1
|
Parise A, Manini I, Pobega E, Covaceuszach S, Secco L, Simonelli F, Mastantuono S, di Loreto C, Pizzignach A, Skrap M, Vindigni M, Sgarra R, Manfioletti G, Cesselli D, Magistrato A. Identification of a new small Rho GTPase inhibitor effective in glioblastoma human cells. Eur J Med Chem 2025; 292:117704. [PMID: 40334503 DOI: 10.1016/j.ejmech.2025.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumour. The prognosis for GBM patients remains poor due to rapid tumour recurrence and resistance to conventional treatments. Small Rho GTPase proteins, which regulate cell shape and motility, are critical for GBM aggressive growth and infiltration into the surrounding brain parenchyma. Hence, small-molecule inhibitors targeting them represent an appealing opportunity to hinder the infiltration behaviour of GBM. Here, a synergistic experimental and computational approach allowed us to identify an inhibitor that reduces migration in patient-derived GBM cell lines. Computational and in vitro functional assays reveal that this compound inhibits Rho GTPases function by targeting multiple allosteric sites thereby enhancing flexibility of key functional regions and hindering their interaction with protein regulators. Our research unveiled a novel hit molecule targeting Rho GTPases with significant potential to improve the treatment of GBM and other highly aggressive tumours.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy
| | - Enrico Pobega
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Strada Statale 14 Km 16.5, Basovizza, 34149, (TS), Italy
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Federica Simonelli
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | | | - Carla di Loreto
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Alessio Pizzignach
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Marco Vindigni
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | | | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy.
| |
Collapse
|
2
|
Xiong X, Du Y, Liu P, Li X, Lai X, Miao H, Ning B. Unveiling EIF5A2: A multifaceted player in cellular regulation, tumorigenesis and drug resistance. Eur J Pharmacol 2025; 997:177596. [PMID: 40194645 DOI: 10.1016/j.ejphar.2025.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The eukaryotic initiation factor 5A2 gene (EIF5A2) is a highly conserved and multifunctional gene that significantly influences various cellular processes, including translation elongation, RNA binding, ribosome binding, protein binding and post-translational modifications. Overexpression of EIF5A2 is frequently observed in multiple cancers, where it functions as an oncoprotein. Additionally, EIF5A2 is implicated in drug resistance through the regulation of various molecular pathways. In the review, we describe the structure and functions of EIF5A2 in normal cells and its role in tumorigenesis. We also elucidate the molecular mechanisms associated with EIF5A2 in the context of tumorigenesis and drug resistance. We propose that the biological roles of EIF5A2 in regulating diverse cellular processes and tumorigenesis are clinically significant and warrant further investigation.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China; Guangzhou Institute of Burn Clinical Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Yanli Du
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Peng Liu
- Departments of Burn and Plastic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xinye Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xudong Lai
- Department of infectious disease, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Haixiong Miao
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
3
|
Zhang C, Yang Q, Lu Y, Wei Q, Zhou R, Xing G, Cao X, Chen Z, Yao J. OSBPL2 deficiency inhibits Rho/ROCK2/p-ERM signaling and impairs actin cytoskeletal regulation in auditory cells. J Biomed Res 2025; 39:1-13. [PMID: 40391522 DOI: 10.7555/jbr.38.20240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
Mutation in oxysterol-binding protein-like 2 ( OSBPL2) has been identified as the genetic cause of autosomal dominant nonsyndromic hearing loss (DFNA67, OMIM No. 616340). However, the pathogenesis of the OSBPL2 mutation in DFNA remains unclear. Our previous work showed that OSBPL2 deficiency impaired cell adhesion in auditory HEI-OC1 cells. In addition, loss of hair cells (HCs) and morphological abnormalities of HC stereocilia were detected in OSBPL2-disrupted pigs, suggesting that OSBPL2 plays an important role in the regulation of the actin cytoskeleton in auditory cells. In the present study, we found that OSBPL2 deficiency inhibited the Rho/ROCK2 signaling pathway and downregulated phosphorylated Ezrin-Radixin-Moesin (p-ERM), resulting in abnormal F-actin morphology in HEI-OC1 cells and stereociliary defects in mouse HCs. The present study demonstrates the underlying mechanism of OSBPL2 in the regulation of the actin cytoskeleton in HCs, which contributes to a deeper understanding of the pathogenesis of OSBPL2 mutations in DFNA.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qian Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rong Zhou
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangqian Xing
- Department of Otolaryngology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhibin Chen
- Department of Otolaryngology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
4
|
Bozzi M, Sciandra F, Bigotti MG, Brancaccio A. Misregulation of the Ubiquitin-Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin-Glycoprotein Complex. Cells 2025; 14:721. [PMID: 40422224 DOI: 10.3390/cells14100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Maria Giulia Bigotti
- Bristol Heart Institute, Bristol Royal Infirmary, Research Floor Level 7, Bristol BS2 8HW, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Lamb H, Fernholz M, Liro MJ, Myles KM, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere. Genetics 2025; 229:iyaf020. [PMID: 39891664 PMCID: PMC12005263 DOI: 10.1093/genetics/iyaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Małgorzata J Liro
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Krista M Myles
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Sun Y, Hamlin AJ, Schwarzbauer JE. Fibronectin matrix assembly at a glance. J Cell Sci 2025; 138:jcs263834. [PMID: 40130407 PMCID: PMC12050093 DOI: 10.1242/jcs.263834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
The organization and mechanics of extracellular matrix (ECM) protein polymers determine tissue structure and function. Secreted ECM components are assembled into polymers via a cell-mediated process. The specific mechanisms that cells use for assembly are crucial for generating tissue-appropriate matrices. Fibronectin (FN) is a ubiquitous and abundant ECM protein that is assembled into a fibrillar matrix by a receptor-mediated process, and the FN matrix provides a foundation for incorporation of many other proteins into the ECM. In this Cell Science at a Glance article and the accompanying poster, we describe the domain organization of FN and the events that initiate and propagate a stable insoluble network of FN fibrils. We also discuss intracellular pathways that regulate FN assembly and the impact of changes in assembly on disease progression.
