1
|
De Cock L, D'haenens E, Vantomme L, Backers L, Beyens A, Claes KB, De Clercq G, de Putter R, Kumps C, Schuermans N, Sourbron J, Syryn H, Tavernier S, Vanbelleghem E, Vanakker O, Vandekerckhove B, Van Damme T, Callewaert B, Dheedene A, Vergult S, Menten B. Cracking rare disorders: a new minimally invasive RNA-seq protocol. NPJ Genom Med 2025; 10:45. [PMID: 40436861 PMCID: PMC12120114 DOI: 10.1038/s41525-025-00502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Abstract
RNA sequencing (RNA-seq) has become key to complementing exome and genome sequencing for variant interpretation. We present a minimally invasive RNA-seq protocol using short-term cultured peripheral blood mononuclear cells (PBMCs) with and without cycloheximide treatment, enabling detection of transcripts subject to nonsense-mediated decay. While broadly applicable, this protocol is particularly suited for neurodevelopmental disorders, as up to 80% of the genes in our intellectual disability and epilepsy gene panel are expressed in PBMCs. Applied to 46 affected individuals and 15 parents, RNA-seq revealed splicing defects in six of nine individuals with splice variants, allowing reclassification of seven variants. Targeted cDNA analysis confirmed aberrant splicing in four individuals but missed intron retention in two. Global analyses (FRASER, OUTRIDER, and monoallelic expression) supported findings but did not yield new diagnoses. We propose a flowchart integrating RNA-seq into diagnostic workflows. Overall, our protocol is easily implementable, captures complex splicing events, and enhances variant classification.
Collapse
Affiliation(s)
- Laurenz De Cock
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Lynn Backers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aude Beyens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Kathleen Bm Claes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Griet De Clercq
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Robin de Putter
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Candy Kumps
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Nika Schuermans
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Jo Sourbron
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Hannes Syryn
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Simon Tavernier
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Eva Vanbelleghem
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Olivier Vanakker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
| | - Björn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
2
|
Hara S, Muramatsu A, Terao M, Takada S. Identification of maternal allele sequences of IG-DMR that are essential for neonatal viability. PLoS One 2025; 20:e0324882. [PMID: 40403090 PMCID: PMC12097578 DOI: 10.1371/journal.pone.0324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/30/2025] [Indexed: 05/24/2025] Open
Abstract
The expression of imprinted genes in the Dlk1-Dio3 domain is regulated by Dlk1-Meg3 intergenic DMR (IG-DMR), which is methylated in a parental-of-origin-specific manner. An unmethylated 4.1-kb region in the IG-DMR is essential for the maternal allele. Several molecular mechanisms have been proposed for the 4.1-kb region of IG-DMR; however, the sequence in the 4.1-kb region essential for imprinted gene expression is still unknown. To explore the sequence responsible for the IG-DMR in vivo, we generated mutant mice with a series of IG-DMR deletions. We observed that a deletion of the 2.7-kb region, including the IG-DMR transcriptional regulatory element (IGTRE), on the maternal allele causes IG-DMR dysfunction, resulting in perinatal lethality. At least two functional sequences exist in IGTRE that are functionally redundant in vivo, and the paternal transmission of a mutant allele, in which IGTRE was deleted together with a tandem repeat sequence in IG-DMR (IGRep), rescued embryonic lethality due to a lack of paternal IGRep. Our findings revealed that a sequence responsible for the lethal phenotype of the maternally inherited 4.1-kb deletion of IG-DMR is in the IGTRE domain.
Collapse
Affiliation(s)
- Satoshi Hara
- Department of Systems Developmental Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Devision of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Saga, Japan
| | - Akari Muramatsu
- Department of Systems Developmental Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of NCCHD, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Miho Terao
- Department of Systems Developmental Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems Developmental Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of NCCHD, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. Mol Syst Biol 2025:10.1038/s44320-025-00107-3. [PMID: 40329044 DOI: 10.1038/s44320-025-00107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
Affiliation(s)
- Ibai Irastorza-Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Sophia Genetics SA, A-One Park, Rolle, 1180, Switzerland
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Guido Mastrobuoni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Julia Markowski
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Gesa Loof
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Thomas M Sparks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Emily Brookes
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Kedar Nath Natarajan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephan Sauer
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Regeneron Ireland DAC, Dublin 2, D02 HH27, Ireland
| | - Amanda G Fisher
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli "Federico II", and INFN, Napoli, Italy
| | - Bing Ren
- Center for Epigenomics and Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Roland F Schwarz
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Cologne, Germany
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Tekola-Ayele F, Biedrzycki RJ, Habtewold TD, Wijesiriwardhana P, Burt A, Marsit CJ, Ouidir M, Wapner R. Sex-differentiated placental methylation and gene expression regulation has implications for neonatal traits and adult diseases. Nat Commun 2025; 16:4004. [PMID: 40312437 PMCID: PMC12045980 DOI: 10.1038/s41467-025-58128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/10/2025] [Indexed: 05/03/2025] Open
Abstract
