1
|
Baidya AT, Dante D, Das B, Wang L, Darreh-Shori T, Kumar R. Discovery and characterization of novel pyridone and furan substituted ligands of choline acetyltransferase. Eur J Pharmacol 2025; 998:177638. [PMID: 40252901 DOI: 10.1016/j.ejphar.2025.177638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The key to the management of two devastating diseases, namely Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) lies in an early diagnosis, which is difficult due to its multifactorial nature. However, a common hallmark of AD and ALS is degeneration of cholinergic system. Choline acetyltransferase (ChAT) has been proposed as a potential target for development of cholinergic-specific biomarker. However, lack of selective, potent, brain permeable molecular probes of ChAT hinder development of ChAT biomarkers. In this study, we have successfully utilised structure-based virtual screening approach and identified two ChAT inhibitors from a database of 1.4 million compounds. The compounds were then subjected to rigorous in vitro characterization. Compound V6 showed Ki value of 11 μM and IC50 value of 21.73 μM, while V15 showed Ki and IC50 values of 4.5 and 9.42 μM, respectively for ChAT enzyme. V6 and V15 showed good solubility of 0.21 mg/mL and 0.17 mg/mL respectively and cytotoxicity analysis indicated no toxicity. We also performed a 200 ns molecular dynamics simulation, which revealed the intricate interaction dynamics for V6 and V15 with ChAT binding pocket. Moreover, the Tanimoto similarity analysis indicated the novelty and structural diversity of the hits. In conclusion, these validated hits provide a platform to develop potent, selective, blood-brain barrier permeable small molecules as chemical probes of ChAT or as Positron Emission Tomography tracer for early diagnosis and/or in vivo monitoring of the effect of new therapeutic candidates in spectrum of neurodegenerative disorders, in which cholinergic deficit is one of the hallmarks.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India.
| |
Collapse
|
2
|
Liu J, Chen L, Zhang ZL, Wen W, Zhang X, Wu Z, Wang S. Nano-Collision Electrochemistry for Real-Time Monitoring of Amyloid-β Oligomerization and Rapid Screening of Degrading Drugs. Anal Chem 2025; 97:4898-4905. [PMID: 39992990 DOI: 10.1021/acs.analchem.4c04598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Toxic oligomers of amyloid-β (Aβ) are important in the pathology of Alzheimer's disease (AD), and degradation of Aβ oligomers (AβO) in the brain is considered a promising strategy for drug development. However, conventional drug screening techniques face challenges in the rapid and real-time assessment of AβO. Here, we report a simple and reliable nanocollision electrochemical method based on silver nanoparticles (AgNPs) "tagging" that can in situ monitor Aβ oligomerization and screen potential AβO-degrading drugs. The differences in collision signals between AgNPs-Aβ complexes and AgNPs were compared to achieve rapid identification of Aβ complexes with different aggregation degrees. The degradation effect following the addition of AβO-degrading drugs can be quickly evaluated by the recovery of collision frequency (f, number of peaks per unit time), which is effective if f > 0.15. Degradation efficiency was further quantified using current lifetimes (τ, the time required for the current to decay to 1/e of the original), based on the percentage of τ ≤ 10 ms. The practicability of the method was tested using Aβ-degrading protease and several small molecules, confirming the rapid screening of AβO-degrading drugs and offering a novel strategy to accelerate the development of drugs for AD treatment.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Luan Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
3
|
Bhattacharya A, Fon EA, Dagher A, Iturria-Medina Y, Stratton JA, Savignac C, Stanley J, Hodgson L, Hammou BA, Bennett DA, Bzdok D. Cell type transcriptomics reveal shared genetic mechanisms in Alzheimer's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638647. [PMID: 40027681 PMCID: PMC11870532 DOI: 10.1101/2025.02.17.638647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Historically, Alzheimer's disease (AD) and Parkinson's disease (PD) have been investigated as two distinct disorders of the brain. However, a few similarities in neuropathology and clinical symptoms have been documented over the years. Traditional single gene-centric genetic studies, including GWAS and differential gene expression analyses, have struggled to unravel the molecular links between AD and PD. To address this, we tailor a pattern-learning framework to analyze synchronous gene co-expression at sub-cell-type resolution. Utilizing recently published single-nucleus AD (70,634 nuclei) and PD (340,902 nuclei) datasets from postmortem human brains, we systematically extract and juxtapose disease-critical gene modules. Our findings reveal extensive molecular similarities between AD and PD gene cliques. In neurons, disrupted cytoskeletal dynamics and mitochondrial stress highlight convergence in key processes; glial modules share roles in T-cell activation, myelin synthesis, and synapse pruning. This multi-module sub-cell-type approach offers insights into the molecular basis of shared neuropathology in AD and PD.
Collapse
|
4
|
Li VOK, Han Y, Kaistha T, Zhang Q, Downey J, Gozes I, Lam JCK. DeepDrug as an expert guided and AI driven drug repurposing methodology for selecting the lead combination of drugs for Alzheimer's disease. Sci Rep 2025; 15:2093. [PMID: 39814937 PMCID: PMC11735786 DOI: 10.1038/s41598-025-85947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients. DeepDrug advances drug-repurposing methodology in four aspects. Firstly, it incorporates expert knowledge to extend candidate targets to include long genes, immunological and aging pathways, and somatic mutation markers that are associated with AD. Secondly, it incorporates a signed directed heterogeneous biomedical graph encompassing a rich set of nodes and edges, and node/edge weighting to capture crucial pathways associated with AD. Thirdly, it encodes the weighted biomedical graph through a Graph Neural Network into a new embedding space to capture the granular relationships across different nodes. Fourthly, it systematically selects the high-order drug combinations via diminishing return-based thresholds. A five-drug lead combination, consisting of Tofacitinib, Niraparib, Baricitinib, Empagliflozin, and Doxercalciferol, has been selected from the top drug candidates based on DeepDrug scores to achieve the maximum synergistic effect. These five drugs target neuroinflammation, mitochondrial dysfunction, and glucose metabolism, which are all related to AD pathology. DeepDrug offers a novel AI-and-big-data, expert-guided mechanism for new drug combination discovery and drug-repurposing across AD and other neuro-degenerative diseases, with immediate clinical applications.
Collapse
Affiliation(s)
- Victor O K Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yang Han
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Tushar Kaistha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Qi Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Jacqueline C K Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
6
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
7
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
8
|
Yang J, Ran K, Ma W, Chen Y, Chen Y, Zhang C, Ye H, Lu Y, Ran C. Degradation of Amyloid-β Species by Multi-Copper Oxidases. J Alzheimers Dis 2024; 101:525-539. [PMID: 39213075 DOI: 10.3233/jad-240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Kathleen Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Wenzhe Ma
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Yanshi Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Yanxin Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, IL, USA
| | - Ying Lu
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| |
Collapse
|
9
|
Gao Y, Guo J, Zhang F, Li Y. Safety Analysis of Bapineuzumab in the Treatment of Mild to Moderate Alzheimer's Disease: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2024; 27:40-47. [PMID: 37076966 DOI: 10.2174/1386207326666230419095813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Alzheimer's disease affects millions of people worldwide, and very few drugs are available for its treatment. Monoclonal antibodies have shown promising effects in the treatment of various types of diseases. Bapineuzumab is one of the humanized monoclonal antibodies, which have shown promising effects in AD patients. Bapineuzumab has shown efficacy in the treatment of mild to moderate Alzheimer's disease. However, its safety is still unclear. OBJECTIVE Thus, the main objective of the current study is to find out the exact safety profile of bapineuzumab in the treatment of mild to moderate Alzheimer's disease. METHODS We performed a web-based literature search of PubMed and clinical trial websites using the relevant keywords. Data were extracted from eligible records, and the risk ratio (RR) was calculated with a 95% confidence interval (CI). All the analyses were performed using Review Manager software (version 5.3 for windows). Heterogeneity was measured by Chi-square and I-square tests. RESULTS Non-significant association of bapineuzumab with serious treatment-emergent adverse events [RR: 1.11 (0.92, 1.35)], headache [RR: 1.03 (0.81, 1.32)], delirium [RR: 2.21 (0.36, 13.53)], vomiting [RR: 0.92 (0.55, 1.55)], hypertension [RR: 0.49 (0.12, 2.12)], convulsions [RR:2.23 (0.42, 11.71)], falls [RR: 0.98 (0.80, 1.21)], fatal AEs [RR: 1.18 (0.59, 2.39)], and neoplasms [RR:1.81 (0.07, 49.52)] was reported; however, a significant association was found with vasogenic edema [RR: 22.58 (3.48, 146.44)]. CONCLUSION Based on available evidence, bapineuzumab is found to be safe in the treatment of AD patients. However, vasogenic edema should be considered.