Collapse
Affiliation(s)
- Yu Sun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron J. Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
7
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
8
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
9
|
Velasco-Sampedro EA, Sánchez-Vicente C, Caloca MJ. β2-Chimaerin Deficiency Favors Polyp Growth in the Colon of Apc Min/+ Mice. Molecules 2025; 30:824. [PMID: 40005135 PMCID: PMC11858732 DOI: 10.3390/molecules30040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
A Rho-GTPases are pivotal regulators of key cellular processes implicated in colorectal cancer (CRC) progression, yet the roles of their regulatory proteins, particularly GTPase-activating proteins (GAPs), remain poorly understood. This study focuses on β2-chimaerin, a Rac1-specific GAP, in Apc-driven tumorigenesis using the ApcMin/+ mouse model. We demonstrate that β2-chimaerin deficiency selectively promotes the growth of colonic polyps without influencing small intestinal polyp formation. Mechanistically, β2-chimaerin loss is associated with enhanced ERK phosphorylation, while canonical Wnt/β-catenin and E-cadherin pathways remain unaffected, suggesting its specific involvement in modulating proliferative signaling in the colon. Consistent with its tumor-suppressive role, bioinformatics analyses reveal that low β2-chimaerin expression correlates with poor prognosis in CRC patients. This study expands the understanding of Rho-GTPase regulatory mechanisms in intestinal tumorigenesis, providing a basis for future therapeutic strategies targeting Rho-GTPase pathways in CRC.
Collapse
Affiliation(s)
| | | | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain (C.S.-V.)
| |
Collapse
|
10
|
Lin Y, Zheng Y. Structural Dynamics of Rho GTPases. J Mol Biol 2025; 437:168919. [PMID: 39708912 PMCID: PMC11757035 DOI: 10.1016/j.jmb.2024.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rho family GTPases are a part of the Ras superfamily and are signaling hubs for many cellular processes. While the detailed understanding of Ras structure and function has led to tremendous progress in oncogenic Ras-targeted drug discovery, studies of the related Rho GTPases are still catching up as the recurrent cancer-related Rho GTPase mutations have only been discovered in the last decade. Like that of Ras, an in-depth understanding of the structural basis of how Rho GTPases and their mutants behave as key oncogenic drivers benefits the development of clinically effective therapies. Recent studies of structure dynamics in Rho GTPase structure-function relationship have added new twists to the conventional wisdom of Rho GTPase signaling mechanism.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
12
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
13
|
Murayama K, Kato-Murayama M, Hosaka T, Kitamura T, Yokoyama S, Shirouzu M. Structural basis for the effects of Ser387 phosphorylation of MgcRacGAP on its GTPase-activating activities for CDC42 and RHOA. J Struct Biol 2024; 216:108151. [PMID: 39522789 DOI: 10.1016/j.jsb.2024.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
MgcRacGAP is a GTPase-activating protein (GAP) for the Rho family GTPases. During cytokinesis, MgcRacGAP localizes to the midbody, where it activates the GTPase activity of Rho family GTPases to facilitate cytokinesis. In the midbody, Aurora B phosphorylates Ser387 within the GAP domain of human MgcRacGAP, a modification that is suggested to influence GTPase preference. However, there are conflicting reports, with some studies indicating that Ser387 phosphorylation does not alter the GTPase preference of MgcRacGAP. This controversy highlights the need for a deeper understanding of the molecular interactions involved, which can be clarified through structural analyses. In the present study, we determined the crystal structures of the wild-type MgcRacGAP GAP domain complexed with CDC42•GDP•AlF4- and the S378D phosphomimetic mutant GAP domain fused with RHOA•GDP•AlF4-. Additionally, crystal structures of the GAP domains were determined for the S387D and S387A mutants. Our analysis revealed that neither GTPase binding nor S387D mutation affected the overall structure of the GAP domain. However, comparison of the CDC42•MgcRacGAP (wild-type) complex with the RHOA-MgcRacGAP(S378D) fusion protein structure indicated that the S387D mutation caused positional shifts in both CDC42 and RHOA relative to MgcRacGAP. These shifts reduced interactions with CDC42 more severely than those with RHOA. In fact, the S387D mutation decreased the GTPase-activating activity of MgcRacGAP toward CDC42, while its impact on RHOA was only moderate. This difference in the rate of activity reduction may play an important role in GTPase preference.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Miyuki Kato-Murayama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Toshiaki Hosaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
14
|