Sex differences in physiological and disease traits are pervasive and begin during early development, but the genetic architecture of these differences is largely unknown. Here, we leverage the human placenta, a transient organ during pregnancy critical to fetal development, to investigate the impact of sex in the regulatory landscape of placental autosomal methylome and transcriptome, and its relevance to health and disease. We find that placental methylation and its genetic regulation are extensively impacted by fetal sex, whereas sex differences in placental gene expression and its genetic regulation are limited. We identify molecular processes and regulatory targets that are enriched in a sex-specific manner, and find enrichment of imprinted genes in sex-differentiated placental methylation, including female-biased methylation within the well-known KCNQ1OT1/CDKN1C imprinting cluster of genes expressed in a parent-of-origin dependent manner. We establish that several sex-differentiated genetic effects on placental methylation and gene expression colocalize with birthweight and adult disease genetic associations, facilitating mechanistic insights on early life origins of health and disease outcomes shaped by sex.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tesfa Dejenie Habtewold
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Prabhavi Wijesiriwardhana
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Marion Ouidir
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- University of Grenoble Alpes, Inserm, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
O'Leary EM, Bonthuis PJ. Mom genes and dad genes: genomic imprinting in the regulation of social behaviors. Epigenomics 2025:1-19. [PMID: 40249667 DOI: 10.1080/17501911.2025.2491294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in mammals that affects brain development and behavior. Imprinting involves the regulation of allelic expression for some genes in offspring that depends on whether alleles are inherited from mothers compared to fathers, and is thought to provide parental control over offspring social behavior phenotypes. Imprinted gene expression is prevalent in the mammalian brain, and human imprinted gene mutations are associated with neurodevelopmental disorders and neurodivergent social behavior in Prader-Willi Syndrome, Angelman Syndrome, and autism. Here, we provide a review of the evidence that imprinted genes influence social behaviors across major neurodevelopmental stages in humans and mouse animal models that include parent-infant interactions, juvenile sociability, and adult aggression, dominance, and sexual behavior.
Collapse
Affiliation(s)
- Erin M O'Leary
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Paul J Bonthuis
- Neuroscience Program, University of Illinois, Urbana, IL, USA
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Gene Networks in Neural & Development Plasticity Theme at Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Le LTT. Long non coding RNA function in epigenetic memory with a particular emphasis on genomic imprinting and X chromosome inactivation. Gene 2025; 943:149290. [PMID: 39880342 DOI: 10.1016/j.gene.2025.149290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/13/2024] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Cells preserve and convey certain gene expression patterns to their progeny through the mechanism called epigenetic memory. Epigenetic memory, encoded by epigenetic markers and components, determines germline inheritance, genomic imprinting, and X chromosome inactivation. First discovered long non coding RNAs were implicated in genomic imprinting and X-inactivation and these two phenomena clearly demonstrate the role of lncRNAs in epigenetic memory regulation. Undoubtedly, lncRNAs are well-suited for regulating genes in close proximity at imprinted loci. Due to prolonged association with the transcription site, lncRNAs are able to guide chromatin modifiers to certain locations, thereby enabling accurate temporal and spatial regulation. Nevertheless, the current state of knowledge regarding lncRNA biology and imprinting processes is still in its nascent phase. Herein, we provide a synopsis of recent scientific advancements to enhance our comprehension of lncRNAs and their functions in epigenetic memory, with a particular emphasis on genomic imprinting and X chromosome inactivation, thus gaining a deeper understanding of the role of lncRNAs in epigenetic regulatory networks.
Collapse
Affiliation(s)
- Linh T T Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000 Viet Nam
| |
Collapse
|
7
|
Edwards-Lee CA, Jarred EG, Western PS. Coordinated regulation of chromatin modifiers reflects organised epigenetic programming in mouse oocytes. Epigenetics Chromatin 2025; 18:19. [PMID: 40186324 PMCID: PMC11971813 DOI: 10.1186/s13072-025-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Epigenetic modifications provide mechanisms for influencing gene expression, regulating cell differentiation and maintaining long-term memory of cellular identity and function. As oocytes transmit epigenetic information to offspring, correct establishment of the oocyte epigenome is important for normal offspring development. Oocyte epigenetic programming is highly complex, involving a range of epigenetic modifiers which interact to establish a specific distribution of DNA methylation and histone modifications. Disruptions to oocyte epigenetic programming can alter epigenetic memory and prevent normal developmental outcomes in the next generation. Therefore, it is critical that we further our understanding of the interdependent relationships between various epigenetic modifiers and modifications during oogenesis. RESULTS In this study we investigated the spatial and temporal distribution of a range of epigenetic modifiers and modifications in growing oocytes of primordial to antral follicles. We provide comprehensive immunofluorescent profiles of SETD2, H3K36me3, KDM6A, RBBP7, H3K27me3, DNMT3A and DNMT3L and compare these profiles to our previously published profiles of the Polycomb Repressive Complex 2 components EED, EZH2 and SUZ12 in growing oocytes of wildtype mice. In addition, we examined the nuclear levels and spatial distribution of these epigenetic modifiers and modifications in oocytes that lacked the essential Polycomb Repressive Complex 2 subunit, EED. Notably, histone remodelling in primary-secondary follicle oocytes preceded upregulation of DNMT3A and DNMT3L in secondary-antral follicle oocytes. Moreover, loss of EED and H3K27me3 led to significantly increased levels of the H3K36me3 methyltransferase SETD2 during early-mid oocyte growth, although the average levels of H3K36me3 were unchanged. CONCLUSIONS Overall, these data demonstrate that oocyte epigenetic programming is a highly ordered process, with histone remodelling in early growing oocytes preceding de novo DNA methylation in secondary-antral follicle oocytes. These results indicate that tight temporal and spatial regulation of histone modifiers and modifications is essential to ensure correct establishment of the unique epigenome present in fully grown oocytes. Further understanding of the temporal and spatial relationships between different epigenetic modifications and how they interact is essential for understanding how germline epigenetic programming affects inheritance and offspring development in mammals, including humans.