Collapse
Affiliation(s)
- Yaqi Gao
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
- College of Health Care, Sehan University, Yeongam-gun, 58447, Korea
| | - Jing Guo
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| | - Fang Zhang
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| | - Yanfang Li
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| |
Collapse
|
10
|
Lee H, Kim Y, Aziz H, Kang DM, Lee J, Lee S, Jung S, Hyeon S, Choo H, Nam G, Kim YK, Lim S, Min SJ. Synthesis and biological evaluation of indane-based fluorescent probes for detection of amyloid-β aggregates in Alzheimer's disease. Bioorg Med Chem 2023; 95:117513. [PMID: 37931520 DOI: 10.1016/j.bmc.2023.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
In this article, the development of fluorescent imaging probes for the detection of Alzheimer's disease (AD)-associated protein aggregates is described. Indane derivatives with a donor-π-acceptor (D-π-A) structure were designed and synthesized. The probes were evaluated for their ability to bind to β-amyloid (Aβ) protein aggregates, which are a key pathological hallmark of AD. The results showed that several probes exhibited significant changes in fluorescence intensity at wavelengths greater than 600 nm when they were bound to Aβ aggregates compared to the Aβ monomeric form. Among the tested probes, four D-π-A type indane derivatives showed promising binding selectivity to Aβ aggregates over non-specific proteins such as bovine serum albumin (BSA). The molecular docking study showed that our compounds were appropriately located along the Aβ fibril axis through the hydrophobic tunnel structure. Further analysis revealed that the most active compound having dimethylaminopyridyl group as an election donor and dicyano group as an electron acceptor could effectively stain Aβ plaques in brain tissue samples from AD transgenic mice. These findings suggest that our indane-based compounds have the potential to serve as fluorescent probes for the detection and monitoring of Aβ aggregation in AD.
Collapse
Affiliation(s)
- Hyunseung Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yihoon Kim
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dong-Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jaewoon Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sujin Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sunhwa Jung
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Suyeon Hyeon
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyunah Choo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Ghilsoo Nam
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
11
|
Zhang M, Zheng H, He J, Zhang M. Network pharmacology and in vivo studies reveal the neuroprotective effects of paeoniflorin on Alzheimer's disease. Heliyon 2023; 9:e21800. [PMID: 38027768 PMCID: PMC10661068 DOI: 10.1016/j.heliyon.2023.e21800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that has still not been effectively treated. Paeoniflorin is a traditional Chinese medicine with potential neuroprotective effects against brain injury; however, the beneficial effects and mechanisms of action in AD have not been clarified. We aimed to explore the mechanisms of action of paeoniflorin in AD using network pharmacology and experimental validation. Network pharmacology analysis revealed 30 candidate targets through the intersection of the targets of paeoniflorin and related genes in AD, which were mainly enriched in oxidative stress and inflammation. Moreover, key targets of paeoniflorin against AD, namely Nrf2 (encoded by NFE2L2) and TLR4, were screened and found to be closely related to oxidative stress and inflammation. Subsequent in vivo experiments revealed that paeoniflorin treatment improved the cognition of APP/PS1 mice by ameliorating oxidative stress and neuroinflammation, which were associated with the upregulation of Nrf2 and HO1, and the downregulation of TLR4. Collectively, the present study demonstrates that paeoniflorin alleviates cognitive impairment in AD by regulating oxidative stress and neuroinflammation, and that Nrf2, HO1, and TLR4 could be key targets.
Collapse
Affiliation(s)
| | | | - Jiale He
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Anhui, China
| | - Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Anhui, China
| |
Collapse
|
12
|
Yang J, Ran K, Ma W, Chen L, Chen C, Zhang C, Ye H, Lu Y, Ran C. Degradation of amyloid beta species by multi-copper oxidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547398. [PMID: 37461701 PMCID: PMC10350030 DOI: 10.1101/2023.07.02.547398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Reduction of the production of amyloid beta (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. In this study, we discovered that ceruloplasmin (CP), an important multi-copper oxidase (MCO) in human blood, could degrade Aβ peptides. We also found that the presence of Vitamin C could enhance the degrading effect in a concentration-dependent manner. We then validated the CP-Aβ interaction using total internal reflection fluorescence (TIRF) microscopy, fluorescence photometer, and fluorescence polarization measurement. Based on the above discovery, we hypothesized that other MCOs had similar Aβ-degrading functions. Indeed, we found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that ascorbate oxidase (AO) had the strongest degrading effect among the tested MCOs. Using induced pluripotent stem (iPS) neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Ab-induced deficit in synaptic transmission in the hippocampus. To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Cindy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| |
Collapse
|
13
|
Chear NJY, Ching-Ga TAF, Khaw KY, León F, Tan WN, Yusof SR, McCurdy CR, Murugaiyah V, Ramanathan S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites 2023; 13:metabo13030390. [PMID: 36984830 PMCID: PMC10059728 DOI: 10.3390/metabo13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two known indole alkaloids, villocarine A (2) and geissoschizine methyl ether (3), and their structural identification was performed with extensive mono- and bidimensional NMR and MS spectroscopic methods. The isolated alkaloids were evaluated for their acetylcholinesterase (AChE)- and butyrylcholinesterase (BChE)-inhibitory activity. The results indicated that compound (2) was the most potent inhibitor against both AChE and BChE, with IC50 values of 14.45 and 13.95 µM, respectively, whereas compounds (1) and (3) were selective BChE inhibitors with IC50 values of 35.28 and 17.65 µM, respectively. In addition, molecular docking studies revealed that compound (2) interacts with the five main regions of AChE via both hydrogen and hydrophobic bonding. In contrast to AChE, the interactions of (2) with the enzymatic site of BChE are established only through hydrophobic bonding. The current finding suggests that U. attenuata could be a good source of bioactive alkaloids for treating age-related dementia.
Collapse
Affiliation(s)
| | - Tan Ai Fein Ching-Ga
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29201, USA
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| |
Collapse
|
14
|
Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28052336. [PMID: 36903581 PMCID: PMC10005336 DOI: 10.3390/molecules28052336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is to blame for about 60% of dementia cases worldwide. The blood-brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the "core" of the wrapped drug, and the cell membrane acts as the "shell" of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB's restriction, prevent harm to the body's immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized.