Carmona-Carmona CA, Zini P, Velasco-Sampedro EA, Cózar-Castellano I, Perdomo G, Caloca MJ. β2-Chimaerin, a GTPase-Activating Protein for Rac1, Is a Novel Regulator of Hepatic Insulin Signaling and Glucose Metabolism. Molecules 2024; 29:5301. [PMID: 39598690 PMCID: PMC11597029 DOI: 10.3390/molecules29225301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Glucose homeostasis is a complex process regulated by multiple organs and hormones, with insulin playing a central role. Recent evidence underscores the role of small GTP-binding proteins, particularly Rac1, in regulating insulin secretion and glucose uptake. However, the role of Rac1-regulatory proteins in these processes remains largely unexplored. In this study, we investigated the role of β2-chimaerin, a Rac1-specific GTPase-activating protein (GAP), in glucose homeostasis using whole-body β2-chimaerin knockout mice. Our data revealed that β2-chimaerin deficiency results in improved glucose tolerance and enhanced insulin sensitivity in mice. These metabolic effects were associated with increased insulin-induced AKT phosphorylation in the liver and activation of downstream pathways that regulate gluconeogenesis and glycogen synthesis. We show that insulin activates Rac1 in the liver. However, β2-chimaerin deletion did not significantly alter Rac1 activation in this organ, suggesting that β2-chimaerin regulates insulin signaling via a Rac1-independent mechanism. These findings expand our understanding of Rac1 regulation in glucose metabolism, and identify β2-chimaerin as a novel modulator of hepatic insulin signaling, with potential implications for the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Cristian Andrés Carmona-Carmona
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Pablo Zini
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Eladio A. Velasco-Sampedro
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Germán Perdomo
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| |
Collapse
|
15
|
Mangaonkar S, Nath S, Chatterji BP. Microtubule dynamics in cancer metastasis: Harnessing the underappreciated potential for therapeutic interventions. Pharmacol Ther 2024; 263:108726. [PMID: 39349106 DOI: 10.1016/j.pharmthera.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microtubules, dynamic cytoskeletal structures crucial for cellular processes, have surfaced as promising targets for cancer therapy owing to their pivotal role in cancer progression and metastasis. This review comprehensively explores the multifaceted landscape of microtubule-targeting drugs and their potential to inihibit cancer metastasis. Although the role of Actin cytoskeleton is well known in controlling metastasis, only recently Microtubules are emerging as a potential controller of metastasis. We delve into the processes at the core of antimetastatic impacts of microtubule-targeting agents, both through direct modulation of microtubules and via alternative pathways. Drawing from in vitro and in vivo studies, we analyze the cytotoxic and antimetastatic doses of various compounds, shedding light on their therapeutic potential. Furthermore, we discuss the emerging class of microtubule targeting drugs, and their role in metastasis inhibition, such as microtubules acetylation inhibitory drugs, particularly histone deacetylase inihibitors and antibody-drug conjugates. Histone deacetylase (HDAC) strengthens the microtubule cytoskeleton through acetylation. Recently, HDAC inhibitors have been discovered to have antimetastatic properties. Here, the role of HDAC inhibitors in stopping metastasis is discussed with respect to microtubule cytoskeleton. Surprisingly, novel antibody conjugates of microtubule-targeting agents, which are in clinical trials, were found to be antimetastatic. This review discusses these antibody conjugates in detail. Additionally, we elucidate the intricate crosstalk between microtubules and other cytoskeletal proteins, unveiling novel therapeutic strategies for metastasis suppression. By providing a wide-ranging overview of the complex interplay between microtubules and cancer metastasis, this review contributes to the comprehension of cancer's biological mechanisms and the development of innovative therapeutic interventions to mitigate metastatic progression.
Collapse
Affiliation(s)
- Snehal Mangaonkar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India.
| | - Biswa Prasun Chatterji
- Faculty of Science, Assam Downtown University, Guwahati, India; Global Visiitng Professor, Asian University for Women, Chittagong, Bangladesh.
| |
Collapse
|
16
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
17
|
Jiang P, Zhao S, Li X, Hu S, Chen S, Liang Y, Zhang L, Lu L, Fang G, Yang L, Huang Y, Miller H, Guan F, Lei J, Liu C. Dedicator of cytokinesis 8 (DOCK8) mutation impairs the differentiation of helper T cells by regulating the glycolytic pathway of CD4 + T cells. MedComm (Beijing) 2024; 5:e747. [PMID: 39329018 PMCID: PMC11424684 DOI: 10.1002/mco2.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency is a primary immunodeficiency disease caused by mutations in exon 45 of the DOCK8 gene. The clinical signs primarily consist of increased serum IgE levels, eczema, repeated skin infections, allergies, and upper respiratory tract infections. Using CRISPR/Cas9 technology, we generated a DOCK8 exon 45 mutation in mice, mirroring the mutation found in patients. The results indicated that DOCK8 mutation impairs peripheral T cell homeostasis, disrupts regulatory T cells (Tregs) development, increases ICOS expression in Tregs within peripheral lymph nodes (pLn), and promotes Th17 cell differentiation within the spleen and pLn. Upon virus infection, DOCK8 mutation CD4+ T cells have a Th2 effector fate. RNA-bulk sequencing data revealed alternations in the mTOR pathway of DOCK8 mutant CD4+ T cells. We observed that DOCK8 mutation upregulates the glycolysis levels in CD4+ T cells, which is related to the Akt/mTOR/S6/HIF-1α pathway. In summary, our research elucidates that DOCK8 regulates the differentiation of helper T cells by modulating the glycolytic pathway in CD4+ T cells, thereby advancing the comprehension and offering potential treatment of diseases in DOCK8-deficient patients.