Collapse
Affiliation(s)
- Chloe A Edwards-Lee
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Ellen G Jarred
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Thowfeequ S, Hanna CW, Srinivas S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat Rev Mol Cell Biol 2025; 26:255-275. [PMID: 39627419 DOI: 10.1038/s41580-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Courtney W Hanna
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Daskeviciute D, Chappell-Maor L, Sainty B, Arnaud P, Iglesias-Platas I, Simon C, Okae H, Arima T, Vassena R, Lartey J, Monk D. Non-canonical imprinting, manifesting as post-fertilization placenta-specific parent-of-origin dependent methylation, is not conserved in humans. Hum Mol Genet 2025; 34:626-638. [PMID: 39825493 PMCID: PMC11924184 DOI: 10.1093/hmg/ddaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated. Non-canonical imprinting, reliant on differential allelic H3K27me3 enrichment, has been reported in mouse and rat pre-implantation embryos, often overlapping long terminal repeat (LTR)-derived promoters. These non-canonical imprints lose parental allele-specific H3K27me3 specificity, subsequently gaining DNA methylation on the same allele in extra-embryonic tissues resulting in placenta-specific, somatically acquired maternal DMRs. To determine if similar non-canonical imprinting is present in the human placenta, we interrogated allelic DNA methylation for a selected number of loci, including (i) the human orthologues of non-canonical imprinted regions in mouse and rat, (ii) promoters of human LTR-derived transcripts, and (iii) CpG islands with intermediate placenta-specific methylation that are unmethylated in gametes and pre-implantation embryos. We failed to identify any non-canonical imprints in the human placenta whole villi samples. Furthermore, the assayed genes were shown to be biallelically expressed in human pre-implantation embryos, indicating they are not imprinted at earlier time points. Together, our work reiterates the continued evolution of placenta-specific imprinting in mammals, which we suggest is linked to epigenetic differences during the maternal-to-embryo transition and species-specific integration of retrotransposable elements.
Collapse
Affiliation(s)
- Dagne Daskeviciute
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Louise Chappell-Maor
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Becky Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, 49 bd François Mitterrand, Clermont-Ferrand 63001, France
| | - Isabel Iglesias-Platas
- Institut de Recerca, Sant Joan de Déu, C. de Sta. Rosa, 39, Barcelona 08950, Spain
- Neonatal Research, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - Carlos Simon
- Carlos Simon Foundation, Rda. de Narcís Monturiol, 11, Bloque C, 46980 Paterna, Valencia, Spain
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Av. Blasco Ibáñez 15, Valencia 46012, Spain
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rita Vassena
- Fecundis, C/Baldoro i Reixac 10-12, Barcelona 08028, Spain
| | - Jon Lartey
- Department of Obstetrics and Gynaecology, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
- Bellvitge Biomedical Research Institute, Avinguda de la Granvia de l’Hospitalet 199, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
10
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
11
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Fanourgakis G, Gaspa-Toneu L, Komarov PA, Papasaikas P, Ozonov EA, Smallwood SA, Peters AHFM. DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos. Nat Commun 2025; 16:465. [PMID: 39774947 PMCID: PMC11706963 DOI: 10.1038/s41467-024-55441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation. Failing de novo DNAme in Dnmt3a/Dnmt3b double deficient spermatogonia is associated with increased nucleosome occupancy in mature sperm, preferentially at sites with higher CpG content, supporting the model that DNAme modulates nucleosome retention in sperm. To assess the impact of altered sperm chromatin in formatting embryonic chromatin, we measure H3K4me3 occupancy at paternal and maternal alleles in 2-cell embryos using a transposon-based tagging approach. Our data show that reduced DNAme in sperm renders paternal alleles permissive for H3K4me3 establishment in early embryos, independently of possible paternal inheritance of sperm born H3K4me3. Together, this study provides evidence that paternally inherited DNAme directs chromatin formation during early embryonic development.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Pavel A Komarov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Canton APM, Macedo DB, Abreu AP, Latronico AC. Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty. J Endocr Soc 2025; 9:bvae228. [PMID: 39839367 PMCID: PMC11746960 DOI: 10.1210/jendso/bvae228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 01/23/2025] Open
Abstract
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH. In the past decade, the identification of genetic causes of CPP has largely expanded, revealing hypothalamic regulatory factors of pubertal timing. Among them, 3 genes associated with CPP are linked to mechanisms involving DNA methylation, reinforcing the strong role of epigenetics underlying this disorder. Loss-of-function mutations in Makorin Ring-Finger Protein 3 (MKRN3) and Delta-Like Non-Canonical Notch Ligand 1 (DLK1), 2 autosomal maternally imprinted genes, have been described as relevant monogenic causes of CPP with the phenotype exclusively associated with paternal transmission. MKRN3 has proven to be a key component of the hypothalamic inhibitory input on GnRH neurons through different mechanisms. Additionally, rare heterozygous variants in the Methyl-CpG-Binding Protein 2 (MECP2), an X-linked gene that is a key factor of DNA methylation machinery, were identified in girls with sporadic CPP with or without neurodevelopmental disorders. In this mini-review, we focus on how the identification of genetic causes of CPP has revealed epigenetic regulators of human pubertal timing, summarizing the latest knowledge on the associations of puberty with MKRN3, DLK1, and MECP2.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Delanie Bulcao Macedo
