797 PMCID: PMC5111744 DOI: 10.1002/wrna.1365] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| | - Dorothea Droll
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, Vaughan AM, Springer TA, Moritz RL, Kappe SHI, Sinnis P. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016; 12:e1005606. [PMID: 27128092 PMCID: PMC4851412 DOI: 10.1371/journal.ppat.1005606] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. Malaria remains one of the most important infectious diseases in the world, responsible for an estimated 500 million new cases and 600,000 deaths annually. The etiologic agents of the disease are protozoan parasites of the genus Plasmodium that have a complex cycle between mosquito and mammalian hosts. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages that we can make an impact on the economic and health burdens of malaria. Infection is initiated when mosquitoes inoculate sporozoites into the skin as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. The inoculum is low and these early stages of infection are asymptomatic. Though the small amounts of material available for study has made large scale -omics studies difficult, killing the parasite at this stage would prevent infection and block downstream transmission to mosquitoes, thus preventing spread of disease. Here we use state-of-the-art biochemistry tools to identify the proteins on the sporozoite surface and find that two of the most studied proteins, CSP and TRAP, have post-translational modifications. These studies will aid investigations into the novel biology of sporozoites and importantly, significantly expand the pool of potential vaccine candidates.
Collapse
Affiliation(s)
| | - Scott E. Lindner
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lirong Shi
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anke Harupa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ashley M. Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Stefan H. I. Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| |
Collapse
|
44
|
A Plasmodium yoelii Mei2-Like RNA Binding Protein Is Essential for Completion of Liver Stage Schizogony. Infect Immun 2016; 84:1336-1345. [PMID: 26883588 DOI: 10.1128/iai.01417-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Plasmodium parasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role of Plasmodium RBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of the Mei2 (Meiosis inhibited 2) RBP that is conserved among Plasmodium species (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-tagged Plasmodium yoelii PlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout of PlasMei2 (plasmei2(-)) in P. yoelii only affected late liver stage development. The P. yoelii plasmei2(-) liver stage size increased progressively until late in development, similar to wild-type parasite development. However, P. yoelii plasmei2(-) liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity of P. yoelii plasmei2(-) liver stages became increasingly compromised late in development and the majority of P. yoelii plasmei2(-) underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block of P. yoelii plasmei2(-) transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of a Plasmodium RBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms.
Collapse
|
45
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
46
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
47
|
Li J, Cai B, Qi Y, Zhao W, Liu J, Xu R, Pang Q, Tao Z, Hong L, Liu S, Leerkes M, Quiñones M, Su XZ. UTR introns, antisense RNA and differentially spliced transcripts between Plasmodium yoelii subspecies. Malar J 2016; 15:30. [PMID: 26791272 PMCID: PMC4721144 DOI: 10.1186/s12936-015-1081-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background The rodent malaria parasite Plasmodium yoelii is an important animal model for studying host-parasite interaction and molecular basis of malaria pathogenesis. Although a draft genome of P. yoeliiyoelii YM is available, and RNA sequencing (RNA-seq) data for several rodent malaria species (RMP) were reported recently, variations in coding regions and structure of mRNA transcript are likely present between different parasite strains or subspecies. Sequencing of cDNA libraries from additional parasite strains/subspecies will help improve the gene models and genome annotation. Methods Here two directional cDNA libraries from mixed blood stages of a subspecies of P. yoelii (P. y. nigeriensis NSM) with or without mefloquine (MQ) treatment were sequenced, and the sequence reads were compared to the genome and cDNA sequences of P. y. yoelii YM in public databases to investigate single nucleotide polymorphisms (SNPs) in coding regions, variations in intron–exon structure and differential splicing between P. yoelii subspecies, and variations in gene expression under MQ pressure. Results Approximately 56 million of 100 bp paired-end reads were obtained, providing an average of ~225-fold coverage for the coding regions. Comparison of the sequence reads to the YM genome revealed introns in 5′ and 3′ untranslated regions (UTRs), altered intron/exon boundaries, alternative splicing, overlapping sense-antisense reads, and potentially new transcripts. Interestingly, comparison of the NSM RNA-seq reads obtained here with those of YM discovered differentially spliced introns; e.g., spliced introns in one subspecies but not the other. Alignment of the NSM cDNA sequences to the YM genome sequence also identified ~84,000 SNPs between the two parasites. Conclusion The discoveries of UTR introns and differentially spliced introns between P. yoelii subspecies raise interesting questions on the potential role of these introns in regulating gene expression and evolution of malaria parasites. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Baowei Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Yanwei Qi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Wenting Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Jianwen Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ruixue Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Qin Pang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Zhiyong Tao
- Department of Parasitology, Bengbu Medical College, 2600 Donghai Dadao Road, Bengbu, 233030, People's Republic of China.
| | - Lingxian Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Maarten Leerkes
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mariam Quiñones
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xin-zhuan Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
48
|
Zhang M, Mishra S, Sakthivel R, Fontoura BMA, Nussenzweig V. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. PLoS Pathog 2016; 12:e1005370. [PMID: 26735921 PMCID: PMC4712141 DOI: 10.1371/journal.ppat.1005370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022] Open
Abstract
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. Malaria is transmitted to humans by female mosquitoes as they take a blood meal. Plasmodium sporozoites are the infectious and quiescent forms of malaria parasites, which reside in the salivary glands of mosquitoes. Global protein synthesis is inhibited in sporozoites through phosphorylation of the translational factor eIF2α. However, the development of the parasites in the host liver requires de-phosphorylation of eIF2α-P. We find that a unique Plasmodium phosphatase termed UIS2 de-phosphorylates eIF2α-P in malaria. The eIF2α is highly phosphorylated in the uis2 mutant sporozoites. The uis2 mutant parasites did not change their morphology after delivery into the host and could not properly infect the host. We also showed that UIS2 expression was inhibited by the Pumilio protein Puf2. However, this repression was relieved when sporozoites developed into liver stage. In sum, our findings revealed a new mechanism that evolved to control eIF2α dephosphorylation and suggest that identification of UIS2 inhibitors may be useful in anti-malaria therapy.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Victor Nussenzweig
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
49
|
Reddy BPN, Shrestha S, Hart KJ, Liang X, Kemirembe K, Cui L, Lindner SE. A bioinformatic survey of RNA-binding proteins in Plasmodium. BMC Genomics 2015; 16:890. [PMID: 26525978 PMCID: PMC4630921 DOI: 10.1186/s12864-015-2092-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Methods Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. Results We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5 % of all annotated genes. Almost 90 % (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27 % of RBPs have elevated expression in gametocytes, while 47 and 24 % have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. Conclusions The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B P Niranjan Reddy
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Sony Shrestha
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA
| | - Xiaoying Liang
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Karen Kemirembe
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA.
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA.
| |
Collapse
|
50
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|