Collapse
|
15
|
Soluble guanylate cyclase stimulator riociguat improves spatial memory in mice via peripheral mechanisms. Neurosci Lett 2022; 788:136840. [PMID: 35985509 DOI: 10.1016/j.neulet.2022.136840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 01/02/2023]
Abstract
Soluble guanylate cyclase (sGC) - cyclic guanosine monophosphate (cGMP) signalling is important for healthy memory function and a healthy vascular system. Targeting sGC-cGMP signalling can therefore be a potential strategy to enhance memory processes. sGC can be targeted by using agonists, such as sGC stimulator riociguat. Therefore, this study aimed to target sGC using riociguat to investigate its acute effects on memory function and neuronal plasticity in mice. The effects of riociguat on long-term memory and a biperiden-induced memory deficit model for assessing short-term memory were tested in the object location task, and working memory was tested in the Y-maze continuous alternation task. Pharmacokinetic measurements were performed within brain tissue of mice, and hippocampal plasticity measures were assessed using western blotting. Acute oral administration with a low dose of 0.03 mg/kg riociguat was able to enhance working-, short-, and long-term spatial memory. Under cerebral vasoconstriction higher doses of riociguat were still effective on memory. Pharmacokinetic measurements revealed poor brain penetration of riociguat and its metabolite M-1. Increased activation of VASP was found, while no effects were found on other memory-related hippocampal plasticity measures. Memory enhancing effects of riociguat are most likely regulated by vascular peripheral effects on cGMP signalling. Yet, further research is needed to investigate the possible contribution of hemodynamic or metabolic effects of sGC stimulators on memory performance.
Collapse
|
16
|
Liu Y, Zhou S, Huang X, Rehman HM. Mechanistic insight of the potential of geraniol against Alzheimer's disease. Eur J Med Res 2022; 27:93. [PMID: 35701806 PMCID: PMC9199166 DOI: 10.1186/s40001-022-00699-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) as a neurodegenerative disease occupies 3/5–4/5 cases among patients with dementia, yet its pathogenetic mechanism remains unclear. Geraniol, on the other hand, is a well-known extract from essential oils of aromatic plants and has been proven that it has outstanding neuroprotective effects as well as ameliorating influence in memory impairment. Therefore, the present study aims to elucidate the potential of geraniol against AD by network pharmacology-based approach combined with molecular modeling study. Materials and methods Firstly, we evaluated the druggability of geraniol by ADME method. Then, we obtained the geraniol targets and AD-related targets from multiple open data sources. Afterward, we calculated the intersection through a Venn diagram to find common targets, and via Panther classification system to categorize them. In order to gain a macroscopic understanding of these common targets, we carried out GO terms and KEGG pathways enrichment analyses, according to which we constructed a compound–target–pathway–disease network. In addition, we built a preliminary PPI network which was further analyzed both functionally and topologically. Consequently, five hub targets were sorted out. Finally, we conducted molecular docking and molecular dynamic simulation to validate our findings. Results In the present study, the pharmacological properties of geraniol were assessed according to ADME and Lipinski’s rule, which demonstrate promising druggability. Then, from 10,972 AD-related targets and 33 geraniol targets, 29 common targets were identified, among which 38.1% of them are metabolite interconversion enzymes, 23.8% are protein modifying enzymes, 33.3% are transmembrane receptors, and the rest are transporters. Enrichment analyses hint that geraniol is involved in cholinergic synapse, serotonergic synapse, and neuroactive ligand–receptor interaction. We also built a preliminary PPI network to investigate the interplay between these targets and their extensive interactions. Then, by functionally clustering the preliminary PPI network, we gained a cluster of proteins which formed a subnetwork with score of 8.476, and 22 nodes. Its results of GO terms and KEGG pathways enrichment analyses once again suggests that geraniol actively participates in cholinergic synapse, serotonergic synapse, and neuroactive ligand–receptor interaction, which are believed to be strongly associated with AD pathogenesis. Besides, topological analyses of the preliminary PPI network helped find 5 hub targets (i.e., CHRM3, PRKCA, PRKCD, JAK1, JAK2). To verify their interaction with geraniol molecule, we conducted molecular docking, and found that CHRM3 possesses the highest affinity in binding, indicating that geraniol molecules are closely bound to each hub target, and CHRM3 may serve as a key target of geraniol against AD. It was then further confirmed by molecular dynamic simulation, the result of which supports our hypothesis. Conclusion The present study shares a mechanistic insight of the potential of geraniol against AD, giving a reference to future experimental studies. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00699-8.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, 6th Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Punjab, Pakistan.,Alnoorians Group of Institutes, 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Atanasova M, Dimitrov I, Ivanov S, Georgiev B, Berkov S, Zheleva-Dimitrova D, Doytchinova I. Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules 2022; 27:3139. [PMID: 35630613 PMCID: PMC9145144 DOI: 10.3390/molecules27103139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 μs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.
Collapse
Affiliation(s)
- Mariyana Atanasova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Ivan Dimitrov
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Stefan Ivanov
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
- Redesign Science, 180 Varick St, New York, NY 10014, USA
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (S.B.)
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (S.B.)
| | - Dimitrina Zheleva-Dimitrova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Irini Doytchinova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| |
Collapse
|
18
|
Zeng P, Su HF, Ye CY, Qiu SW, Tian Q. Therapeutic Mechanism and Key Alkaloids of Uncaria rhynchophylla in Alzheimer’s Disease From the Perspective of Pathophysiological Processes. Front Pharmacol 2021; 12:806984. [PMID: 34975502 PMCID: PMC8715940 DOI: 10.3389/fphar.2021.806984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Presently, there is a lack of effective disease-modifying drugs for the treatment of Alzheimer’s disease (AD). Uncaria rhynchophylla (UR) and its predominant active phytochemicals alkaloids have been studied to treat AD. This study used a novel network pharmacology strategy to identify UR alkaloids against AD from the perspective of AD pathophysiological processes and identified the key alkaloids for specific pathological process. The analysis identified 10 alkaloids from UR based on high-performance liquid chromatography (HPLC) that corresponded to 127 targets correlated with amyloid-β (Aβ) pathology, tau pathology and Alzheimer disease pathway. Based on the number of targets correlated with AD pathophysiological processes, angustoline, angustidine, corynoxine and isocorynoxeine are highly likely to become key phytochemicals in AD treatment. Among the 127 targets, JUN, STAT3, MAPK3, CCND1, MMP2, MAPK8, GSK3B, JAK3, LCK, CCR5, CDK5 and GRIN2B were identified as core targets. Based on the pathological process of AD, angustoline, angustidine and isocorynoxeine were identified as the key UR alkaloids regulating Aβ production and corynoxine, isocorynoxeine, dihydrocorynatheine, isorhynchophylline and hirsutine were identified as key alkaloids that regulate tau phosphorylation. The findings of this study contribute to a more comprehensive understanding of the key alkaloids and mechanisms of UR in the treatment of AD, as well as provide candidate compounds for drug research and development for specific AD pathological processes.