- Integrated Medical Care Center, Center for Health Sciences, University of Fortaleza (Unifor), Fortaleza 60811-905, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
- Discipline of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Sao Paulo, 05403-000, Sao Paulo, Brazil
| |
Collapse
|
14
|
Condemi L, Mocavini I, Aranda S, Di Croce L. Polycomb function in early mouse development. Cell Death Differ 2025; 32:90-99. [PMID: 38997437 PMCID: PMC11742436 DOI: 10.1038/s41418-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Epigenetic factors are crucial for ensuring proper chromatin dynamics during the initial stages of embryo development. Among these factors, the Polycomb group (PcG) of proteins plays a key role in establishing correct transcriptional programmes during mouse embryogenesis. PcG proteins are classified into two complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Both complexes decorate histone proteins with distinct post-translational modifications (PTMs) that are predictive of a silent transcriptional chromatin state. In recent years, a critical adaptation of the classical techniques to analyse chromatin profiles and to study biochemical interactions at low-input resolution has allowed us to deeply explore PcG molecular mechanisms in the very early stages of mouse embryo development- from fertilisation to gastrulation, and from zygotic genome activation (ZGA) to specific lineages differentiation. These advancements provide a foundation for a deeper understanding of the fundamental role Polycomb complexes play in early development and have elucidated the mechanistic dynamics of PRC1 and PRC2. In this review, we discuss the functions and molecular mechanisms of both PRC1 and PRC2 during early mouse embryo development, integrating new studies with existing knowledge. Furthermore, we highlight the molecular functionality of Polycomb complexes from ZGA through gastrulation, with a particular focus on non-canonical imprinted and bivalent genes, and Hox cluster regulation.
Collapse
Affiliation(s)
- Livia Condemi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
15
|
Ahn J, Hwang IS, Park MR, Rosa-Velazquez M, Cho IC, Relling AE, Hwang S, Lee K. Evolutionary lineage-specific genomic imprinting at the ZNF791 locus. PLoS Genet 2025; 21:e1011532. [PMID: 39813209 PMCID: PMC11734915 DOI: 10.1371/journal.pgen.1011532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock. To identify genomic imprinting in pigs, we generated parthenogenetic porcine embryos alongside biparental normal embryos, and then performed whole-genome bisulfite sequencing and RNA sequencing on these samples. In our analyses, we discovered a maternally methylated differentially methylated region within the orthologous ZNF791 locus in pigs. Additionally, we identified both a major imprinted isoform of the ZNF791-like gene and an unannotated antisense transcript that has not been previously annotated. Importantly, our comparative analyses of the orthologous ZNF791 gene in various eutherian mammals, including humans, non-human primates, rodents, artiodactyls, and dogs, revealed that this gene is subjected to genomic imprinting exclusively in domesticated animals, thereby highlighting lineage-specific imprinting. Furthermore, we explored the potential mechanisms behind the establishment of maternal DNA methylation imprints in porcine and bovine oocytes, supporting the notion that integration of transposable elements, active transcription, and histone modification may collectively contribute to the methylation of embedded intragenic CpG island promoters. Our findings convey fundamental insights into molecular and evolutionary aspects of livestock species-specific genomic imprinting and provide critical agricultural implications.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - In-Sul Hwang
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, New York, United States of America
| | - Mi-Ryung Park
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Milca Rosa-Velazquez
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - In-Cheol Cho
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - Seongsoo Hwang
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
16
|
Tan JW, Blake EJ, Farris JD, Klee EW. Expanding Upon Genomics in Rare Diseases: Epigenomic Insights. Int J Mol Sci 2024; 26:135. [PMID: 39795993 PMCID: PMC11719497 DOI: 10.3390/ijms26010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation is an essential epigenetic modification that plays a crucial role in regulating gene expression and maintaining genomic stability. With the advancement in sequencing technology, methylation studies have provided valuable insights into the diagnosis of rare diseases through the various identification of episignatures, epivariation, epioutliers, and allele-specific methylation. However, current methylation studies are not without limitations. This mini-review explores the current understanding of DNA methylation in rare diseases, highlighting the key mechanisms and diagnostic potential, and emphasizing the need for advanced methodologies and integrative approaches to enhance the understanding of disease progression and design more personable treatment for patients, given the nature of rare diseases.