Collapse
Affiliation(s)
- Panpan Jiang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Siyu Zhao
- Department Immunology School of Medicine Yangtze University Jingzhou China
| | - Xiaoyu Li
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Shiyan Hu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Shuhan Chen
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Yinming Liang
- Center of Disease Model and Immunology Hunan Academy of Chinese Medicine Changsha China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System School of Medical Technology Xinxiang Medical University Xinxiang China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System School of Medical Technology Xinxiang Medical University Xinxiang China
| | - Guofeng Fang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Yanmei Huang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Heather Miller
- Cytek Biosciences R&D Clinical Reagents Fremont California USA
| | - Fei Guan
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Jiahui Lei
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
18
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Feng H. RBM5 induces motor neuron apoptosis in hSOD1 G93A-related amyotrophic lateral sclerosis by inhibiting Rac1/AKT pathways. Brain Res Bull 2024; 216:111049. [PMID: 39142444 DOI: 10.1016/j.brainresbull.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder distinguished by gradual depletion of motor neurons. RNA binding motif protein 5 (RBM5), an abundantly expressed RNA-binding protein, plays a critical role in the process of cellular death. However, little is known about the role of RBM5 in the pathogenesis of ALS. Here, we found that RBM5 was upregulated in ALS hSOD1G93A-NSC34 cell models and hSOD1G93A mice due to a reduction of miR-141-5p. The upregulation of RBM5 increased the apoptosis of motor neurons by inhibiting Rac1-mediated neuroprotection. In contrast, genetic knockdown of RBM5 rescued motor neurons from hSOD1G93A-induced degeneration by activating Rac1 signaling. The neuroprotective effect of RBM5-knockdown was significantly inhibited by the Rac1 inhibitor, NSC23766. These findings suggest that RBM5 could potentially serve as a therapeutic target in ALS by activating the Rac1 signalling.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
19
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
20
|
Ouellette J, Lacoste B. Rock2 heterozygosity improves recognition memory and endothelial function in a mouse model of 16p11.2 deletion autism syndrome. Neurosci Lett 2024; 837:137904. [PMID: 39029613 DOI: 10.1016/j.neulet.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Chen F, Ren P, Xu R, Zhang J, Liang C, Qiang G. FAM65A promotes the progression and growth of lung squamous cell carcinoma in vivo and vitro. BMC Cancer 2024; 24:944. [PMID: 39095743 PMCID: PMC11295694 DOI: 10.1186/s12885-024-12701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, Chine-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Rui Xu
- Department of Nuclear Medicine, Chine-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
22
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Chen Y, Zhang W, Zeng Y, Yang P, Li Y, Liang X, Liu K, Lin H, Dai Y, Zhou J, Hou B, Ma Z, Lin Y, Pang W, Zeng L. GDNF-induced phosphorylation of MUC21 promotes pancreatic cancer perineural invasion and metastasis by activating RAC2 GTPase. Oncogene 2024; 43:2564-2577. [PMID: 39020072 DOI: 10.1038/s41388-024-03102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Perineural invasion (PNI) is an adverse prognostic feature of pancreatic ductal adenocarcinoma (PDAC). However, the understanding of the interactions between tumors and neural signaling within the tumor microenvironment is limited. In the present study, we found that MUC21 servers as an independent risk factor for poor prognosis in PDAC. Furthermore, we demonstrated that MUC21 promoted the metastasis and PNI of PDAC cells by activating JNK and inducing epithelial-mesenchymal transition (EMT). Mechanistically, glial cell-derived neurotrophic factor, secreted by Schwann cells, phosphorylates the intracellular domain S543 of MUC21 via CDK1 in PDAC cells, facilitating the interaction between MUC21 and RAC2. This interaction leads to membrane anchoring and activation of RAC2, which in turn activates the JNK/ZEB1/EMT axis, ultimately enhancing the metastasis and PNI of PDAC cells. Our results present a novel mechanism of PNI, suggesting that MUC21 is a potential prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Yutong Chen
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weiyu Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yan Zeng
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Pengfei Yang
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yaning Li
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xinyue Liang
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Kecheng Liu
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Hai Lin
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yalan Dai
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jiancong Zhou
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Bingqi Hou
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zhenting Ma
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yujing Lin
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenzheng Pang
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Linjuan Zeng
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
24
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
25
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
26
|
López-Landavery EA, Urquizo-Rosado Á, Saavedra-Flores A, Tapia-Morales S, Fernandino JI, Zelada-Mázmela E. Cellular and transcriptomic response to pathogenic and non-pathogenic Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND) in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109472. [PMID: 38438059 DOI: 10.1016/j.fsi.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| | - Ángela Urquizo-Rosado
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Anaid Saavedra-Flores
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Sandra Tapia-Morales
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Juan I Fernandino
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru; Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, Argentina.
| | - Eliana Zelada-Mázmela
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| |
Collapse
|
27
|
Su M, Fleischer T, Grosheva I, Horev MB, Olszewska M, Mattioli CC, Barr H, Plotnikov A, Carvalho S, Moskovich Y, Minden MD, Chapal-Ilani N, Wainstein A, Papapetrou EP, Dezorella N, Cheng T, Kaushansky N, Geiger B, Shlush LI. Targeting SRSF2 mutations in leukemia with RKI-1447: A strategy to impair cellular division and nuclear structure. iScience 2024; 27:109443. [PMID: 38558935 PMCID: PMC10981050 DOI: 10.1016/j.isci.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.
Collapse
Affiliation(s)
- Minhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Fleischer
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Melanie Bokstad Horev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovich
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON Canada
| | - Noa Chapal-Ilani
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Wainstein
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Nathali Kaushansky
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I. Shlush
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
- Molecular Hematology Clinic, Maccabi Healthcare, Tel Aviv, Israel
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
28
|
Luyckx M, Verougstraete C, Jouret M, Sawadogo K, Waterkeyn M, Grandjean F, Van Gossum JP, Dubois N, Malvaux V, Verreth L, Grandjean P, Jadoul P, Maillard C, Gerday A, Dieu A, Forget P, Baurain JF, Squifflet JL. Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery. J Clin Med 2024; 13:1546. [PMID: 38541772 PMCID: PMC10971204 DOI: 10.3390/jcm13061546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 11/11/2024] Open
Abstract
INTRODUCTION Surgery is the cornerstone of ovarian cancer treatment. However, surgery and perioperative inflammation have been described as potentially pro-metastagenic. In various animal models and other human cancers, intraoperative administration of non-steroidal anti-inflammatory drugs (NSAIDs) appears to have a positive impact on patient outcomes. MATERIALS AND METHODS In this unicentric retrospective study, we provide an exploratory analysis of the safety and potential benefit of intraoperative administration of ketorolac on the outcome of patients undergoing surgery for ovarian cancer. The study population included all patients who were given a diagnosis of ovarian, fallopian tube or peritoneal cancer by the multidisciplinary oncology committee (MOC) of the Cliniques universitaires Saint-Luc between 2015 and 2020. RESULTS We included 166 patients in our analyses, with a median follow-up of 21.8 months. Both progression-free survival and overall survival were superior in patients who received an intraoperative injection of ketorolac (34.4 months of progression-free survival in the ketorolac group versus 21.5 months in the non-ketorolac group (p = 0.002), and median overall survival was not reached in either group but there was significantly higher survival in the ketorolac group (p = 0.004)). We also performed subgroup analyses to minimise bias due to imbalance between groups on factors that could influence patient survival, and the group of patients receiving ketorolac systematically showed a better outcome. Uni- and multivariate analyses confirmed that administration of ketorolac intraoperatively was associated with better progression-free survival (HR = 0.47 on univariate analysis and 0.43 on multivariate analysis, p = 0.003 and 0.023, respectively). In terms of complications, there were no differences between the two groups, either intraoperatively or postoperatively. CONCLUSION Our study has shown a favourable association between the use of ketorolac during surgery and the postoperative progression of ovarian cancer in a group of 166 patients, without any rise in intra- or postoperative complications. These encouraging results point to the need for a prospective study to confirm the benefit of intraoperative administration of ketorolac in ovarian cancer surgery.