Collapse
|
19
|
Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 2021; 12:104-113. [PMID: 34904048 PMCID: PMC8637616 DOI: 10.4331/wjbc.v12.i6.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/ or therapeutic suggestions of directing the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuka Ikeda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Nozomi Nagase
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
20
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
21
|
Dai S, Zhou F, Sun J, Li Y. NPD1 Enhances Autophagy and Reduces Hyperphosphorylated Tau and Amyloid-β42 by Inhibiting GSK3β Activation in N2a/APP695swe Cells. J Alzheimers Dis 2021; 84:869-881. [PMID: 34602482 DOI: 10.3233/jad-210729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The most prevalent kind of dementia, Alzheimer's disease (AD), is a neurodegenerative disease. Previous research has shown that glycogen synthase kinase-3β (GSK-3β) is involved in the etiology and progression of AD, including amyloid-β (Aβ), phosphorylated tau, and mitochondrial dysfunction. NPD1 has been shown to serve a neuroprotective function in AD, although the mechanism is unclear. OBJECTIVE The effects of NPD1 on Aβ expression levels, tau protein phosphorylation, apoptosis ratio, autophagy activity, and GSK-3β activity in N2a/APP695swe cells (AD cell model) were studied, as well as the mechanism behind such effects. METHODS N2a/APP695swe cells were treated with NPD1, SB216763, or wortmannin as an AD cell model. The associated proteins of hyperphosphorylated tau and autophagy, as well as the activation of GSK3β, were detected using western blot and RT-PCR. Flow cytometry was utilized to analyze apoptosis and ELISA was employed to observe Aβ42. Images of autophagy in cells are captured using transmission electron microscopy. RESULTS In N2a/APP695swe cells, NPD1 decreased Aβ42 and hyperphosphorylated tau while suppressing cell death. NPD1 also promoted autophagy while suppressing GSK-3β activation in N2a/APP695swe cells. The outcome of inhibiting GSK-3β is comparable to that of NPD1 therapy. However, after activating GSK-3β, the opposite experimental results were achieved. CONCLUSION NPD1 might minimize cell apoptosis, downregulate Aβ expression, control tau hyperphosphorylation, and enhance autophagy activity in AD cell models to promote neuronal survival. NPD1's neuroprotective effects may be mediated via decreasing GSK-3β.
Collapse
Affiliation(s)
- Songyang Dai
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jieyun Sun
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Adib M, Islam R, Ahsan M, Rahman A, Hossain M, Rahman MM, Alshehri SM, Kazi M, Mazid MA. Cholinesterase inhibitory activity of tinosporide and 8-hydroxytinosporide isolated from Tinospora cordifolia: In vitro and in silico studies targeting management of Alzheimer's disease. Saudi J Biol Sci 2021; 28:3893-3900. [PMID: 34220245 PMCID: PMC8241625 DOI: 10.1016/j.sjbs.2021.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Tinosporide and 8-hydroxytinosporide isolated from Tinospora cordifolia were evaluated for acetylcholinesterase (AChE) and butylcholinesterase (BuChE) inhibitory activities. The structure of the compound was confirmed by spectroscopic analysis, whereas cholinesterase inhibition was investigated by Ellman method using donepezil as standard drug and the data were presented as IC50 (μg/ml ± SEM). Furthermore, donepezil, tinosporide and 8-hydroxytinosporide were executed for docking analysis. The results from the isolated compounds TC-16R confirmed as tinosporide promisingly inhibited AChE with IC50 value of 13.45 ± 0.144, whereas TC-19R confirmed as 8-hydroxytinosporide moderately inhibited AChE with IC50 value of 46.71 ± 0.511. In case of BuChE inhibition, the IC50 values were found to be 408.50 ± 17.197 and 317.26 ± 6.918 for tinosporide and 8-hydroxytinosporide, respectively. The in silico studies revealed that the ligand tinosporide fit with the binding sites and inhibited AChE. Overall, the study findings suggested that tinosporide would be a complementary noble molecule of donepezil which is correlated with its pharmacological activity through in vitro studies, while 8-hydroxytinosporide modestly inhibited BuChE and the results are very close to the standard donepezil.
Collapse
Affiliation(s)
- Mohiminul Adib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rashedul Islam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Monira Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arifur Rahman
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Mahmud Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Abdul Mazid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
23
|
The Main Alkaloids in Uncaria rhynchophylla and Their Anti-Alzheimer's Disease Mechanism Determined by a Network Pharmacology Approach. Int J Mol Sci 2021; 22:ijms22073612. [PMID: 33807157 DOI: 10.3390/ijms22073612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a growing concern in modern society, and effective drugs for its treatment are lacking. Uncaria rhynchophylla (UR) and its main alkaloids have been studied to treat neurodegenerative diseases such as AD. This study aimed to uncover the key components and mechanism of the anti-AD effect of UR alkaloids through a network pharmacology approach. The analysis identified 10 alkaloids from UR based on HPLC that corresponded to 90 anti-AD targets. A potential alkaloid target-AD target network indicated that corynoxine, corynantheine, isorhynchophylline, dihydrocorynatheine, and isocorynoxeine are likely to become key components for AD treatment. KEGG pathway enrichment analysis revealed the Alzheimers disease (hsa05010) was the pathway most significantly enriched in alkaloids against AD. Further analysis revealed that 28 out of 90 targets were significantly correlated with Aβ and tau pathology. These targets were validated using a Gene Expression Omnibus (GEO) dataset. Molecular docking studies were carried out to verify the binding of corynoxine and corynantheine to core targets related to Aβ and tau pathology. In addition, the cholinergic synapse (hsa04725) and dopaminergic synapse (hsa04728) pathways were significantly enriched. Our findings indicate that UR alkaloids directly exert an AD treatment effect by acting on multiple pathological processes in AD.
Collapse
|
24
|
方 迎, 苏 振, 司 文, 刘 圆, 李 洁, 曾 鹏. [Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:10-19. [PMID: 33509748 PMCID: PMC7867487 DOI: 10.12122/j.issn.1673-4254.2021.01.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the therapeutic mechanism of resveratrol (RES) for Alzheimer's disease (AD) in light of network pharmacology. METHODS We searched PubChem, BATMAN-TCM, Genecards, AD, TTD, String 11.0, AlzData, SwissTargetPrediction, Metascape and other databases for the therapeutic targets of RES and human AD-related targets. The intersection was determined using Venny 2.1 to obtain the therapeutic targets of RES for AD. The protein-protein interaction (PPI) network was constructed, the gene ontology (GO) was enriched and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) were analyzed. Cytoscape 3.7.1 software was used to construct a target-signaling pathway network of RES in the treatment of AD. Molecular docking verification was carried out on SwissDock (http://www.swissdock.ch/docking). We examined a 293Tau cell model of AD for changes in protein levels of pS396, pS199, Tau5, CDK5, glycogen synthase kinase 3β (GSK3β) and p-GSK3β in response to RES treatment using Western blotting. RESULTS We obtained 182 targets of RES, 525 targets related to AD, and 36 targets of RES for AD treatment, among which 34.6% of the targets were protein-modifying enzymes, 27.7% were metabolite invertase, 13.8% were gene-specific transcriptional regulators, and 10.3% were transporters. The core key targets of RES in the treatment of AD included INS, APP, ESR1, MMP9, IGF1R, CACNA1C, MAPT (microtubule- associated protein Tau), MMP2, TGFB1 and GSK3B. Enrichment analysis of GO biological process suggested that the biological function of RES in AD treatment mainly involved the response to β-amyloid protein, positive regulation of transferase activity, the transmembrane receptor protein tyrosine kinase signaling pathway, regulation of behavior, learning or memory, aging, and transmembrane transport. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathways were AD pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and MAPK signaling pathway. Molecular docking results showed that RES had strong binding with ESR1, GSK3B, MMP9, IGF1R, APP and INS. In the cell model of AD, treatment with 50 μmol/L RES for 12 h significantly reduced the levels of pS396 and pS199 by regulating CDK5 and GSK3β activity (P < 0.001). CONCLUSIONS RES produces therapeutic effects on AD by acting on multiple targets and affecting multiple signaling pathways and improves AD-associated pathologies via a direct action on Aβ and Tau pathological processes.
