1
|
De Brasi-Velasco S, Aroca A, Romero LC, Gotor C, Sevilla F, Jiménez A. New role for thioredoxins in plants: Implication of TRXo1 in protein depersulfidation. Redox Biol 2025; 82:103627. [PMID: 40220625 PMCID: PMC12018006 DOI: 10.1016/j.redox.2025.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Persulfidation, a posttranslational modification of cysteines to persulfides, is the best characterized molecular mechanism of H2S signaling. This study is focused on new functions for thioredoxins (TRXs) in plants beyond those of thiol disulfide (S-S) exchange, including the regulation of protein persulfidation as it has been described in animal systems. To elucidate the impact of TRXo1 deficiency on the protein persulfidation pattern in plants of Arabidopsis thaliana L. wild type (WT) and two Attrxo1 T-DNA insertion mutants grown under non stress conditions, a quantitative proteomic approach was performed. The proteomic analysis revealed a higher number of proteins that were more persulfidated in the mutants compared to WT plants, suggesting a role for TRXo1 in protein depersulfidation. Interestingly, most of the differentially persulfidated proteins were located in the chloroplast, implying a coordination between chloroplast H2S-dependent persulfidation and mitochondrial TRXo1 depersulfidation. Among the differentially persulfidated proteins located in mitochondria, the antioxidant enzymes sAPX, DHAR1 and MDAR6 were selected for further studies. The effect of H2S-dependent persulfidation on their enzymatic activities and its reversibility by the NADPH/thioredoxin reductase (NTRB)/TRXo1 system was analyzed, as well as their persulfidation levels were quantified. Sulfide treatment brought about increases in the activity levels of the enzymes, that match with a raise on the persulfidation levels. Interestingly, both activations declining after treatment with the thioredoxin system, indicate the regulation of their persulfidation by TRXo1. These results point to a positive effect of persulfidation on the enzymatic activities and also to a new depersulfidase activity for TRXo1. All together these results give a new insight of the mechanism of elimination of -SSH groups in plants exerted by TRXo1, and the involvement of a redox regulation on the protein persulfidation.
Collapse
Affiliation(s)
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain.
| | - Francisca Sevilla
- Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Ana Jiménez
- Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain.
| |
Collapse
|
2
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
3
|
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic Biol Med 2022; 193:764-778. [PMID: 36403735 DOI: 10.1016/j.freeradbiomed.2022.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The temporal and spatial patterns of reactive oxygen species (ROS) in cells and tissues decisively determine the plant acclimation response to diverse abiotic and biotic stresses. Recent progress in developing dynamic cell imaging probes provides kinetic information on changes in parameters like H2O2, glutathione (GSH/GSSG) and NAD(P)H/NAD(P)+, that play a crucial role in tuning the cellular redox state. Central to redox-based regulation is the thiol-redox regulatory network of the cell that integrates reductive information from metabolism and oxidative ROS signals. Sensitive proteomics allow for monitoring changes in redox-related posttranslational modifications. Thiol peroxidases act as sensitive peroxide and redox sensors and play a central role in this signal transduction process. Peroxiredoxins (PRX) and glutathione peroxidases (GPX) are the two main thiol peroxidases and their function in ROS sensing and redox signaling in plants is emerging at present and summarized in this review. Depending on their redox state, PRXs and GPXs act as redox-dependent binding partners, direct oxidants of target proteins and oxidants of thiol redox transmitters that in turn oxidize target proteins. With their versatile functions, the multiple isoforms of plant thiol peroxidases play a central role in plant stress acclimation, e.g. to high light or osmotic stress, but also in ROS-mediated immunity and development.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
4
|
Mitochondrial Peroxiredoxin-IIF (PRXIIF) Activity and Function during Seed Aging. Antioxidants (Basel) 2022; 11:antiox11071226. [PMID: 35883717 PMCID: PMC9311518 DOI: 10.3390/antiox11071226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria play a major role in energy metabolism, particularly in cell respiration, cellular metabolism, and signal transduction, and are also involved in other processes, such as cell signaling, cell cycle control, cell growth, differentiation and apoptosis. Programmed cell death is associated with the production of reactive oxygen species (ROS) and a concomitant decrease in antioxidant capacity, which, in turn, determines the aging of living organisms and organs and thus also seeds. During the aging process, cell redox homeostasis is disrupted, and these changes decrease the viability of stored seeds. Mitochondrial peroxiredoxin-IIF (PRXIIF), a thiol peroxidase, has a significant role in protecting the cell and sensing oxidative stress that occurs during the disturbance of redox homeostasis. Thioredoxins (TRXs), which function as redox transmitters and switch protein function in mitochondria, can regulate respiratory metabolism. TRXs serve as electron donors to PRXIIF, as shown in Arabidopsis. In contrast, sulfiredoxin (SRX) can regenerate mitochondrial PRXIIF once hyperoxidized to sulfinic acid. To protect against oxidative stress, another type of thiol peroxidases, glutathione peroxidase-like protein (GPXL), is important and receives electrons from the TRX system. They remove peroxides produced in the mitochondrial matrix. However, the TRX/PRX and TRX/GPXL systems are not well understood in mitochondria. Knowledge of both systems is important because these systems play an important role in stress sensing, response and acclimation, including redox imbalance and generation of ROS and reactive nitrogen species (RNS). The TRX/PRX and TRX/GPXL systems are important for maintaining cellular ROS homeostasis and maintaining redox homeostasis under stress conditions. This minireview focuses on the functions of PRXIIF discovered in plant cells approximately 20 years ago and addresses the question of how PRXIIF affects seed viability maintenance and aging. Increasing evidence suggests that the mitochondrial PRXIIF plays a major role in metabolic processes in seeds, which was not previously known.