Collapse
Affiliation(s)
- Mathieu Luyckx
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
- TILS Group, De Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Céline Verougstraete
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
| | - Mathieu Jouret
- Obstetrics and Gynecology Department, Centre Hospitaliser de Wallonie Picard (CHWaPi), 7500 Tournai, Belgium;
| | - Kiswendsida Sawadogo
- Statistical Support Unit, Cliniques Universitaire Saint-Luc, UCLouvain, 1200 Brussels, Belgium;
| | - Marc Waterkeyn
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Cliniques de l’Europe, St. Elisabeth Branch, 1180 Brussel, Belgium
| | - Frédéric Grandjean
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Cliniques de l’Europe, St. Michel Branch, 1040 Brussel, Belgium
| | - Jean-Paul Van Gossum
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Clinique St-Jean, 1000 Brussel, Belgium
| | - Nathanael Dubois
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Clinique St-Jean, 1000 Brussel, Belgium
| | - Vincent Malvaux
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Clinique St-Pierre, 1340 Ottignies, Belgium
| | - Lucie Verreth
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Clinique St-Pierre, 1340 Ottignies, Belgium
| | - Pascale Grandjean
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Obstetrics and Gynecology Department, Centre Hospitalier Régional, 7000 Mons, Belgium
| | - Pascale Jadoul
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
| | - Charlotte Maillard
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
| | - Amandine Gerday
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
| | - Audrey Dieu
- Anesthesiology Department, Cliniques Universitaire Saint-Luc, UCLouvain, 1200 Brussels, Belgium;
| | - Patrice Forget
- Epidemiology Group, Department of Anaesthesia, School of Medicine, Medical Sciences and Nutrition, Institute of Applied Health Sciences, University of Aberdeen, NHS Grampian, Aberdeen AB24 3UE, UK
| | - Jean-François Baurain
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
- Medical Oncology Department, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Jean-Luc Squifflet
- UNGO (UCLouvain Network of Gynaecological Oncology), 1200 Brussel, Belgium; (M.W.); (F.G.); (J.-P.V.G.); (N.D.); (V.M.); (L.V.); (P.G.); (J.-F.B.); (J.-L.S.)
- Gynaecological Oncology Board, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; (C.V.); (P.J.); (C.M.); (A.G.)
| |
Collapse
|
29
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
30
|
Huang YT, Hsu YT, Wu PY, Yeh YM, Lin PC, Hsu KF, Shen MR. Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition. J Exp Clin Cancer Res 2024; 43:65. [PMID: 38424547 PMCID: PMC10905802 DOI: 10.1186/s13046-024-02987-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Qin X, Zeng B, Sooranna SR, Li M. LAMB3 Promotes Myofibrogenesis and Cytoskeletal Reorganization in Endometrial Stromal Cells via the RhoA/ROCK1/MYL9 Pathway. Cell Biochem Biophys 2024; 82:127-137. [PMID: 37801199 PMCID: PMC10867058 DOI: 10.1007/s12013-023-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
LAMB3, a major extracellular matrix and basal membrane component, is involved in wound healing. We aimed to understand its role in Asherman's syndrome (AS), which is associated with infertility, by using bioinformatics analysis and cultured endometrial stromal cells (ESCs). MRNAs extracted from tissues obtained from control subjects and patients with severe intrauterine adhesion were sequenced and subjected to bioinformatics analysis and the RhoA/ROCK1/MYL9 pathway was implicated and this subsequently studied using cultured primary ESCs. The effects of overexpression and knockdown and activation and inhibition of LAMB3 on the mesenchymal to myofibroblastic phenotypic transformation of ECCs were assessed using PCR and western blot analysis. Phalloidin was used to localize the actin cytoskeletal proteins. Silencing of LAMB3 reversed the TGF-β-induced ESC myofibroblast phenotype conversion, whereas overexpression of LAMB3 promoted this process. Activation and silencing of LAMB3 led to remodeling of the ESC cytoskeleton. Overexpression and silencing of LAMB3 caused activation and inhibition of ESCs, respectively. Y-27632 and LPA reversed the activation and inhibition of the RhoA/ROCK1/MYL9 pathway after overexpression and silencing, respectively. These results suggest that LAMB3 can regulate ESC fibrosis transformation and cytoskeleton remodeling via the RhoA/ROCK1/MYL9 pathway. This study provides a potential new target for gene therapy and drug intervention of AS.