Collapse
Affiliation(s)
- 迎艳 方
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 振宏 苏
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 文霞 司
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 圆呈 刘
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 洁 李
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 鹏 曾
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Lee D, Park D, Kim I, Lee SW, Lee W, Hwang KS, Lee JH, Lee G, Yoon DS. Plasmonic nanoparticle amyloid corona for screening Aβ oligomeric aggregate-degrading drugs. Nat Commun 2021; 12:639. [PMID: 33504788 PMCID: PMC7840768 DOI: 10.1038/s41467-020-20611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The generation of toxic amyloid β (Aβ) oligomers is a central feature of the onset and progression of Alzheimer's disease (AD). Drug discoveries for Aβ oligomer degradation have been hampered by the difficulty of Aβ oligomer purification and a lack of screening tools. Here, we report a plasmonic nanoparticle amyloid corona (PNAC) for quantifying the efficacy of Aβ oligomeric aggregate-degrading drugs. Our strategy is to monitor the drug-induced degradation of oligomeric aggregates by analyzing the colorimetric responses of PNACs. To test our strategy, we use Aβ-degrading proteases (protease XIV and MMP-9) and subsequently various small-molecule substances that have shown benefits in the treatment of AD. We demonstrate that this strategy with PNAC can identify effective drugs for eliminating oligomeric aggregates. Thus, this approach presents an appealing opportunity to reduce attrition problems in drug discovery for AD treatment.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea
| | - Dongsung Park
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea
| | - Wonseok Lee
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, South Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, South Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
26
|
Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for Alzheimer’s disease. Bioorg Chem 2020; 103:104109. [DOI: 10.1016/j.bioorg.2020.104109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
|
27
|
Drugs Modulating CD4+ T Cells Blood-Brain Barrier Interaction in Alzheimer's Disease. Pharmaceutics 2020; 12:pharmaceutics12090880. [PMID: 32948022 PMCID: PMC7558445 DOI: 10.3390/pharmaceutics12090880] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The effect of Alzheimer’s disease (AD) medications on CD4+ T cells homing has not been thoroughly investigated. CD4+ T cells could both exacerbate and reduce AD symptoms based on their infiltrating subpopulations. Proinflammatory subpopulations such as Th1 and Th17 constitute a major source of proinflammatory cytokines that reduce endothelial integrity and stimulate astrocytes, resulting in the production of amyloid β. Anti-inflammatory subpopulations such as Th2 and Tregs reduce inflammation and regulate the function of Th1 and Th17. Recently, pathogenic Th17 has been shown to have a superior infiltrating capacity compared to other major CD4+ T cell subpopulations. Alzheimer’s drugs such as donepezil (Aricept), rivastigmine (Exelon), galantamine (Razadyne), and memantine (Namenda) are known to play an important part in regulating the mechanisms of the neurotransmitters. However, little is known about the effect of these drugs on CD4+ T cell subpopulations’ infiltration of the brain during AD. In this review, we focus on understanding the influence of AD drugs on CD4+ T cell subpopulation interactions with the BBB in AD. While current AD therapies improve endothelial integrity and reduce astrocytes activations, they vary according to their influence on various CD4+ T cell subpopulations. Donepezil reduces the numbers of Th1 but not Th2, Rivastigmine inhibits Th1 and Th17 but not Th2, and memantine reduces Th1 but not Treg. However, none of the current AD drugs is specifically designed to target the dysregulated balance in the Th17/Treg axis. Future drug design approaches should specifically consider inhibiting CD4+ Th17 to improve AD prognosis.
Collapse
|
28
|
Soeda Y, Saito M, Maeda S, Ishida K, Nakamura A, Kojima S, Takashima A. Methylene Blue Inhibits Formation of Tau Fibrils but not of Granular Tau Oligomers: A Plausible Key to Understanding Failure of a Clinical Trial for Alzheimer's Disease. J Alzheimers Dis 2020; 68:1677-1686. [PMID: 30909223 DOI: 10.3233/jad-181001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease pathology is characterized by extracellular deposits of amyloid-β (Aβ) and intracellular inclusions of hyperphosphorylated tau. Although genetic studies of familial Alzheimer's disease suggest a causal link between Aβ and disease symptoms, the failure of various Aβ-targeted strategies to slow or halt disease progression has led to consideration of the idea that inhibition of tau aggregation might be a more promising therapeutic approach. Methylene blue (MB), which inhibits tau aggregation and rescue memory deficits in a mouse model of tauopathy, however, lacked efficacy in a recent Phase III clinical trial. In order to gain insight into this failure, the present study was designed to examine the mechanism through which MB inhibits tau aggregation. We found that MB inhibits heparin-induced tau aggregation in vitro, as measured by thioflavin T fluorescence. Further, MB reduced the amount of tau in precipitants recovered after ultracentrifugation of the aggregation mixture. Atomic force microscopy revealed that MB reduces the number of tau fibrils but increases the number of granular tau oligomers. The latter result was confirmed by sucrose gradient centrifugation: MB treatment was associated with higher levels of granular tau oligomers (fraction 3) and lower levels of tau fibrils (fractions 5 and 6). We previously demonstrated that the formation of granular tau oligomers, rather than tau fibrils, is essential for neuronal death. Thus, the fact that MB actions are limited to inhibition of tau fibril formation provides a mechanistic explanation for the poor performance of MB in the recent Phase III clinical trial.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Department of Alzheimer's Disease, Faculty of Life Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Marino Saito
- Department of Alzheimer's Disease, Faculty of Life Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kohki Ishida
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Akira Nakamura
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Shuichi Kojima
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Akihiko Takashima
- Department of Alzheimer's Disease, Faculty of Life Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
29
|
Lekmine S, Boussekine S, Kadi K, Martín-García AI, Kheddouma A, Nagaz K, Bensouici C. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Kaur T, Madgulkar A, Bhalekar M, Asgaonkar K. Molecular Docking in Formulation and Development. Curr Drug Discov Technol 2020; 16:30-39. [PMID: 29468973 DOI: 10.2174/1570163815666180219112421] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND In pharmaceutical research drug discovery and development process is timeconsuming and expensive. In many cases, it produces incompetent results due to the failure of in vitro and in vivo conventional approaches. Before any new drug is placed in the market it must undergo rigorous testing to get FDA approval. Due to the several limitations imposed by the drug discovery process, in recent times in silico approaches are widely applied in this field. The purpose of this review is to highlight the current molecular docking strategies used in drug discovery and to explore various advances in the field. METHODS In this review we have compiled database after an extensive literature search on docking studies which has found its applications relevant to the field of formulation and development. The papers retrieved were further screened to appraise the quality of work. In depth strategic analysis was carried out to confirm the credibility of the findings. RESULTS The papers included in this review highlight the promising role of docking studies to overcome the challenges in formulation and development by emphasizing it's applications to predict drug excipient interactions which in turn assist to increase protein stability; to determine enzyme peptide interactions which maybe further used in drug development studies; to determine the most stable drug inclusion complex; to analyze structure at molecular level that ascertain an increase in solubility, dissolution and in turn the bioavailability of the drug; to design a dosage form that amplify the drug discovery and development process. CONCLUSION This review summarizes recent findings of critical role played by molecular docking in the process of drug discovery and development. The application of docking approach will assist to design a dosage form in the most cost effective and time saving manner.
Collapse
Affiliation(s)
- Tejinder Kaur
- AISSMS College of Pharmacy, Pune, Maharashtra 411001, India
| | | | | | | |
Collapse
|
31
|
Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256:117996. [PMID: 32585249 DOI: 10.1016/j.lfs.2020.117996] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and is identified as the most common cause for dementia. Despite huge global economic burden and the impact on the close family of the patients, there is no definitive cure and thus, improved treatment methods are of need. While memory and cognition are severely affected in AD, exact etiology is yet unknown. The β-Amyloid plaque formation and aggregation hypothesis is among the well-known hypotheses used to explain disease pathogenesis. Currently there are five Food and Drug Administration (FDA) approved drugs as treatment options. All these drugs are used for symptomatic treatment of AD. Thus, disease modifying therapies which can directly address the pathological changes in AD, are needed. Such therapies could be designed based on inhibiting key steps of pathogenesis. Currently there are novel AD drug candidates with various therapeutic mechanisms, undergoing different stages of drug development. Extensive research is being done globally to broaden understanding of the exact mechanisms involved in AD and to develop therapeutic agents that can successfully hinder the occurrence and progression of the disease. In this review, a comprehensive approach to understanding AD and suggestions to be considered in the development of therapeutics for it are presented.