Collapse
|
5
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
6
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Dreyer A, Treffon P, Basiry D, Jozefowicz AM, Matros A, Mock HP, Dietz KJ. Function and Regulation of Chloroplast Peroxiredoxin IIE. Antioxidants (Basel) 2021; 10:antiox10020152. [PMID: 33494157 PMCID: PMC7909837 DOI: 10.3390/antiox10020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Peroxiredoxins (PRX) are thiol peroxidases that are highly conserved throughout all biological kingdoms. Increasing evidence suggests that their high reactivity toward peroxides has a function not only in antioxidant defense but in particular in redox regulation of the cell. Peroxiredoxin IIE (PRX-IIE) is one of three PRX types found in plastids and has previously been linked to pathogen defense and protection from protein nitration. However, its posttranslational regulation and its function in the chloroplast protein network remained to be explored. Using recombinant protein, it was shown that the peroxidatic Cys121 is subjected to multiple posttranslational modifications, namely disulfide formation, S-nitrosation, S-glutathionylation, and hyperoxidation. Slightly oxidized glutathione fostered S-glutathionylation and inhibited activity in vitro. Immobilized recombinant PRX-IIE allowed trapping and subsequent identification of interaction partners by mass spectrometry. Interaction with the 14-3-3 υ protein was confirmed in vitro and was shown to be stimulated under oxidizing conditions. Interactions did not depend on phosphorylation as revealed by testing phospho-mimicry variants of PRX-IIE. Based on these data it is proposed that 14-3-3υ guides PRX‑IIE to certain target proteins, possibly for redox regulation. These findings together with the other identified potential interaction partners of type II PRXs localized to plastids, mitochondria, and cytosol provide a new perspective on the redox regulatory network of the cell.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Patrick Treffon
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Daniel Basiry
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Anna Maria Jozefowicz
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
8
|
Telman W, Liebthal M, Dietz KJ. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. PHOTOSYNTHESIS RESEARCH 2020; 145:31-41. [PMID: 31768716 DOI: 10.1007/s11120-019-00691-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The chloroplast contains three types of peroxiredoxins (PRXs). Recently, 2-CysPRX was associated with thioredoxin (TRX) oxidation-dependent redox regulation. Here, this analysis was expanded to include PRXQ and PRXIIE. Oxidized PRXQ was able to inactivate NADPH malate dehydrogenase and fructose-1,6-bisphosphatase most efficiently in the presence of TRX-m1 and TRX-m4. The inactivation ability of TRXs did not entirely match their reductive activation efficiency. PRXIIE was unable to function as TRX oxidase in enzyme regulation. This conclusion was further supported by the observation that PRXQ adopts the oxidized form by about 50% in leaves, supporting a possible function as a TRX oxidase similar to 2-CysPRX. Results on the oxidation state of photosystem I (P700), plastocyanin, and ferredoxin in intact leaves indicate that each type of PRX has distinct regulatory functions, and that both 2-CysPRX and PRXQ conditionally assist in adjusting the redox state of target proteins for proper activity.
Collapse
Affiliation(s)
- Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Wang J, Pan W, Cai W, Wang M, Liu L, Zhang M. Structural insight into the biological functions of Arabidopsis thaliana ACHT1. Int J Biol Macromol 2020; 158:43-51. [PMID: 32376247 DOI: 10.1016/j.ijbiomac.2020.04.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
The Arabidopsis thaliana atypical Cys His-rich thioredoxins (ACHTs) are a small class of atypical thioredoxins (TRXs) located in chloroplasts thylakoids and are characterized by a noncanonical motif at their redox active site, C (G/S)(S/G)C. Previous studies have reported that ACHT1 can interact with A. thaliana 2-Cys peroxiredoxins (2-Cys Prxs, including PrxA and PrxB) to transmit oxidation signals in response to illumination with normal light intensity. In this study, we reported the crystal structure of ACHT1 and show that ACHT1 adopts a canonical TRX fold. Comparison of the structures of ACHT1 in both reducing and oxidizing environments revealed that while the redox environment did not influence the overall structure of ACHT1, it did change the conformation of its catalytic residues. We found that the catalytic C125 of ACHT1 is the target residue for PrxA in vitro. In addition, we found that ACHT1 can reduce the peroxidase activity of PrxA, and further confirmed that the ability of ACHT1 to restore the peroxidase function of PrxA was due to the interaction between the two. Our results provide a structural basis for studying the function of atypical TRXs and the oxidative regulation mechanism of ACHT1 and 2-Cys Prxs in chloroplasts.