Collapse
Affiliation(s)
| | | | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.T.); (E.J.B.); (J.D.F.)
| |
Collapse
|
17
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024; 41:3301-3316. [PMID: 39325344 PMCID: PMC11706821 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
18
|
Luo Y, Zhou T, Liu D, Wang F, Zhao Q. AIMER: A SNP-independent software for identifying imprinting-like allelic methylated regions from DNA methylome. Comput Struct Biotechnol J 2024; 23:566-576. [PMID: 38274999 PMCID: PMC10809074 DOI: 10.1016/j.csbj.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Genomic imprinting is essential for mammalian growth and embryogenesis. High-throughput bisulfite sequencing accompanied with parental haplotype-specific information allows analysis of imprinted genes and imprinting control regions (ICRs) on a large scale. Currently, although several allelic methylated regions (AMRs) detection software were developed, methods for detecting imprinted AMRs is still limited. Here, we developed a SNP-independent statistical approach, AIMER, to detect imprinting-like AMRs. By using the mouse frontal cortex methylome as input, we demonstrated that AIMER performs very well in detecting known germline ICRs compared with other methods. Furthermore, we found the putative parental AMRs AIMER detected could be distinguished from sequence-dependent AMRs. Finally, we found a novel germline imprinting-like AMR using WGBS data from 17 distinct mouse tissue samples. The results indicate that AIMER is a good choice for detecting imprinting-like (parent-of-origin-dependent) AMRs. We hope this method will be helpful for future genomic imprinting studies. The Python source code for our project is now publicly available on both GitHub (https://github.com/ZhaoLab-TMU/AIMER) and Gitee (https://gitee.com/zhaolab_tmu/AIMER).
Collapse
Affiliation(s)
| | | | - Deng Liu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
19
|
Jarred EG, Western PS. Polycomb in female reproductive health: patterning the present and programming the future. Reprod Fertil Dev 2024; 36:RD24152. [PMID: 39636716 DOI: 10.1071/rd24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Epigenetic modifications regulate chromatin accessibility, gene expression, cell differentiation and tissue development. As epigenetic modifications can be inherited via mitotic and meiotic cell divisions, they enable a heritable memory of cell identity and function and can alter inherited characteristics in the next generation. Tight regulation of epigenetic information is critical for normal cell function and is often disrupted in diseases including cancer, metabolic, neurological and inherited congenital conditions. The ovary performs critical functions in female reproductive health and fertility, including oocyte and sex-hormone production. Oocytes undergo extensive epigenetic programming including the establishment of maternal genomic imprints, which are critical for offspring health and development. Epigenetic modifiers also regulate ovarian somatic cells, such as granulosa and theca cells which support oocytes and produce hormones. While ovarian dysfunction contributes to serious ovarian conditions such as primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS) and ovarian cancers, the roles of epigenetic modifications in the ovary and their contribution to ovarian dysfunction are not properly understood. Here we review recent advancements in understanding Polycomb proteins, important epigenetic modifiers that have emerging roles in ovarian development and maternal epigenetic inheritance. Polycomb group proteins (PcGs) contribute to the faithful establishment of epigenetic information in oocytes, a process essential for normal offspring development in mice. Emerging evidence also indicates that PcGs regulate ovarian function and female fertility. Understanding these and similar mechanisms will provide greater insight into the epigenetic regulation of ovarian and oocyte function, and how its disruption can impact reproductive health and maternal inheritance.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| |
Collapse
|
20
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Yu H, Zhao Y, Cheng R, Wang M, Hu X, Zhang X, Teng X, He H, Han Z, Han X, Wang Z, Liu B, Zhang Y, Wu Q. Silencing of maternally expressed RNAs in Dlk1-Dio3 domain causes fatal vascular injury in the fetal liver. Cell Mol Life Sci 2024; 81:429. [PMID: 39382697 PMCID: PMC11465015 DOI: 10.1007/s00018-024-05462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The mammalian imprinted Dlk1-Dio3 domain contains multiple lncRNAs, mRNAs, the largest miRNA cluster in the genome and four differentially methylated regions (DMRs), and deletion of maternally expressed RNA within this locus results in embryonic lethality, but the mechanism by which this occurs is not clear. Here, we optimized the model of maternally expressed RNAs transcription termination in the domain and found that the cause of embryonic death was apoptosis in the embryo, particularly in the liver. We generated a mouse model of maternally expressed RNAs silencing in the Dlk1-Dio3 domain by inserting a 3 × polyA termination sequence into the Gtl2 locus. By analyzing RNA-seq data of mouse embryos combined with histological analysis, we found that silencing of maternally expressed RNAs in the domain activated apoptosis, causing vascular rupture of the fetal liver, resulting in hemorrhage and injury. Mechanistically, termination of Gtl2 transcription results in the silencing of maternally expressed RNAs and activation of paternally expressed genes in the interval, and it is the gene itself rather than the IG-DMR and Gtl2-DMR that causes the aforementioned phenotypes. In conclusion, these findings illuminate a novel mechanism by which the silencing of maternally expressed RNAs within Dlk1-Dio3 domain leads to hepatic hemorrhage and embryonic death through the activation of apoptosis.