Collapse
Affiliation(s)
- Xiaomei Qin
- Gynecology Section, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Guangxi Medical University, 530000, Nanning, China
| | - Bin Zeng
- Reproductive Medical Center, The First Affiliated Hospital, Guangxi Medical University, 530000, Nanning, China
| | - Suren R Sooranna
- Department of Metabolism, Digestion and Reproduction Faculty of Medicine Imperial College London Chelsea & Westminster Hospital, London, SW10 9NH, UK
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| | - Mujun Li
- Reproductive Medical Center, The First Affiliated Hospital, Guangxi Medical University, 530000, Nanning, China.
| |
Collapse
|
32
|
Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, Robinson ML, Timpson P, Masai I. Fibroblast growth factor-induced lens fiber cell elongation is driven by the stepwise activity of Rho and Rac. Development 2024; 151:dev202123. [PMID: 38240393 PMCID: PMC10911273 DOI: 10.1242/dev.202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
33
|
Zhou L, Yang Y, Fu X, Xia B, Li C, Lu C, Qi Y, Zhang H, Liu T. The protective effect and molecular mechanism of glycyrrhizic acid glycosides against Tripterygium glycosides induced nephrotoxicity based on the RhoA/ROCK1 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117100. [PMID: 37648177 DOI: 10.1016/j.jep.2023.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium glycosides (TG), which are extracted from the traditional Chinese medicine, Tripterygium wilfordii Hook F. (TwHF), has promising applications in the treatment of renal diseases; however, since its active components exerts bidirectional kidney toxicity, its clinical application is severely restricted. AIM OF THE STUDY Recent investigations have demonstrated definite toxicity-reducing effects from glycyrrhizic acid glycosides (GA) when combined with TG; however, the mechanism remains unclear. To our knowledge, this is the first study to investigate the specific molecular mechanism by which GA alleviates TG-induced renal toxicity from the perspective of tight junctions. MATERIALS AND METHODS Dynamic analyses, which investigated the changes in kidney toxicity biomarkers for different combinations and concentrations of TG and GA, were conducted for three weeks on SD rats and renal tissue structural changes were examined after three weeks of administration. Additionally, the transcription and translation levels of the relevant tight junctions and RhoA/ROCK1/MLC signalling proteins were analysed in HK-2 cells. RESULTS Our study showed that TG can cause transient tubulotoxicity at certain doses, and that the combined application of GA and TG can repair tight junction structures by regulating the key factors in the RhoA/ROCK1/MLC signalling pathway, thus reducing TG-induced nephrotoxicity. CONCLUSIONS Overall, this study provides a new strategy to reduce TG-induced toxicity by protecting renal tight junctions.
Collapse
Affiliation(s)
- Liu Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Xiaotong Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Bing Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chenna Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ying Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Haijing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
34
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
35
|
Sinha K, Kumawat A, Jang H, Nussinov R, Chakrabarty S. Molecular mechanism of regulation of RhoA GTPase by phosphorylation of RhoGDI. Biophys J 2024; 123:57-67. [PMID: 37978802 PMCID: PMC10808049 DOI: 10.1016/j.bpj.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Amit Kumawat
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
| |
Collapse
|
36
|
Enemark MBH, Wolter K, Campbell AJ, Andersen MD, Sørensen EF, Hybel TE, Madsen C, Lauridsen KL, Plesner TL, Hamilton-Dutoit SJ, Honoré B, Ludvigsen M. Proteomics identifies apoptotic markers as predictors of histological transformation in patients with follicular lymphoma. Blood Adv 2023; 7:7418-7432. [PMID: 37824846 PMCID: PMC10758743 DOI: 10.1182/bloodadvances.2023011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent lymphoma with a generally favorable prognosis. However, histological transformation (HT) to a more aggressive disease leads to markedly inferior outcomes. This study aims to identify biological differences predictive of HT at the time of initial FL diagnosis. We show differential protein expression between diagnostic lymphoma samples from patients with subsequent HT (subsequently-transforming FL [st-FL]; n = 20) and patients without HT (nontransforming FL [nt-FL]; n = 34) by label-free quantification nano liquid chromatography-tandem mass spectrometry analysis. Protein profiles identified patients with high risk of HT. This was accompanied by disturbances in cellular pathways influencing apoptosis, the cytoskeleton, cell cycle, and immune processes. Comparisons between diagnostic st-FL samples and paired transformed FL (n = 20) samples demonstrated differential protein profiles and disrupted cellular pathways, indicating striking biological differences from the time of diagnosis up to HT. Immunohistochemical analysis of apoptotic proteins, CASP3, MCL1, BAX, BCL-xL, and BCL-rambo, confirmed higher expression levels in st-FL than in nt-FL samples (P < .001, P = .015, P = .003, P = .025, and P = .057, respectively). Moreover, all 5 markers were associated with shorter transformation-free survival (TFS; P < .001, P = .002, P < .001, P = .069, and P = .010, respectively). Notably, combining the expression of these proteins in a risk score revealed increasingly inferior TFS with an increasing number of positive markers. In conclusion, proteomics identified altered protein expression profiles (particularly apoptotic proteins) at the time of FL diagnosis, which predicted later transformation.