Collapse
Affiliation(s)
- Junchao Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Weimin Pan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenguang Cai
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
10
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
12
|
Da Fonseca-Pereira P, Daloso DM, Gago J, Nunes-Nesi A, Araújo WL. On the role of the plant mitochondrial thioredoxin system during abiotic stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1592536. [PMID: 30885041 PMCID: PMC6546141 DOI: 10.1080/15592324.2019.1592536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 05/26/2023]
Abstract
Thiol-disulfide redox exchanges are widely distributed modifications of great importance for metabolic regulation in living cells. In general, the formation of disulfide bonds is controlled by thioredoxins (TRXs), ubiquitous proteins with two redox-active cysteine residues separated by a pair of amino acids. While the function of plastidial TRXs has been extensively studied, the role of the mitochondrial TRX system is much less well understood. Recent studies have demonstrated that the mitochondrial TRXs are required for the proper functioning of the major metabolic pathways, including stomatal function and antioxidant metabolism under sub-optimal conditions including drought and salinity. Furthermore, inactivation of mitochondrial TRX system leads to metabolite adjustments of both primary and secondary metabolism following drought episodes in arabidopsis, and makes the plants more resistant to salt stress. Here we discuss the implications of these findings, which clearly open up several research avenues to achieve a full understanding of the redox control of metabolism under environmental constraining conditions.
Collapse
Affiliation(s)
- Paula Da Fonseca-Pereira
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, University of the Balearic Islands, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research – INAGEA Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L. Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
13
|
Calderón A, Sánchez-Guerrero A, Ortiz-Espín A, Martínez-Alcalá I, Camejo D, Jiménez A, Sevilla F. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. PHYSIOLOGIA PLANTARUM 2018; 164:251-267. [PMID: 29446456 DOI: 10.1111/ppl.12708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 05/26/2023]
Abstract
In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild-type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2 O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Antonio Sánchez-Guerrero
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Isabel Martínez-Alcalá
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| |
Collapse
|
14
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|
15
|
Yang Y, Cai W, Wang J, Pan W, Liu L, Wang M, Zhang M. Crystal structure of Arabidopsis thaliana peroxiredoxin A C119S mutant. Acta Crystallogr F Struct Biol Commun 2018; 74:625-631. [PMID: 30279313 PMCID: PMC6168775 DOI: 10.1107/s2053230x18010920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 11/11/2022] Open
Abstract
Peroxiredoxins (Prxs), a large family of antioxidant enzymes, are abundant in all living organisms. Peroxiredoxin A (PrxA) from Arabidopsis thaliana belongs to the typical 2-Cys Prx family and is localized in the chloroplast. This article reports the crystal structure of a PrxA C119S mutant refined to 2.6 Å resolution. The protein exists as a decamer both in the crystal structure and in solution. The structure is in the reduced state suitable for the approach of peroxide, though conformational changes are needed for the resolving process.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Wenguang Cai
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Weimin Pan
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Lin Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Mingzhu Wang
- Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People’s Republic of China
| |
Collapse
|
16
|
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 2018; 80:3-12. [DOI: 10.1016/j.semcdb.2017.07.013] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
17
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs) are thiol peroxidases with multiple functions in the antioxidant defense and redox signaling network of the cell. Our progressing understanding assigns both local and global significance to plant Prxs, which are grouped in four Prx types. In plants they are localized to the cytosol, mitochondrion, plastid, and nucleus. Antioxidant defense is fundamentally connected to redox signaling, cellular communication, and acclimation. The thiol-disulfide network is central part of the stress sensing and processing response and integrates information input with redox regulation. Recent Advances: Prxs function both as redox sensory system within the network and redox-dependent interactors. The processes directly or indirectly targeted by Prxs include gene expression, post-transcriptional reactions, including translation, post-translational regulation, and switching or tuning of metabolic pathways, and other cell activities. The most advanced knowledge is available for the chloroplast 2-CysPrx wherein recently a solid interactome has been defined. An in silico analysis of protein structure and coexpression reinforces new insights into the 2-CysPrx functionality. CRITICAL ISSUES Up to now, Prxs often have been investigated for local properties of enzyme activity. In vitro and ex vivo work with mutants will reveal the ability of Prxs to interfere with multiple cellular components, including crosstalk with Ca2+-linked signaling pathways, hormone signaling, and protein homeostasis. FUTURE DIRECTIONS Complementation of the Prxs knockout lines with variants that mimic specific states, namely devoid of peroxidase activity, lacking the oligomerization ability, resembling the hyperoxidized decamer, or with truncated C-terminus, should allow dissecting the roles as thiol peroxidase, oxidant, interaction partner, and chaperone. Antioxid. Redox Signal. 28, 609-624.