Collapse
Affiliation(s)
- Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Rui Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resource and School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Bingjing Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
22
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
23
|
Suman M, Löfgren M, Fransson S, Yousuf JI, Svensson J, Djos A, Martinsson T, Kogner P, Kling T, Carén H. Altered methylation of imprinted genes in neuroblastoma: implications for prognostic refinement. J Transl Med 2024; 22:808. [PMID: 39217334 PMCID: PMC11366169 DOI: 10.1186/s12967-024-05634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a complex disease, and the current understanding of NB biology is limited. Deregulation in genomic imprinting is a common event in malignancy. Since imprinted genes play crucial roles in early fetal growth and development, their role in NB pathogenesis could be suggested. METHODS We examined alterations in DNA methylation patterns of 369 NB tumours at 49 imprinted differentially methylated regions (DMRs) and assessed its association with overall survival probabilities and selected clinical and genomic features of the tumours. In addition, an integrated analysis of DNA methylation and allele-specific copy number alterations (CNAs) was performed, to understand the correlation between the two molecular events. RESULTS Several imprinted regions with aberrant methylation patterns in NB were identified. Regions that underwent loss of methylation in > 30% of NB samples were DMRs annotated to the genes NDN, SNRPN, IGF2, MAGEL2 and HTR5A and regions with gain of methylation were NNAT, RB1 and GPR1. Methylation alterations at six of the 49 imprinted DMRs were statistically significantly associated with reduced overall survival: MIR886, RB1, NNAT/BLCAP, MAGEL2, MKRN3 and INPP5F. RB1, NNAT/BLCAP and MKRN3 were further able to stratify low-risk NB tumours i.e. tumours that lacked MYCN amplification and 11q deletion into risk groups. Methylation alterations at NNAT/BLCAP, MAGEL2 and MIR886 predicted risk independently of MYCN amplification or 11q deletion and age at diagnosis. Investigation of the allele-specific CNAs demonstrated that the imprinted regions that displayed most alterations in NB tumours harbor true epigenetic changes and are not result of the underlying CNAs. CONCLUSIONS Aberrant methylation in imprinted regions is frequently occurring in NB tumours and several of these regions have independent prognostic value. Thus, these could serve as potentially important clinical epigenetic markers to identify individuals with adverse prognosis. Incorporation of methylation status of these regions together with the established risk predictors may further refine the prognostication of NB patients.
Collapse
Affiliation(s)
- Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Maja Löfgren
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jewahri Idris Yousuf
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
24
|
Moindrot B, Imaizumi Y, Feil R. Differential 3D genome architecture and imprinted gene expression: cause or consequence? Biochem Soc Trans 2024; 52:973-986. [PMID: 38775198 PMCID: PMC11346452 DOI: 10.1042/bst20230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.
Collapse
Affiliation(s)
- Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yui Imaizumi
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
25
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
26
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 2024; 67:1079-1094. [PMID: 38512414 PMCID: PMC11058053 DOI: 10.1007/s00125-024-06123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024]
Abstract
AIMS/HYPOTHESIS Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Adrien Osakwe
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sneha S Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sayed M Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, London, UK
- Imaging Resource Facility, Research Operations, St George's, University of London, London, UK
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Republic of Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, Republic of Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Republic of Singapore
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Robert Sladek
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montréal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Guy A Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
| | - Steven J Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
27
|
He C, Zhu B, Gao W, Wu Q, Zhang C. Study on Allele Specific Expression of Long-Term Residents in High Altitude Areas. Evol Bioinform Online 2024; 20:11769343241257344. [PMID: 38826865 PMCID: PMC11141219 DOI: 10.1177/11769343241257344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
In diploid organisms, half of the chromosomes in each cell come from the father and half from the mother. Through previous studies, it was found that the paternal chromosome and the maternal chromosome can be regulated and expressed independently, leading to the emergence of allele specific expression (ASE). In this study, we analyzed the differential expression of alleles in the high-altitude population and the normal population based on the RNA sequencing data. Through gene cluster analysis and protein interaction network analysis, we found some changes occurred at the gene level, and some negative effects. During the study, we realized that the calmodulin homology domain may have a certain correlation with long-term survival at high altitude. The plateau environment is characterized by hypoxia, low air pressure, strong ultraviolet radiation, and low temperature. Accordingly, the genetic changes in the process of adaptation are mainly reflected in these characteristics. High altitude generation living is also highly related to cancer, immune disease, cardiovascular disease, neurological disease, endocrine disease, and other diseases. Therefore, the medical system in high altitude areas should pay more attention to these diseases.