Collapse
|
32
|
Spieler D, Namendorf C, Namendorf T, von Cube M, Uhr M. Donepezil, a cholinesterase inhibitor used in Alzheimer's disease therapy, is actively exported out of the brain by abcb1ab p-glycoproteins in mice. J Psychiatr Res 2020; 124:29-33. [PMID: 32114029 DOI: 10.1016/j.jpsychires.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 01/14/2023]
Abstract
Polymorphisms in the drug transporter gene ABCB1 predict the treatment response of selected antidepressants and limit anticonvulsive medication's effectiveness. The ABCB1 locus encodes the energy-dependent transporter P-glycoprotein (P-gp) of the blood brain barrier (BBB), which serves as an efflux pump of its substrates in the expressing tissues of vertebrates. One experimental setup to determine a posteriori the P-gp substrate status is the use of the double abcb1ab knock-out (KO) mice model. Since so far, P-gp substrate status of donepezil, a cholinesterase inhibitor wildly used in Alzheimer's disease therapy was inconclusive, we performed subcutanous (s.c.), continuous injections over 11 days in double abcb1ab KO and P-gp competent wildtype (WT) mice. Both in brain and in testis concentrations of donepezil were significantly higher in P-gp deficient mice compared to WT controls (2.39 and 2.24 times respectively). In conclusion, in mice donepezil's brain bioavailability depends on P-gp.
Collapse
Affiliation(s)
- Derek Spieler
- Department of Psychosomatic Medicine and Psychotherapy, Center for Mental Health, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Hauptstraße 8, 79104, Freiburg, Germany; Helmholtz Zentrum München, Institute of Epidemiology, Mental Health Research Unit, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Christian Namendorf
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
| | - Tamara Namendorf
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
| | - Maja von Cube
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Straße 26, 79104, Freiburg, Germany.
| | - Manfred Uhr
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
| |
Collapse
|
33
|
Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules 2020; 25:molecules25071609. [PMID: 32244635 PMCID: PMC7180484 DOI: 10.3390/molecules25071609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disorder characterized by exponential loss of memory and cognitive deficit involving several disease modifying targets (amyloid beta, beta-secretase, monoaminoxidase-B, and cholinesterase). The present study explores multi-target directed ligand approach using secondary metabolite reserpine (RES) and ajmalicine (AJM) obtained from Rauwolfia serpentina roots. Novel LCMS and HPLC methods were developed for identification and quantification of reserpine and ajmalicine. In vitro enzyme inhibition assays were performed to evaluate anti-cholinesterase, β-site amyloid cleaving enzyme (BACE-1) inhibition and monoamine oxidase-B (MAO-B) inhibition, further analyzed with in silico analysis. Anti-amyloidogenic potential was studied using anti-aggregation studies along with TEM and circular dichroism (CD) analysis. In vitro neuroprotective potential against Aβ toxicity and anti-oxidative stress was demonstrated using PC12 cell cultures. Reserpine is a more potent dual cholinesterase inhibitor than ajmalicine (IC50 values of 1.7 μM (AChE) and 2.8 μM (BuChE)). The anti-aggregation activity of reserpine (68%) was more than ajmalicine (56%). Both compounds demonstrated neuroprotective activity against Aβ42 (92%) and H2O2 (93%) induced toxicity in PC12 cells against controls. Phytocompounds also inhibited MAO-B and BACE-1 enzymes in concentration dependent manner. Molecular docking studies indicated the strong binding of compounds to the catalytic site of targets. This novel study demonstrated that reserpine and ajmalicine as a multi-target directed ligand that have disease modifying potential for amelioration of AD.
Collapse
|
34
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
35
|
Lalut J, Payan H, Davis A, Lecoutey C, Legay R, Sopkova-de Oliveira Santos J, Claeysen S, Dallemagne P, Rochais C. Rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT 4 receptors activities for the treatment of Alzheimer's disease. Sci Rep 2020; 10:3014. [PMID: 32080261 PMCID: PMC7033111 DOI: 10.1038/s41598-020-59805-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
A rigidification strategy was applied to the preclinical candidate donecopride, an acetylcholinesterase inhibitor possessing 5-HT4R agonist activity. Inspired by promising bioactive benzisoxazole compounds, we have conducted a pharmacomodulation study to generate a novel series of multitarget directed ligands. The chemical synthesis of the ligand was optimized and compounds were evaluated in vitro against each target and in cellulo. Structure-activity relationship was supported by docking analysis in human acetylcholinesterase binding site. Among the synthesized compounds, we have identified a novel hybrid 32a (3-[2-[1-(cyclohexylmethyl)-4-piperidyl]ethyl]-4-methoxy-1,2-benzoxazole) able to display nanomolar acetylcholinesterase inhibitory effects and nanomolar Ki for 5-HT4R.
Collapse
Affiliation(s)
- Julien Lalut
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Hugo Payan
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Audrey Davis
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Rémi Legay
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | | | | | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
36
|
Rochais C, Lecoutey C, Hamidouche K, Giannoni P, Gaven F, Cem E, Mignani S, Baranger K, Freret T, Bockaert J, Rivera S, Boulouard M, Dallemagne P, Claeysen S. Donecopride, a Swiss army knife with potential against Alzheimer's disease. Br J Pharmacol 2020; 177:1988-2005. [PMID: 31881553 DOI: 10.1111/bph.14964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We recently identified donecopride as a pleiotropic compound able to inhibit AChE and to activate 5-HT4 receptors. Here, we have assessed the potential therapeutic effects of donecopride in treating Alzheimer's disease (AD). EXPERIMENTAL APPROACH We used two in vivo animal models of AD, transgenic 5XFAD mice and mice exposed to soluble amyloid-β peptides and, in vitro, primary cultures of rat hippocampal neurons. Pro-cognitive and anti-amnesic effects were evaluated with novel object recognition, Y-maze, and Morris water maze tests. Amyloid load in mouse brain was measured ex vivo and effects of soluble amyloid-β peptides on neuronal survival and neurite formation determined in vitro. KEY RESULTS In vivo, chronic (3 months) administration of donecopride displayed potent anti-amnesic properties in the two mouse models of AD, preserving learning capacities, including working and long-term spatial memories. These behavioural effects were accompanied by decreased amyloid aggregation in the brain of 5XFAD mice and, in cultures of rat hippocampal neurons, reduced tau hyperphosphorylation. In vitro, donecopride increased survival in neuronal cultures exposed to soluble amyloid-β peptides, improved the neurite network and provided neurotrophic benefits, expressed as the formation of new synapses. CONCLUSIONS AND IMPLICATIONS Donecopride acts like a Swiss army knife, exhibiting a range of sustainable symptomatic therapeutic effects and potential disease-modifying effects in models of AD. Clinical trials with this promising drug candidate will soon be undertaken to confirm its therapeutic potential in humans.