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| |
Collapse
|
18
|
Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The Unprecedented Versatility of the Plant Thioredoxin System. TRENDS IN PLANT SCIENCE 2017; 22:249-262. [PMID: 28139457 DOI: 10.1016/j.tplants.2016.12.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Thioredoxins are ubiquitous enzymes catalyzing reversible disulfide-bond formation to regulate structure and function of many proteins in diverse organisms. In recent years, reverse genetics and biochemical approaches were used to resolve the functions, specificities, and interactions of the different thioredoxin isoforms and reduction systems in planta and revealed the most versatile thioredoxin system of all organisms. Here we review the emerging roles of the thioredoxin system, namely the integration of thylakoid energy transduction, metabolism, gene expression, growth, and development under fluctuating environmental conditions. We argue that these new developments help us to understand why plants organize such a divergent composition of thiol redox networks and provide insights into the regulatory hierarchy that operates between them.
Collapse
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany.
| | - Ina Thormählen
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1025-1038. [PMID: 28184497 PMCID: PMC5441863 DOI: 10.1093/jxb/erx012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Aingeru Calderón
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Francisca Sevilla
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Ana Jiménez
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| |
Collapse
|
20
|
Calderón A, Lázaro-Payo A, Iglesias-Baena I, Camejo D, Lázaro JJ, Sevilla F, Jiménez A. Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutathionylates Only the 2-Cys Prx. FRONTIERS IN PLANT SCIENCE 2017; 8:118. [PMID: 28197170 PMCID: PMC5283164 DOI: 10.3389/fpls.2017.00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/19/2017] [Indexed: 05/24/2023]
Abstract
Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs) are involved in antioxidant defense and redox signaling, while their regulation by post-translational modifications (PTMs) is increasingly regarded as a key component for the transduction of the bioactivity of reactive oxygen and nitrogen species. Among these PTMs, S-glutathionylation is considered a protective mechanism against overoxidation, it also modulates protein activity and allows signaling. This study explores the glutathionylation of recombinant chloroplastic 2-Cys Prx and mitochondrial Prx IIF from Pisum sativum. Glutathionylation of the decameric form of 2-Cys Prx produced a change in the elution volume after FPLC chromatography and converted it to its dimeric glutathionylated form, while Prx IIF in its reduced dimeric form was glutathionylated without changing its oligomeric state. Mass spectrometry demonstrated that oxidized glutathione (GSSG) can glutathionylate resolving cysteine (Cys174), but not the peroxidatic equivalent (Cys52), in 2-Cys Prx. In contrast, GSSG was able to glutathionylate both peroxidatic (Cys59) and resolving (Cys84) cysteine in Prx IIF. Glutathionylation was seen to be dependent on the GSH/GSSG ratio, although the exact effect on the 2-Cys Prx and Prx IIF proteins differed. However, the glutathionylation provoked a similar decrease in the peroxidase activity of both peroxiredoxins. Despite growing evidence of the importance of post-translational modifications, little is known about the enzymatic systems that specifically regulate the reversal of this modification. In the present work, sulfiredoxin from P. sativum was seen to be able to deglutathionylate pea 2-Cys Prx but not pea Prx IIF. Redox changes during plant development and the response to stress influence glutathionylation/deglutathionylation processes, which may represent an important event through the modulation of peroxiredoxin and sulfiredoxin proteins.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, Centre for Applied Soil Science and Biology of the Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Alfonso Lázaro-Payo
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Zaidin Experimental Station – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Iván Iglesias-Baena
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Zaidin Experimental Station – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centre for Applied Soil Science and Biology of the Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Juan J. Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Zaidin Experimental Station – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centre for Applied Soil Science and Biology of the Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centre for Applied Soil Science and Biology of the Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
21
|
Govender K, Thomson JA, Mundree S, ElSayed AI, Rafudeen MS. Molecular and biochemical characterisation of a novel type II peroxiredoxin (XvPrx2) from the resurrection plant Xerophyta viscosa. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:669-683. [PMID: 32480495 DOI: 10.1071/fp15291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/27/2015] [Indexed: 06/11/2023]
Abstract
A type II peroxiredoxin gene (XvPrx2) was isolated from a Xerophyta viscosa (Baker) cDNA cold-stress library. The polypeptide displayed significant similarity to other plant type II peroxiredoxins, with the conserved amino acid motif (PGAFTPTCS) proposed to constitute the active site of the enzyme. Northern blot analyses showed that XvPrx2 gene was stress-inducible in response to abiotic stresses while gel analyses revealed that XvPrx2 homologues exist within the X. viscosa proteome. Using a yellow fluorescent reporter protein, the XvPrx2 protein localised to the cytosol. A mutated protein (XvV7) was generated by converting the valine at position 76 to a cysteine and an in vitro DNA protection assay showed that, in the presence of either XvPrx2 or XvV7, DNA protection occurred. In addition, an in vivo assay showed that increased protection was conferred to Escherichia coli cells overexpressing either XvPrx2 or XvV7. The XvPrx2 activity was maximal with DTT as electron donor and H2O2 as substrate. Using E. coli thioredoxin, a 2-15-fold lower enzyme activity was observed. The XvPrx2 activity with glutathione was significantly lower and glutaredoxin had no measurable effect on this reaction. The XvV7 protein displayed significantly lower activity compared with XvPrx2 for all substrates assessed.