Collapse
Affiliation(s)
- Marie Beck Hairing Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katharina Wolter
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, Robinson ML, Timpson P, Masai I. Fibroblast Growth Factor-induced lens fiber cell elongation is driven by the stepwise activity of Rho and Rac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569812. [PMID: 38106159 PMCID: PMC10723307 DOI: 10.1101/2023.12.03.569812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The spheroidal shape of the eye lens is critical for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating lamellipodium is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin, and actin reduced the height of both early and later fibers, indicating elongation of these fibers relies on actomyosin contractility. Consistently, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose it to do so through regulation of Rho activity.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
38
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
39
|
Lee YJ, Choi YS, Kim S, Heo JY, Kim DS, Kim KD, Nam SM, Nam HS, Lee SH, Choi D, Cho MK. Overexpression of Dock180 and Elmo1 in Melanoma is Associated with Cell Survival and Migration. Ann Dermatol 2023; 35:439-450. [PMID: 38086358 PMCID: PMC10733078 DOI: 10.5021/ad.23.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and metastatic skin cancers. Although overexpression of Dock180 and Elmo1 has been identified in various cancers, including glioma, ovarian cancer, and breast cancer, their expression and functions in melanoma remain unknown. OBJECTIVE This study aims to confirm the expression of Dock180 and Elmo1, their underlying mechanisms, and roles in melanoma. METHODS Both immunohistochemical staining and Western blotting were used to confirm expression of Dock180 and Elmo1 in human melanoma. To identify roles of Dock180 and Elmo1 in cell survival, apoptosis and migration, downregulation of Dock180 or Elmo1 in melanoma cells with small interfering RNA (siRNA) was performed. RESULTS We identified overexpression of Dock180 and Elmo1 in human melanoma compared to normal skin ex vivo. Inhibition of Dock180 or Elmo1 following siRNA in melanoma cells reduced cell viability and increased apoptosis as supported by increased proportion of cells with Annexin V-PE (+) staining and sub-G0/G1 peak in cell cycle analysis. Moreover, inhibition of Dock180 or Elmo1 regulated apoptosis-related proteins, showing downregulation of Bcl-2, caspase-3, and PARP and upregulation of Bax, PUMA, cleaved caspase-3, and cleaved PARP. Furthermore, knockdown of Dock180 and Elmo1 in melanoma cells reduced cell migration and changed cellular signaling pathways including ERK and AKT. Vemurafenib decreased cell viability in concentration-dependent manner, while transfection with Dock180- or Elmo1-specific siRNA in melanoma cells significantly reduced cell viability. CONCLUSION Our results suggest that both Dock180 and Elmo1 may be associated with cancer progression, and can be potential targets for treatment of melanoma.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Ki Dam Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hae Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dongsic Choi
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
40
|
Asmar AJ, Abrams SR, Hsin J, Collins JC, Yazejian RM, Wu Y, Cho J, Doyle AD, Cinthala S, Simon M, van Jaarsveld RH, Beck DB, Kerosuo L, Werner A. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development. Nat Commun 2023; 14:4499. [PMID: 37495603 PMCID: PMC10371987 DOI: 10.1038/s41467-023-40223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-βPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaun R Abrams
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenny Hsin
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason C Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita M Yazejian
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youmei Wu
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Cho
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samhitha Cinthala
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - David B Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Kerosuo
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Priolo M, Zara E, Radio FC, Ciolfi A, Spadaro F, Bellacchio E, Mancini C, Pantaleoni F, Cordeddu V, Chiriatti L, Niceta M, Africa E, Mammì C, Melis D, Coppola S, Tartaglia M. Clinical profiling of MRD48 and functional characterization of two novel pathogenic RAC1 variants. Eur J Hum Genet 2023; 31:805-814. [PMID: 37059841 PMCID: PMC10326044 DOI: 10.1038/s41431-023-01351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
RAC1 is a member of the Rac/Rho GTPase subfamily within the RAS superfamily of small GTP-binding proteins, comprising 3 paralogs playing a critical role in actin cytoskeleton remodeling, cell migration, proliferation and differentiation. De novo missense variants in RAC1 are associated with a rare neurodevelopmental disorder (MRD48) characterized by DD/ID and brain abnormalities coupled with a wide range of additional features. Structural and functional studies have documented either a dominant negative or constitutively active behavior for a subset of mutations. Here, we describe two individuals with previously unreported de novo missense RAC1 variants. We functionally demonstrate their pathogenicity proving a gain-of-function (GoF) effect for both. By reviewing the clinical features of these two individuals and the previously published MRD48 subjects, we further delineate the clinical profile of the disorder, confirming its phenotypic variability. Moreover, we compare the main features of MRD48 with the neurodevelopmental disease caused by GoF variants in the paralog RAC3, highlighting similarities and differences. Finally, we review all previously reported variants in RAC proteins and in the closely related CDC42, providing an updated overview of the spectrum and hotspots of pathogenic variants affecting these functionally related GTPases.
Collapse
Affiliation(s)
- Manuela Priolo
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy.
| | - Erika Zara
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biology and Biotechnology, Sapienza University, 00185, Rome, Italy
| | | | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Francesca Pantaleoni
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luigi Chiriatti
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Emilio Africa
- USD Neuroradiologia, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Corrado Mammì
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Università di Salerno, 84084, Salerno, Italy
| | - Simona Coppola
- National Center for Rare Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
42
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
43
|
Khalid E, Chang JP. Small GTPase control of pituitary hormone secretion: Evidence from studies in the goldfish (Carassius auratus) neuroendocrine model. Gen Comp Endocrinol 2023; 339:114287. [PMID: 37060929 DOI: 10.1016/j.ygcen.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The secretion of vertebrate pituitary hormones is regulated by multiple hypothalamic factors, which, while generally activating unique receptor systems, ultimately propagate signals through interacting intracellular regulatory elements to modulate hormone exocytosis. One important family of intracellular regulators is the monomeric small GTPases, a subset of which (Arf1/6, Rac, RhoA, and Ras) is highly conserved across vertebrates and regulates secretory vesicle exocytosis in many cell types. In this study, we investigated the roles of these small GTPases in basal and agonist-dependent hormone release from dispersed goldfish (Carassius auratus) pituitary cells in perifusion experiments. Inhibition of these small GTPases elevated basal LH and GH secretion, except for Ras inhibition which only increased basal LH release. However, variable responses were observed with regard to LH and GH responses to the two goldfish native gonadotropin-releasing hormones (GnRH2 and GnRH3). GnRH-dependent LH release, but not GH secretion, was mediated by Arf1/6 GTPases. In contrast, inhibition of Rac and RhoA GTPases selectively enhanced GnRH3- and GnRH2-dependent GH release, respectively, while Ras inhibition only enhanced GnRH3-evoked LH secretion. Together, our results reveal novel divergent cell-type- and ligand-specific roles for small GTPases in the control of goldfish pituitary hormone exocytosis in unstimulated and GnRH-evoked release.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9.