Collapse
Affiliation(s)
- Chao He
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Bin Zhu
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Wenwen Gao
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Qianjin Wu
- The General Hospital of Tibet Military Region, Lhasa, China
| | | |
Collapse
|
28
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
29
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591087. [PMID: 38766012 PMCID: PMC11100664 DOI: 10.1101/2024.05.08.591087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
|
30
|
Ferguson-Smith AC, Bartolomei MS. The phenomenon of genomic imprinting was discovered 40 years ago. Nature 2024; 629:763-765. [PMID: 38745025 DOI: 10.1038/d41586-024-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
|
31
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
32
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions. Dev Cell 2024; 59:1010-1027.e8. [PMID: 38569549 PMCID: PMC11042979 DOI: 10.1016/j.devcel.2024.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.
Collapse
Affiliation(s)
- Rexxi D Prasasya
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake A Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Songze Wu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Johanna M Fowler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Wei C, Kesner B, Yin H, Lee JT. Imprinted X chromosome inactivation at the gamete-to-embryo transition. Mol Cell 2024; 84:1442-1459.e7. [PMID: 38458200 PMCID: PMC11031340 DOI: 10.1016/j.molcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Johnson ND, Cutler DJ, Conneely KN. Investigating the potential of single-cell DNA methylation data to detect allele-specific methylation and imprinting. Am J Hum Genet 2024; 111:654-667. [PMID: 38471507 PMCID: PMC11023823 DOI: 10.1016/j.ajhg.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.
Collapse
Affiliation(s)
- Nicholas D Johnson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Huo H, Zhang C, Wang K, Wang S, Chen W, Zhang Y, Yu W, Li S, Li S. A novel imprinted locus on bovine chromosome 18 homologous with human chromosome 16q24.1. Mol Genet Genomics 2024; 299:40. [PMID: 38546894 DOI: 10.1007/s00438-024-02123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
Genomic imprinting is an epigenetic regulation mechanism in mammals resulting in the parentally dependent monoallelic expression of genes. Imprinting disorders in humans are associated with several congenital syndromes and cancers and remain the focus of many medical studies. Cattle is a better model organism for investigating human embryo development than mice. Imprinted genes usually cluster on chromosomes and are regulated by different methylation regions (DMRs) located in imprinting control regions that control gene expression in cis. There is an imprinted locus on human chromosome 16q24.1 associated with congenital lethal developmental lung disease in newborns. However, genomic imprinting on bovine chromosome 18, which is homologous with human chromosome 16 has not been systematically studied. The aim of this study was to analyze the allelic expressions of eight genes (CDH13, ATP2C2, TLDC1, COTL1, CRISPLD2, ZDHHC7, KIAA0513, and GSE1) on bovine chromosome 18 and to search the DMRs associated gene allelic expression. Three transcript variants of the ZDHHC7 gene (X1, X2, and X5) showed maternal imprinting in bovine placentas. In addition, the monoallelic expression of X2 and X5 was tissue-specific. Five transcripts of the KIAA0513 gene showed tissue- and isoform-specific monoallelic expression. The CDH13, ATP2C2, and TLDC1 genes exhibited tissue-specific imprinting, however, COTL1, CRISLPLD2, and GSE1 escaped imprinting. Four DMRs, established after fertilization, were found in this region. Two DMRs were located between the ZDHHC7 and KIAA0513 genes, and two were in exon 1 of the CDH13 and ATP2C2 genes, respectively. The results from this study support future studies on the molecular mechanism to regulate the imprinting of candidate genes on bovine chromosome 18.
Collapse
Affiliation(s)
- Haonan Huo
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Weina Chen
- College of Medical Science, Hebei University, Baoding, Hebei, China
| | - Yinjiao Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang, Hebei, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang, Hebei, China.
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China.
| |
Collapse
|
36
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Morone DJ, Nuttle X, de Esch CE, Tai DJ, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583177. [PMID: 38496583 PMCID: PMC10942373 DOI: 10.1101/2024.03.03.583177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B. Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Daniel J. Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E. de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J.C. Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
38
|
Aljuraysi S, Platt M, Pulix M, Poptani H, Plagge A. Microcephaly with a disproportionate hippocampal reduction, stem cell loss and neuronal lipid droplet symptoms in Trappc9 KO mice. Neurobiol Dis 2024; 192:106431. [PMID: 38331351 DOI: 10.1016/j.nbd.2024.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.
Collapse
Affiliation(s)
- Sultan Aljuraysi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mark Platt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michela Pulix
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
39
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
40
|
Montgomery SA, Berger F. Paternal imprinting in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1000-1006. [PMID: 37936346 DOI: 10.1111/nph.19377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.