Collapse
Affiliation(s)
- Kershini Govender
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Jennifer A Thomson
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Brisbane, Qld 4001, Australia
| | | | - Mohammed Suhail Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| |
Collapse
|
22
|
Plant protein 2-Cys peroxiredoxin TaBAS1 alleviates oxidative and nitrosative stresses incurred during cryopreservation of mammalian cells. Biotechnol Bioeng 2016; 113:1511-21. [DOI: 10.1002/bit.25921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/28/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
|
23
|
Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A. Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized form. Arch Biochem Biophys 2016; 590:101-108. [PMID: 26612102 PMCID: PMC9123601 DOI: 10.1016/j.abb.2015.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
Peroxiredoxins are cys-based peroxidases that function in peroxide detoxification and H2O2-induced signaling. Human Prx2 is a typical 2-Cys Prx arranged as pentamers of head-to-tail homodimers. During the catalytic mechanism, the active-site cysteine (CP) cycles between reduced, sulfenic and disulfide state involving conformational as well as oligomeric changes. Several post-translational modifications were shown to affect Prx activity, in particular CP overoxidation which leads to inactivation. We have recently reported that nitration of Prx2, a post-translational modification on non-catalytic tyrosines, unexpectedly increases its peroxidase activity and resistance to overoxidation. To elucidate the cross-talk between this post-translational modification and the enzyme catalysis, we investigated the structural changes of Prx2 after nitration. Analytical ultracentrifugation, UV absorption, circular dichroism, steady-state and time-resolved fluorescence were used to connect catalytically relevant redox changes with tyrosine nitration. Our results show that the reduced nitrated Prx2 structurally resembles the disulfide-oxidized native form of the enzyme favoring a locally unfolded conformation that facilitates disulfide formation. These results provide structural basis for the kinetic analysis previously reported, the observed increase in activity and the resistance to overoxidation of the peroxynitrite-treated enzyme.
Collapse
Affiliation(s)
- Lía Randall
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno Manta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Javier Santos
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
24
|
Ortiz-Espín A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jiménez A. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. ANNALS OF BOTANY 2015; 116:571-82. [PMID: 26041732 PMCID: PMC4577997 DOI: 10.1093/aob/mcv076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. METHODS Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. KEY RESULTS Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. CONCLUSIONS A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, D-52074, Aachen, Germany
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain,
| |
Collapse
|
25
|
Cha MK, Bae YJ, Kim KJ, Park BJ, Kim IH. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis. World J Biol Chem 2015; 6:249-64. [PMID: 26322180 PMCID: PMC4549766 DOI: 10.4331/wjbc.v6.i3.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/21/2015] [Accepted: 06/09/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To identify alkyl hydroperoxide reductase subunit C (AhpC) homologs in Bacillus subtilis (B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria. METHODS Two AhpC homologs (AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues (C37S, C47S, C166S, C37/47S, C37/166S, C47/166S, and C37/47/166S for AhpC_H1; C52S, C169S, and C52/169S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahpC genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined. RESULTS Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis. CONCLUSION AhpC_H1, a novel atypical 2-Cys AhpC, is functionally distinct from AhpC_H2, a typical 2-Cys AhpC.
Collapse
|
26
|
Abstract
Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx-protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx-target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein-protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx-target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition.
Collapse
|
27
|
Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2945-55. [PMID: 25873657 DOI: 10.1093/jxb/erv146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.
Collapse
Affiliation(s)
- F Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - D Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - J J Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ, CSIC, 18007 Granada, Spain
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
28
|
Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A. Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteomics 2015; 119:112-25. [PMID: 25682994 DOI: 10.1016/j.jprot.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO. BIOLOGICAL SIGNIFICANCE S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Juan J Lázaro
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - María C Romero-Puertas
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Alfonso Lázaro-Payo
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| |
Collapse
|
29
|
Bernal-Bayard P, Ojeda V, Hervás M, Cejudo FJ, Navarro JA, Velázquez-Campoy A, Pérez-Ruiz JM. Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxinx. FEBS Lett 2014; 588:4342-7. [DOI: 10.1016/j.febslet.2014.09.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022]
|
30
|
Redox regulation of chloroplastic G6PDH activity by thioredoxin occurs through structural changes modifying substrate accessibility and cofactor binding. Biochem J 2014; 457:117-25. [PMID: 24079807 DOI: 10.1042/bj20130337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In chloroplasts, redox regulation of enzyme activities by TRXs (thioredoxins) allows the co-ordination of light/dark metabolisms such as the reductive (so-called Calvin-Benson) pathway and the OPPP (oxidative pentose phosphate pathway). Although the molecular mechanisms underlying the redox regulation of several TRX-regulated enzymes have been investigated in detail, only partial information was available for plastidial G6PDH (glucose-6-phosphate dehydrogenase) catalysing the first and rate-limiting step of the OPPP. In the present study, we investigated changes in catalytic and structural properties undergone by G6PDH1 from Arabidopsis thaliana upon treatment with TRX f1, the most efficient regulator of the enzyme that did not show a stable interaction with its target. We found that the formation of the regulatory disulfide bridge that leads to activation of the enzyme allows better substrate accessibility to the active site and strongly modifies the cofactor-binding properties. Structural modelling and data from biochemical and biophysical studies of site-directed mutant proteins support a mechanism in which the positioning/function of the highly conserved Arg(131) in the cofactor-binding site can be directly influenced by the redox state of the adjacent regulatory disulfide bridge. These findings constitute another example of modifications to catalytic properties of a chloroplastic enzyme upon redox regulation, but by a mechanism unique to G6PDH.