Collapse
Affiliation(s)
- Christophe Rochais
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Katia Hamidouche
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrizia Giannoni
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,Equipe Chrome, EA7352, Université de Nîmes, Nîmes, France
| | - Florence Gaven
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,CRBM, CNRS UMR5237, Montpellier, France
| | - Eleazere Cem
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Mignani
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Thomas Freret
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Joël Bockaert
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Michel Boulouard
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrick Dallemagne
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | | |
Collapse
|
37
|
Gera J, Szögi T, Bozsó Z, Fülöp L, Barrera EE, Rodriguez AM, Méndez L, Delpiccolo CM, Mata EG, Cioffi F, Broersen K, Paragi G, Enriz RD. Searching for improved mimetic peptides inhibitors preventing conformational transition of amyloid-β42 monomer. Bioorg Chem 2018; 81:211-221. [DOI: 10.1016/j.bioorg.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023]
|
38
|
Hussein W, Sağlık BN, Levent S, Korkut B, Ilgın S, Özkay Y, Kaplancıklı ZA. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer's Disease. Molecules 2018; 23:molecules23082033. [PMID: 30110946 PMCID: PMC6222329 DOI: 10.3390/molecules23082033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder mostly influencing the elderly, and causes death due to dementia. The main pathogenic feature connected with the progression of this multifactorial disease is the weakening of the cholinergic system in the brain. Cholinesterase (ChE) inhibitors are recognized as one of the choices in the treatment of AD. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were approved as a therapeutic strategy to reduce the symptoms of AD and prevent its progression. The capacity of BChE is not completely known yet; rather, it is accepted to assume a part in a few disorders such as AD. Thus, BChE inhibitors may have a greater role for the treatment of AD in the future. In the present study, 2-(9-acridinylamino)-2-oxoethyl piperazine/piperidine/morpholinecarbodithioate derivatives were synthesized in order to investigate anticholinesterase activity. Eight derivatives demonstrated a specific and promising action against BChE. Furthermore, compound 4n showed inhibitory activity against both enzymes. It was found that the active compounds were well tolerated in the cytotoxicity test. Possible interactions between the lead compound, 4n, and the BChE enzyme were determined through a docking study. The findings obtained within this paper will contribute to the development of new and effective synthetic anti-Alzheimer compounds, and will ideally encourage future screening against AD.
Collapse
Affiliation(s)
- Weiam Hussein
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aden University, 6075 Aden, Yemen.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Büşra Korkut
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
39
|
Shiri F, Pirhadi S, Ghasemi JB. Dynamic structure based pharmacophore modeling of the Acetylcholinesterase reveals several potential inhibitors. J Biomol Struct Dyn 2018; 37:1800-1812. [PMID: 29695192 DOI: 10.1080/07391102.2018.1468281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase is a critical enzyme that regulates neurotransmission by catalyzing the breakdown of neurotransmitter acetylcholine in synapses of the nervous system. It is an important target for therapeutic drugs that treat Alzheimer's disease. Since, the degree of flexibility of the side chains of the residues in the active-site gorge of Acetylcholinesterase is diverse it results in different bound ligand conformations. The side-chain conformations of Ser293, Tyr341, Leu76, and Val73 are flexible, while the side-chain conformations of Tyr72, Tyr 124, Ser125, Phe295, and Arg296 appear to be fixed. In this study, multi-conformation dynamic pharmacophore models from the donepezyl-binding pocket based on highly populated structures chosen from molecular dynamics simulations were used for screening compounds that can properly bind acetylcholinesterase. Based on these structures, three pharmacophore models were generated. Consequently, 14 hits were retrieved as final candidates by utilizing virtual screening of ZINC database and molecular docking.
Collapse
Affiliation(s)
- Fereshteh Shiri
- a Department of Chemistry , University of Zabol , Zabol , Iran
| | - Somayeh Pirhadi
- b Medicinal and Natural Products Chemistry Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Jahan B Ghasemi
- c School of Chemistry , University College of Science, University of Tehran , Tehran , Iran
| |
Collapse
|
40
|
Penumala M, Zinka RB, Shaik JB, Mallepalli SKR, Vadde R, Amooru DG. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer's Disease and Diabetes Mellitus dual therapy. Altern Ther Health Med 2018; 18:77. [PMID: 29499679 PMCID: PMC5834903 DOI: 10.1186/s12906-018-2140-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023]
Abstract
Background Extensive epidemiological and clinical studies revealed that Alzheimer’s Disease (AD) and Type 2 Diabetes Mellitus (T2D) are most likely to appear simultaneously in aged people as T2D is a major risk factor for AD. Therefore, development of potential multifunctional agents for dual therapy of AD and T2D has received much attention. Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis have been used extensively in popular medicine. The present study was aimed at phytochemical profiling and evaluating multifunctional ability of titled plants in the AD and T2D dual therapy. Methods Methanolic extracts and their derived fractions were evaluated for their inhibitory capacities against acetylcholinesterase (AChE) & butyrylcholinesterase (BuChE), and α– & β–glucosidase besides kinetic analysis of inhibition using methods of Elmann and Shibano, respectively. Antioxidant potency of active fractions was assessed by their DPPH and ABTS radical scavenging activities. Active fractions were tested by the MTT assay to verify cytotoxicity and neuroprotective ability in human nueroblastoma cell lines. Phytochemical screening was done with the aid of spectrophotometric methods. Results All the methanolic extracts of test plants (BAM, HIM, RMM) showed concentration dependent inhibitory activities against AChE, BuChE, α– and β–glucosidase enzymes. Subsequent fractionation and evaluation revealed that chloroform fractions BAC, HIC and RMC with IC50 values of 12.29±2.14, 9.94±2.14, 16.65±1.99 and 27.38±1.24; 28.14±0.9, 5.16±0.22, 11.03±0.5 and 87.64±15.41; 41.35±1.6, 15.86±7.3, 26.04±0.37 and 25.33±0.3 were most prominent with regard to inhibition potential against AChE, BuChE, α– and β–glucosidase, respectively. Kinetic analysis of these active fractions proved that they disclosed mixed-type inhibition against AChE, BuChE, α– and β–glucosidase enzymes. In the MTT assay, active fractions BAC, HIC, RMC showed significant cell viability at high concentrations (400 μg). Moreover, in MTT assay, the active fractions displayed excellent neuroprotective effects against oxidative stress induced cell death and significant cell viability in SK N SH cells at all concentrations. Conclusion The strong anticholinesterase, antiglucosidase, antioxidant and neuroprotective activities of methanolic extracts and their derived chloroform fractions indicate the potential of Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis as multifunctional therapeutic remedies for the dual therapy of T2D and AD. Electronic supplementary material The online version of this article (10.1186/s12906-018-2140-x) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Al-Badri G, Leggio GM, Musumeci G, Marzagalli R, Drago F, Castorina A. Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regen Res 2018; 13:26-34. [PMID: 29451201 PMCID: PMC5840985 DOI: 10.4103/1673-5374.224365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a serine protease best known for its role in inactivating glucagon-like peptide-1 (GLP-1), pituitary adenylate cyclase-activating polypeptide (PACAP) and glucose-dependent insulinotropic peptide (GIP), three stimulators of pancreatic insulin secretion with beneficial effects on glucose disposal. Owing to the relationship between DPP-IV and these peptides, inhibition of DPP-IV enzyme activity is considered as an attractive treatment option for diabetic patients. Nonetheless, increasing studies support the idea that DPP-IV might also be involved in the development of neurological disorders with a neuroinflammatory component, potentially through its non-incretin activities on immune cells. In this review article, we aim at highlighting recent literature describing the therapeutic value of DPP-IV inhibitors for the treatment of such neurological conditions. Finally, we will illustrate some of the promising results obtained using berberine, a plant extract with potent inhibitory activity on DPP-IV.