Collapse
Affiliation(s)
- Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), C/ del Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
41
|
Ishihara T, Suzuki S, Newman TA, Fenelon JC, Griffith OW, Shaw G, Renfree MB. Marsupials have monoallelic MEST expression with a conserved antisense lncRNA but MEST is not imprinted. Heredity (Edinb) 2024; 132:5-17. [PMID: 37952041 PMCID: PMC10798977 DOI: 10.1038/s41437-023-00656-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Trent A Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
42
|
Conte MI, Fuentes-Trillo A, Domínguez Conde C. Opportunities and tradeoffs in single-cell transcriptomic technologies. Trends Genet 2024; 40:83-93. [PMID: 37953195 DOI: 10.1016/j.tig.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Recent technological and algorithmic advances enable single-cell transcriptomic analysis with remarkable depth and breadth. Nonetheless, a persistent challenge is the compromise between the ability to profile high numbers of cells and the achievement of full-length transcript coverage. Currently, the field is progressing and developing new and creative solutions that improve cellular throughput, gene detection sensitivity and full-length transcript capture. Furthermore, long-read sequencing approaches for single-cell transcripts are breaking frontiers that have previously blocked full transcriptome characterization. We here present a comprehensive overview of available options for single-cell transcriptome profiling, highlighting the key advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Matilde I Conte
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | | |
Collapse
|
43
|
Lobanova YV, Zhenilo SV. Genomic Imprinting and Random Monoallelic Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:84-96. [PMID: 38467547 DOI: 10.1134/s000629792401005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
The review discusses the mechanisms of monoallelic expression, such as genomic imprinting, in which gene transcription depends on the parental origin of the allele, and random monoallelic transcription. Data on the regulation of gene activity in the imprinted regions are summarized with a particular focus on the areas controlling imprinting and factors influencing the variability of the imprintome. The prospects of studies of the monoallelic expression are discussed.
Collapse
Affiliation(s)
- Yaroslava V Lobanova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Svetlana V Zhenilo
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
44
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
46
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527050. [PMID: 38076935 PMCID: PMC10705251 DOI: 10.1101/2023.02.04.527050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aims/hypothesis Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "βHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sanjay Khadayate
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Adrien Osakwe
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sneha S. Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sayed M. Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alex Montoya
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - James Elliott
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Chad Whilding
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Pavel Shliaha
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Holger Kramer
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, 168751
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, 768828
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Robert Sladek
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Dominic J. Withers
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Guy A. Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Steven J. Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
47
|
Williams JPC, Walport LJ. PADI6: What we know about the elusive fifth member of the peptidyl arginine deiminase family. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220242. [PMID: 37778376 PMCID: PMC10542454 DOI: 10.1098/rstb.2022.0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/05/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6) is a maternal factor that is vital for early embryonic development. Deletion and mutations of its encoding gene in female mice or women lead to early embryonic developmental arrest, female infertility, maternal imprinting defects and hyperproliferation of the trophoblast. PADI6 is the fifth and least well-characterized member of the peptidyl arginine deiminases (PADIs), which catalyse the post-translational conversion of arginine to citrulline. It is less conserved than the other PADIs, and currently has no reported catalytic activity. While there are many suggested functions of PADI6 in the early mouse embryo, including in embryonic genome activation, cytoplasmic lattice formation, maternal mRNA and ribosome regulation, and organelle distribution, the molecular mechanisms of its function remain unknown. In this review, we discuss what is known about the function of PADI6 and highlight key outstanding questions that must be answered if we are to understand the crucial role it plays in early embryo development and female fertility. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
| | - Louise J. Walport
- Imperial College of Science Technology and Medicine, London, W12 0BZ, UK
| |
Collapse
|
48
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
49
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
50
|
Williams CJ, Dai D, Tran KA, Monroe JG, Williams BP. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol 2023; 24:227. [PMID: 37828516 PMCID: PMC10571256 DOI: 10.1186/s13059-023-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In several eukaryotes, DNA methylation occurs within the coding regions of many genes, termed gene body methylation (GbM). Whereas the role of DNA methylation on the silencing of transposons and repetitive DNA is well understood, gene body methylation is not associated with transcriptional repression, and its biological importance remains unclear. RESULTS We report a newly discovered type of GbM in plants, which is under constitutive addition and removal by dynamic methylation modifiers in all cells, including the germline. Methylation at Dynamic GbM genes is removed by the DRDD demethylation pathway and added by an unknown source of de novo methylation, most likely the maintenance methyltransferase MET1. We show that the Dynamic GbM state is present at homologous genes across divergent lineages spanning over 100 million years, indicating evolutionary conservation. We demonstrate that Dynamic GbM is tightly associated with the presence of a promoter or regulatory chromatin state within the gene body, in contrast to other gene body methylated genes. We find Dynamic GbM is associated with enhanced gene expression plasticity across development and diverse physiological conditions, whereas stably methylated GbM genes exhibit reduced plasticity. Dynamic GbM genes exhibit reduced dynamic range in drdd mutants, indicating a causal link between DNA demethylation and enhanced gene expression plasticity. CONCLUSIONS We propose a new model for GbM in regulating gene expression plasticity, including a novel type of GbM in which increased gene expression plasticity is associated with the activity of DNA methylation writers and erasers and the enrichment of a regulatory chromatin state.
Collapse
Affiliation(s)
- Clara J Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Dawei Dai
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Kevin A Tran
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, USA
| | - Ben P Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA.
| |
Collapse
|