Collapse
|
31
|
Barth J, Bergner SV, Jaeger D, Niehues A, Schulze S, Scholz M, Fufezan C. The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry. Mol Cell Proteomics 2014; 13:969-89. [PMID: 24482124 DOI: 10.1074/mcp.m113.032771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O₂ and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.
Collapse
Affiliation(s)
- Johannes Barth
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Münster
| | | | | | | | | | | | | |
Collapse
|
32
|
Schmidtmann E, König AC, Orwat A, Leister D, Hartl M, Finkemeier I. Redox regulation of Arabidopsis mitochondrial citrate synthase. MOLECULAR PLANT 2014; 7:156-69. [PMID: 24198232 DOI: 10.1093/mp/sst144] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it catalyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored. Although several TCA cycle enzymes have been identified as thioredoxin targets in vitro, the existence of any thioredoxin-dependent regulation as known for the Calvin cycle, yet remains to be demonstrated. Here we have investigated the redox regulation of the Arabidopsis citrate synthase enzyme by site-directed mutagenesis of its six cysteine residues. Our results indicate that oxidation inhibits the enzyme activity by the formation of mixed disulfides, as the partially oxidized citrate synthase enzyme forms large redox-dependent aggregates. Furthermore, we were able to demonstrate that thioredoxin can cleave diverse intra- as well as intermolecular disulfide bridges, which strongly enhances the activity of the enzyme. Activity measurements with the cysteine variants of the enzyme revealed important cysteine residues affecting total enzyme activity as well as the redox sensitivity of the enzyme.
Collapse
Affiliation(s)
- Elisabeth Schmidtmann
- Botany, Department I of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Lázaro JJ, Jiménez A, Camejo D, Iglesias-Baena I, Martí MDC, Lázaro-Payo A, Barranco-Medina S, Sevilla F. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. FRONTIERS IN PLANT SCIENCE 2013; 4:460. [PMID: 24348485 PMCID: PMC3842906 DOI: 10.3389/fpls.2013.00460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/26/2013] [Indexed: 05/19/2023]
Abstract
Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.
Collapse
Affiliation(s)
- Juan J. Lázaro
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Iván Iglesias-Baena
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María del Carmen Martí
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Alfonso Lázaro-Payo
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Sergio Barranco-Medina
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. RECENT ADVANCES Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. CRITICAL ISSUES Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. FUTURE DIRECTIONS Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling.
Collapse
|
35
|
Yoshida K, Noguchi K, Motohashi K, Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:875-92. [DOI: 10.1093/pcp/pct037] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Martí MC, Florez-Sarasa I, Camejo D, Pallol B, Ortiz A, Ribas-Carbó M, Jiménez A, Sevilla F. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. PHYSIOLOGIA PLANTARUM 2013; 147:194-206. [PMID: 22607494 DOI: 10.1111/j.1399-3054.2012.01654.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria.
Collapse
Affiliation(s)
- María C Martí
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
38
|
Hakmaoui A, Pérez-Bueno ML, García-Fontana B, Camejo D, Jiménez A, Sevilla F, Barón M. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5487-96. [PMID: 22915745 PMCID: PMC3444274 DOI: 10.1093/jxb/ers212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The present study was carried out to investigate the role of reactive oxygen species (ROS) metabolism in symptom development and pathogenesis in Nicotiana benthamiana plants upon infection with two strains of Pepper mild mottle virus, the Italian (PMMoV-I) and the Spanish (PMMoV-S) strains. In this host, it has been shown that PMMoV-I is less virulent and plants show the capability to recover 21 d after inoculation. Analyses of oxidative stress biomarkers, ROS-scavenging enzyme activities, and antioxidant compounds were conducted in plants at different post-infection times. Only PMMoV-I stimulated a defence response through: (i) up-regulation of different superoxide dismutase isozymes; (ii) maintenance of adequate levels of three peroxiredoxins (2-Cys Prx, Prx IIC, and Prx IIF); and (iii) adjustments in the glutathione pool to maintain the total glutathione content. Moreover, there was an increase in the level of oxidized glutathione and ascorbate in the recovery phase of PMMoV-I-infected plants. The antioxidant response and the extent of oxidative stress in N. benthamiana plants correlates to: (i) the severity of the symptoms elicited by either strain of PMMoV; and (ii) the high capacity of PMMoV-I-infected plants for symptom recovery and delayed senescence, compared with PMMoV-S-infected plants.