Collapse
Affiliation(s)
- Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
43
|
Brunner D, Flunkert S, Neddens J, Duller S, Scopes D, Treherne J, Hutter-Paier B. SEN1500, a novel oral amyloid-β aggregation inhibitor, attenuates brain pathology in a mouse model of Alzheimer’s disease. Neurosci Lett 2017; 660:96-102. [DOI: 10.1016/j.neulet.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
|
44
|
In Vitro Screening of Three Indian Medicinal Plants for Their Phytochemicals, Anticholinesterase, Antiglucosidase, Antioxidant, and Neuroprotective Effects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5140506. [PMID: 29204442 PMCID: PMC5674485 DOI: 10.1155/2017/5140506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl3, n-BuOH, and H2O fractions of Acalypha alnifolia, Pavetta indica, and Ochna obtusata for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and α-glucosidase (α-Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC50 values being found at the μg/mL level. Further studies on most active chloroform fractions presented a prominent ability to scavenge DPPH and ABTS reactive species and highest neuroprotective effect against H2O2 induced cell injury. Phytochemical analysis showed a large amount of phenolics, flavonoids, and terpenoids in active fractions. In conclusion, A. alnifolia, P. indica, and O. obtusata could be promising sources for the treatment of AD and DM since these fractions induced significant anticholinesterase, antidiabetic, antioxidant, and neuroprotection effects attributable to phenolic, flavonoid, and terpenoid contents and encourage further studies for development of multifunctional therapeutic agent for AD and DM dual therapy.
Collapse
|
45
|
Kikis EA. Nature Versus Nurture: Does Proteostasis Imbalance Underlie the Genetic, Environmental, and Age-Related Risk Factors for Alzheimer's Disease? Healthcare (Basel) 2017; 5:healthcare5030046. [PMID: 28829364 PMCID: PMC5618174 DOI: 10.3390/healthcare5030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023] Open
Abstract
Aging is a risk factor for a number of “age-related diseases”, including Alzheimer’s disease (AD). AD affects more than a third of all people over the age of 85, and is the leading cause of dementia worldwide. Symptoms include forgetfulness, memory loss, and cognitive decline, ultimately resulting in the need for full-time care. While there is no cure for AD, pharmacological approaches to alleviate symptoms and target underlying causes of the disease have been developed, albeit with limited success. This review presents the age-related, genetic, and environmental risk factors for AD and proposes a hypothesis for the mechanistic link between genetics and the environment. In short, much is known about the genetics of early-onset familial AD (EO-FAD) and the central role played by the Aβ peptide and protein misfolding, but late-onset AD (LOAD) is not thought to have direct genetic causes. Nonetheless, genetic risk factors such as isoforms of the protein ApoE have been identified. Additional findings suggest that air pollution caused by the combustion of fossil fuels may be an important environmental risk factor for AD. A hypothesis suggesting that poor air quality might act by disrupting protein folding homeostasis (proteostasis) is presented.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, Sewanee, TN 37383, USA.
| |
Collapse
|
46
|
Jourdan JP, Since M, El Kihel L, Lecoutey C, Corvaisier S, Legay R, Sopková-de Oliveira Santos J, Cresteil T, Malzert-Fréon A, Rochais C, Dallemagne P. Benzylphenylpyrrolizinones with Anti-amyloid and Radical Scavenging Effects, Potentially Useful in Alzheimer's Disease Treatment. ChemMedChem 2017; 12:913-916. [PMID: 28342294 DOI: 10.1002/cmdc.201700102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Indexed: 01/14/2023]
Abstract
Herein we describe the drug design steps developed to increase the radical scavenging and β-amyloid aggregation inhibitory activities of a previously described series of benzylidenephenylpyrrolizinones. Among the newly synthesized derivatives, some benzylphenylpyrrolizinones exhibited interesting results in regard to those activities. Initial druggability parameters were measured, and suggest these compounds as a suitable starting point for potential alternatives in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Jean-Pierre Jourdan
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Marc Since
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Laïla El Kihel
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Cédric Lecoutey
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Sophie Corvaisier
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Rémi Legay
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | | | | | - Aurélie Malzert-Fréon
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Christophe Rochais
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Patrick Dallemagne
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| |
Collapse
|
47
|
Brown AM, Bevan DR. Influence of sequence and lipid type on membrane perturbation by human and rat amyloid β-peptide (1–42). Arch Biochem Biophys 2017; 614:1-13. [DOI: 10.1016/j.abb.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/20/2022]
|
48
|
Imaging hydrogen peroxide in Alzheimer's disease via cascade signal amplification. Sci Rep 2016; 6:35613. [PMID: 27762326 PMCID: PMC5071891 DOI: 10.1038/srep35613] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
In brains of Alzheimer’s disease (AD), reactive oxygen species (ROS) levels are significantly higher than that of healthy brains. Evidence suggests that, during AD onset and progression, a vicious cycle revolves around amyloid beta (Aβ) production, aggregation, plaque formation, microglia/immunological responses, inflammation, and ROS production. In this cycle, ROS species play a central role, and H2O2 is one of the most important ROS species. In this report, we have designed a fluorescent imaging probe CRANAD-88, which is capable of cascade amplifying near infrared fluorescence (NIRF) signals at three levels upon interacting with H2O2 in AD brains. We demonstrated that the amplification was feasible in vitro and in vivo. Remarkably, we showed that, for the first time, it was feasible to monitor the changes of H2O2 concentrations in AD brains before and after treatment with an H2O2 scavenger. Our method opens new revenues to investigate H2O2 in AD brains and can be very instructive for drug development.
Collapse
|
49
|
Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 2016; 54:6697-6722. [PMID: 27744571 DOI: 10.1007/s12035-016-0184-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.
Collapse
|
50
|
Rizvi SMD, Shaikh S, Naaz D, Shakil S, Ahmad A, Haneef M, Abuzenadah AM. Kinetics and Molecular Docking Study of an Anti-diabetic Drug Glimepiride as Acetylcholinesterase Inhibitor: Implication for Alzheimer's Disease-Diabetes Dual Therapy. Neurochem Res 2016; 41:1475-82. [PMID: 26886763 DOI: 10.1007/s11064-016-1859-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
At the present time, treatment of two most common degenerative disorders of elderly population i.e., Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) is a major concern worldwide. As there are several evidences that proved strong linkages between these two disorders, the idea of using dual therapeutic agent for both the diseases might be considered as a good initiative. Earlier reports have revealed that oral anti-diabetic drugs such as peroxisome proliferator activated receptor γ (PPARγ) agonists (thiazolidinediones) when used in T2DM patients suffering from AD showed improved memory and cognition. However, the underlying mechanism still needs to be deciphered. Therefore, the present study was carried out to find whether glimepiride, an oral antidiabetic drug which is a PPARγ agonist could inhibit the activity of acetylcholine esterase (AChE) enzyme. Actually, AChE inhibitors seize the breakdown of acetylcholine which forms the main therapeutic strategy for AD. Here, glimepiride showed dose dependent inhibitory activity against AChE enzyme with IC50 value of 235 μM. Kinetic analysis showed competitive inhibition, which was verified by in silico docking studies. Glimepiride was found to interact with AChE enzyme at the same locus as that of substrate acetylcholine iodide (AChI). Interestingly, amino acid residues, Q71, Y72, V73, D74, W86, N87, Y124, S125, W286, F295, F297, Y337, F338 and Y341 of AChE were found to be common for 'glimepiride-AChE interaction' as well as 'AChI-AChE interaction'. Thus the present computational and kinetics study concludes that glimepiride and other thiazolidinediones derivatives could form the basis of future dual therapy against diabetes associated neurological disorders.
Collapse
Affiliation(s)
| | | | - Deeba Naaz
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Shazi Shakil
- KACST Technology Innovation Center for Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| | - Adnan Ahmad
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Mohd Haneef
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Adel M Abuzenadah
- KACST Technology Innovation Center for Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| |
Collapse
|