| |
Collapse
|
44
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Chen W, Tan M, Yu C, Liao G, Kong D, Bai J, Yang B, Gong H. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity. Hum Cell 2023; 36:786-797. [PMID: 36715867 DOI: 10.1007/s13577-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
The Rho/ROCK pathway regulates diverse cellular processes and contributes to the development and advancement of several types of human cancers. This study investigated the role of specific Rho GTPase-activating proteins (RhoGAP), ARHGAP6, in bladder cancer (BC). In this study, ARHGAP6 expression in BC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism ARHGAP6 of in BC. The mRNA and protein levels of ARHGAP6 significantly reduced in human BC tissues and cell lines compared with corresponding adjacent non-cancerous tissues and normal urothelial cells. In vitro, ARHGAP6 overexpression markedly decreased the viability, migration, and invasion of BC cells. Interestingly, low ARHGAP6 expression in BC strongly correlated with poor patient survival and was highly associated with metastasis and β-catenin signaling. Furthermore, ARHGAP6 expression strongly influenced the sensitivity of BC cells to mitomycin C treatment. Together, our results demonstrate that ARHGAP6 plays critical roles in regulating the proliferation, migration, invasion, and metastasis of BC cells possibly via the modulation of β-catenin and strongly influences the chemosensitivity of BC cells.
Collapse
Affiliation(s)
- Weihua Chen
- Department of Urology, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, Shanghai, China
| | - Chao Yu
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guoqiang Liao
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China
| | - Dehui Kong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Bai
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| | - Hua Gong
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| |
Collapse
|
46
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
47
|
Hasan S, White NF, Tagliatela AC, Durall RT, Brown KM, McDiarmid GR, Meigs TE. Overexpressed Gα13 activates serum response factor through stoichiometric imbalance with Gβγ and mislocalization to the cytoplasm. Cell Signal 2023; 102:110534. [PMID: 36442589 DOI: 10.1016/j.cellsig.2022.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein β and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αβγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Nicholas F White
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Alicia C Tagliatela
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - R Taylor Durall
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Katherine M Brown
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Gray R McDiarmid
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA.
| |
Collapse
|
48
|
Schepis A, Kumar S, Kappe SHI. Malaria parasites harness Rho GTPase signaling and host cell membrane ruffling for productive invasion of hepatocytes. Cell Rep 2023; 42:111927. [PMID: 36640315 DOI: 10.1016/j.celrep.2022.111927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmodium sporozoites are the motile forms of the malaria parasites that infect hepatocytes. The initial invasion of hepatocytes is thought to be actively driven by sporozoites, but host cell processes might also play a role. Sporozoite invasion triggers a host plasma membrane invagination that forms a vacuole around the intracellular parasite, which is critical for subsequent intracellular parasite replication. Using fast live confocal microscopy, we observed that the initial interactions between sporozoites and hepatocytes induce plasma membrane ruffles and filopodia extensions. Importantly, we find that these host cell processes facilitate invasion and that Rho GTPase signaling, which regulates membrane ruffling and filopodia extension, is critical for productive infection. Interestingly, sporozoite cell traversal stimulates these processes, suggesting that it increases hepatocyte susceptibility to productive infection. Our study identifies host cell signaling events involved in plasma membrane dynamics as a critical host component of successful malaria parasite infection of hepatocytes.
Collapse
Affiliation(s)
- Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
49
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Wang Z, Wu S, Wang G, Yang Z, Zhang Y, Zhu C, Qin X. ARHGAP21 Is Involved in the Carcinogenic Mechanism of Cholangiocarcinoma: A Study Based on Bioinformatic Analyses and Experimental Validation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010139. [PMID: 36676763 PMCID: PMC9867224 DOI: 10.3390/medicina59010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Rho GTPase-activating protein (RhoGAP) is a negative regulatory element of Rho GTPases and participates in tumorigenesis. Rho GTPase-activating protein 21 (ARHGAP21) is one of the RhoGAPs and its role in cholangiocarcinoma (CCA) has never been disclosed in any publications. Materials and Methods: The bioinformatics public datasets were utilized to investigate the expression patterns and mutations of ARHGAP21 as well as its prognostic significance in CCA. The biological functions of ARHGAP21 in CCA cells (RBE and Hccc9810 cell) were evaluated by scratch assay, cell counting kit-8 assay (CCK8) assay, and transwell migration assay. In addition, the underlying mechanism of ARHGAP21 involved in CCA was investigated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the most significant signaling pathway was identified through gene set enrichment analysis (GSEA) and the Western blot method. The ssGSEA algorithm was further used to explore the immune-related mechanism of ARHGAP21 in CCA. Results: The ARHGAP21 expression in CCA tissue was higher than it was in normal tissue, and missense mutation was the main alteration of ARHGAP21 in CCA. Moreover, the expression of ARHGAP21 had obvious differences in patients with different clinical characteristics and it had great prognostic significance. Based on cell experiments, we further observed that the proliferation ability and migration ability of the ARHGAP21-knockdown group was reduced in CCA cells. Several pathological signaling pathways correlated with proliferation and migration were determined by GO and KEGG analysis. Furthermore, the PI3K/Akt signaling pathway was the most significant one. GSEA analysis further verified that ARHGAP21 was highly enriched in PI3K/Akt signaling pathway, and the results of Western blot suggested that the phosphorylated PI3K and Akt were decreased in the ARHGAP21-knockdown group. The drug susceptibility of the PI3K/Akt signaling pathway targeted drugs were positively correlated with ARHGAP21 expression. Moreover, we also discovered that ARHGAP21 was correlated with neutrophil, pDC, and mast cell infiltration as well as immune-related genes in CCA. Conclusions: ARHGAP21 could promote the proliferation and migration of CCA cells by activating the PI3K/Akt signaling pathway, and ARHGAP21 may participate in the immune modulating function of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhihuai Wang
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Siyuan Wu
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Gaochao Wang
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Yang
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Yinjie Zhang
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (C.Z.); (X.Q.)
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (C.Z.); (X.Q.)
| |
Collapse
|