Collapse
Affiliation(s)
- A. Hakmaoui
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)Profesor Albareda 1, 18008 GranadaSpain
| | - M. L. Pérez-Bueno
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)Profesor Albareda 1, 18008 GranadaSpain
| | - B. García-Fontana
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)Profesor Albareda 1, 18008 GranadaSpain
| | - D. Camejo
- Department of Biology of Stress and Plant Pathology, CEBAS, Consejo Superior de Investigaciones Científicas (CSIC)PO Box 164, 30100 MurciaSpain
| | - A. Jiménez
- Department of Biology of Stress and Plant Pathology, CEBAS, Consejo Superior de Investigaciones Científicas (CSIC)PO Box 164, 30100 MurciaSpain
| | - F. Sevilla
- Department of Biology of Stress and Plant Pathology, CEBAS, Consejo Superior de Investigaciones Científicas (CSIC)PO Box 164, 30100 MurciaSpain
| | - M. Barón
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)Profesor Albareda 1, 18008 GranadaSpain
| |
Collapse
|
39
|
König J, Muthuramalingam M, Dietz KJ. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:261-8. [PMID: 22226570 DOI: 10.1016/j.pbi.2011.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 05/19/2023]
Abstract
Plant cells sense, weigh and integrate various endogenous and exogenous cues in order to optimize acclimation and resource allocation. The thiol/disulfide redox network appears to be in the core of this versatile integration process. In plant cells its complexity exceeds by far that of other organisms. Recent research has elucidated the multiplicity of the diversified input elements, transmitters (thioredoxin, glutaredoxins), targets and sensors (peroxiredoxins and other peroxidases), controlled processes and final acceptors (reactive oxygen species). An additional level of thiol/disulfide regulation is achieved by introducing dynamics in time and subcompartment and complex association.
Collapse
Affiliation(s)
- Janine König
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | |
Collapse
|
40
|
Gao C, Zhang K, Yang G, Wang Y. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA). Int J Mol Sci 2012; 13:3751-3764. [PMID: 22489180 PMCID: PMC3317740 DOI: 10.3390/ijms13033751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.
Collapse
Affiliation(s)
| | | | | | - Yucheng Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-451-82190607-12; Fax: +86-451-82190607-11
| |
Collapse
|
41
|
Stent A, Every AL, Sutton P. Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 2012; 302:G579-87. [PMID: 22194421 DOI: 10.1152/ajpgi.00495.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a microaerophilic, gram-negative pathogen of the human stomach. Despite the chronic active gastritis that develops following colonization, H. pylori is able to persist unharmed in the stomach for decades. Much of the damage caused by gastric inflammation results from the accumulation of reactive oxygen/nitrogen species within the stomach environment, which can induce oxidative damage in a wide range of biological molecules. Without appropriate defenses, this oxidative damage would be able to rapidly kill nearby H. pylori, but the organism employs a range of measures, including antioxidant enzymes, biological repair systems, and inhibitors of oxidant generation, to counter the attack. Despite the variety of measures employed to defend against oxidative injury, these processes are intimately interdependent, and any deficiency within the antioxidant system is generally sufficient to cause substantial impairment of H. pylori viability and persistence. This review provides an overview of the development of oxidative stress during H. pylori gastritis and examines the methods the organism uses to survive the resultant damage.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
42
|
Sanz-Barrio R, Fernández-San Millán A, Carballeda J, Corral-Martínez P, Seguí-Simarro JM, Farran I. Chaperone-like properties of tobacco plastid thioredoxins f and m. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:365-79. [PMID: 21948853 PMCID: PMC3245471 DOI: 10.1093/jxb/err282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/27/2011] [Accepted: 08/12/2011] [Indexed: 05/19/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein.
Collapse
Affiliation(s)
- Ruth Sanz-Barrio
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Alicia Fernández-San Millán
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Jon Carballeda
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Patricia Corral-Martínez
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8E - Escalera I, Camino de Vera s/n, E-46022 Valencia, Spain
| | - José M. Seguí-Simarro
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8E - Escalera I, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| |
Collapse
|
43
|
Abstract
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
44
|
Martí MC, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro JJ, Sevilla F, Jiménez A. Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3863-74. [PMID: 21460385 PMCID: PMC3134343 DOI: 10.1093/jxb/err076] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 05/03/2023]
Abstract
Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.
Collapse
Affiliation(s)
- María C. Martí
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Igor Florez-Sarasa
- Department of Biology, Universitat de les Illes Balears, Carretera Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Miquel Ribas-Carbó
- Department of Biology, Universitat de les Illes Balears, Carretera Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan J. Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, PO Box 419, E-18080 Granada, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| |
Collapse
|
45
|
Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M. Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus. PLANT PHYSIOLOGY 2011; 156:1535-47. [PMID: 21562331 PMCID: PMC3131139 DOI: 10.1104/pp.111.177196] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 05/08/2023]
Abstract
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain (A.T.-M., M.A.M., P.B.-S., M.B.); Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany (K.-J.D.); Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (F.J.C.); UMR Interactions Arbres Microorganismes 1136, Nancy Université, 54506 Vandoeuvre, France (N.R.); Kazusa DNA Research Institute, Kisarazu, Chiba 292–0818, Japan (S.S., S.T.)
| |
Collapse
|
46
|
Abstract
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
47
|
Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 2011; 24:434-50. [PMID: 21391663 DOI: 10.1021/tx100413v] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein thiol reactivity generally involves the nucleophilic attack of the thiolate on an electrophile. A low pK(a) means higher availability of the thiolate at neutral pH but often a lower nucleophilicity. Protein structural factors contribute to increasing the reactivity of the thiol in very specific reactions, but these factors do not provide an indiscriminate augmentation in general reactivity. Notably, reduction of hydroperoxides by the catalytic cysteine of peroxiredoxins can achieve extraordinary reaction rates relative to free cysteine. The discussion of this catalytic efficiency has centered in the stabilization of the thiolate as a way to increase nucleophilicity. Such stabilization originates from electrostatic and polar interactions of the catalytic cysteine with the protein environment. We propose that the set of interactions is better described as a means of stabilizing the anionic transition state of the reaction. The enhanced acidity of the critical cysteine is concurrent but not the cause of catalytic efficiency. Protein stabilization of the transition state is achieved by (a) a relatively static charge distribution around the cysteine that includes a conserved arginine and the N-terminus of an α-helix providing a cationic environment that stabilizes the reacting thiolate, the transition state, and also the anionic leaving group; (b) a dynamic set of polar interactions that stabilize the thiolate in the resting enzyme and contribute to restraining its reactivity in the absence of substrate; but upon peroxide binding these active/binding site groups switch interactions from thiolate to peroxide oxygens, simultaneously increasing the nucleophilicity of the attacking sulfur and facilitating the correct positioning of the substrate. The switching of polar interaction provides further acceleration and, importantly, confers specificity to the thiol reactivity. The extraordinary thiol reactivity and specificity toward H(2)O(2) combined with their ubiquity and abundance place peroxiredoxins, along with glutathione peroxidases, as obligate hydroperoxide cellular sensors.
Collapse
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
48
|
Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro JJ. The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. PLANT PHYSIOLOGY 2011; 155:944-55. [PMID: 21139087 PMCID: PMC3032478 DOI: 10.1104/pp.110.166504] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/05/2010] [Indexed: 05/19/2023]
Abstract
Sulfiredoxin (Srx) couples the energy of ATP hydrolysis to the energetically unfavorable process of reducing the inactive sulfinic form of 2-cysteine peroxiredoxins (Prxs) to regenerate its active form. In plants, Srx as well as typical 2-cysteine Prx have been considered as enzymes with exclusive chloroplast localization. This work explores the subcellular localization of Srx in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana). Immunocytochemistry, analysis of protein extracts from isolated intact organelles, and cell-free posttranslational import assays demonstrated that plant Srx also localizes to the mitochondrion in addition to plastids. The dual localization was in line with the prediction of a signal peptide for dual targeting. Activity tests and microcalorimetric data proved the interaction between Srx and its mitochondrial targets Prx IIF and thioredoxin. Srx catalyzed the retroreduction of the inactive sulfinic form of atypical Prx IIF using thioredoxin as reducing agent. Arabidopsis Srx also reduced overoxidized human Prx V. These results suggest that plant Srx could play a crucial role in the regulation of Prx IIF activity by controlling the regeneration of its overoxidized form in mitochondria, which are sites of efficient reactive oxygen species production in plants.
Collapse
Affiliation(s)
| | | | | | - Juan-José Lázaro
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E–18008, Granada, Spain (I.I.-B., S.B.-M., J.-J.L.); and Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, E–30080, Murcia, Spain (F.S.)
| |
Collapse
|
49
|
Traverso JA, López-Jaramillo FJ, Serrato AJ, Ortega-Muñoz M, Aguado-Llera D, Sahrawy M, Santoyo-Gonzalez F, Neira JL, Chueca A. Evidence of non-functional redundancy between two pea h-type thioredoxins by specificity and stability studies. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:423-9. [PMID: 20005595 DOI: 10.1016/j.jplph.2009.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
The largest group of plant thioredoxins (TRXs) consists of the so-called h-type; their great number raises questions about their specific or redundant roles in plant cells. Pisum sativum thioredoxin h1 (PsTRXh1) and Pisum sativum thioredoxin h2 (PsTRXh2) are both h-type TRXs from pea (Pisum sativum) previously identified and biochemically characterized. While both are involved in redox regulation and show a high-sequence identity (60%), they display different behavior during in vitro and in vivo assays. In this work, we show that these two proteins display different specificity in the capturing of protein targets in vitro, by the use of a new stringent method. PsTRXh2 interacted with classical antioxidant proteins, whereas PsTRXh1 showed a completely different pattern of targeted proteins, and was able to capture a transcription factor. We also showed that the two proteins display very different thermal and chemical stabilities. We suggest that the differences in thermal and chemical stability point to a distinct and characteristic pattern of protein specificity.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, CSIC 18008 Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 2010; 396:1211-26. [PMID: 20060836 DOI: 10.1016/j.jmb.2009.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/03/2009] [Accepted: 12/29/2009] [Indexed: 12/21/2022]
Abstract
Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here, we present structural, biochemical, and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pK(a) for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein coexpression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicates anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions.
Collapse
|