1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Batsuuri K, Toychiev AH, Viswanathan S, Wohl SG, Srinivas M. Targeting Connexin 43 in Retinal Astrocytes Promotes Neuronal Survival in Glaucomatous Injury. Glia 2025; 73:1398-1419. [PMID: 40156150 PMCID: PMC12121474 DOI: 10.1002/glia.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Astrocytes in the retina and optic nerve head play an important role in the pathogenesis of glaucoma. Astrocytes extensively express connexin 43 (Cx43), a protein that forms gap junction (GJ) channels and transmembrane unopposed hemichannels. While it is well documented that Cx43 expression is augmented in retinal injuries, the role of astrocytic Cx43 channels in glaucomatous injury is not fully understood. Here, we used a mouse model of ocular hypertension caused by intracameral microbead injections and a more severe model, optic nerve crush (ONC) injury, and assessed changes in Cx43 expression and GJ channel function. The effect of astrocyte-specific deletion of Cx43 (Cx43KO) on retinal ganglion cell (RGC) loss and visual function was also assessed. We show that the Cx43 expression is increased in retinal astrocytes at early time points and remained elevated even after sustained elevation of intraocular pressure (IOP) (~8 weeks), which paralleled an increase in astrocytic GJ coupling. Deletion of astrocytic Cx43 markedly improved the survival of RGCs by ~93% and preserved visual function as assessed by ERG and reduced numbers of activated microglial/macrophages in the glaucomatous retina. Cx43 expression was also substantially increased after ONC injury, and the absence of Cx43 in this model increased RGC survival by ~48%. These results reveal a deleterious role for Cx43 in glaucoma progression. Intravitreal injections of Gap19, a peptide that reportedly inhibits Cx43 hemichannels but not GJ channels, markedly increased RGC survival and visual function. Further studies are required to assess whether targeting Cx43 hemichannels might be useful for glaucoma treatment.
Collapse
Affiliation(s)
- Khulan Batsuuri
- Department of Biological and Vision SciencesSUNY College of OptometryNew YorkNew YorkUSA
| | - Abduqodir H. Toychiev
- Department of Biological and Vision SciencesSUNY College of OptometryNew YorkNew YorkUSA
| | | | - Stefanie G. Wohl
- Department of Biological and Vision SciencesSUNY College of OptometryNew YorkNew YorkUSA
| | - Miduturu Srinivas
- Department of Biological and Vision SciencesSUNY College of OptometryNew YorkNew YorkUSA
| |
Collapse
|
3
|
Augustin E, Vinasco‐Sandoval T, Riquelme‐Perez M, Plassard D, Gaudin M, Aurégan G, Mitja J, Bernier S, Joséphine C, Petit F, Jan C, Hérard A, Gaillard M, Launay A, Faivre E, Buée L, Boutillier A, Blum D, Bemelmans A, Bonvento G, Cambon K. Hippocampal Astrocyte Morphology Follows an Unexpected Trajectory With Age in a Transgenic Rodent Model of Tauopathy. Glia 2025; 73:1502-1519. [PMID: 40119587 PMCID: PMC12121468 DOI: 10.1002/glia.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/24/2025]
Abstract
Individual protoplasmic astrocytes have very complex and diverse spongiform shapes. The morphological diversity of astrocytes is determined by the structural and functional interactions of the astrocyte with its microenvironment. When faced with pathological conditions, astrocytes reorganize their morphology. Yet, little is known about the astrocytic response in pure tauopathies and its evolution over time. Here, we aimed to investigate the consequences of a primary neuronal tau pathology on astrocyte fine morphology at three stages of the disease using the transgenic Thy-Tau22 mouse model. We first showed that hippocampal astrocytes in Thy-Tau22 mice progressively accumulate hyperphosphorylated tau with age. We then developed a pipeline of analyses, including 3D reconstruction of hippocampal tdTomato-labeled astrocytes via a PHP.eB adeno-associated virus, confocal microscopy, Imaris software morphometric analysis, and an advanced statistical analysis. During normal aging, the complexity of astrocyte morphology peaked at adulthood, then declined. In contrast, in Thy-Tau22 mice, tauopathy was associated with a simpler initial morphology, followed by the appearance of a cluster of complex cells at the most advanced stage. Using principal component analysis and hierarchical clustering based on 10 morphological features, we were able to identify different astrocyte morphotypes whose relative proportion varies differently with age between WT and Thy-Tau22 mice. Interestingly, we revealed that a fraction of astrocytes with a complex morphology re-emerges late in tauopathy-affected animals. Our data highlight the concept of significant and reversible structural plasticity of astrocytes when faced with chronic pathological conditions.
Collapse
Affiliation(s)
- Emma Augustin
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Tatiana Vinasco‐Sandoval
- CEA, CNRS, DRF, IBFJ, IRCMLaboratoire de Génomique et Radiobiologie de la KératinopoeièseEvryFrance
| | - Miriam Riquelme‐Perez
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Damien Plassard
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U1258Université de StrasbourgIllkirchFrance
| | - Mylène Gaudin
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Gwenaëlle Aurégan
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Julien Mitja
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Sueva Bernier
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Charlène Joséphine
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Fanny Petit
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Caroline Jan
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
- Université Paris‐SaclayCNRS, Institut Des Neurosciences Paris‐SaclaySaclayFrance
| | - Anne‐Sophie Hérard
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Marie‐Claude Gaillard
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Agathe Launay
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Emilie Faivre
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Luc Buée
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Anne‐Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)Université de StrasbourgStrasbourgFrance
- UMR 7364Centre National de la Recherche Scientifique (CNRS)StrasbourgFrance
| | - David Blum
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Alexis‐Pierre Bemelmans
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Gilles Bonvento
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
- Université Paris‐SaclayCNRS, Institut Des Neurosciences Paris‐SaclaySaclayFrance
| | - Karine Cambon
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| |
Collapse
|
4
|
Wei X, Li J, Olsen ML. Temporal Profiling of Male Cortical Astrocyte Transcription Predicts Molecular Shifts From Early Development to Aging. Glia 2025; 73:1349-1364. [PMID: 40079175 PMCID: PMC12121471 DOI: 10.1002/glia.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Astrocytes are born during the early postnatal period in the rodent brain and mature alongside neurons, demonstrating remarkable morphological structural complexity, which is attained in the second postnatal month. Throughout this period of development and across the remainder of the lifespan, astrocytes participate in CNS homeostasis, support neuronal partners, and contribute to nearly all aspects of CNS function. In the present study, we analyzed astrocyte gene expression in the cortex of wild-type male rodents throughout their lifespan (postnatal 7 days to 18 months). A pairwise timepoint comparison of differential gene expression during early development and CNS maturation (7-60 days) revealed four unique astrocyte gene clusters, each with hundreds of genes, which demonstrate unique temporal profiles. These clusters are distinctively related to cell division, cell morphology, cellular communication, and vascular structure and regulation. A similar analysis across adulthood and in the aging brain (3 to 18 months) identified similar patterns of grouped gene expression related to cell metabolism and cell structure. Additionally, our analysis identified that during the aging process astrocytes demonstrate a bias toward shorter transcripts, with loss of longer genes related to synapse development and a significant increase in shorter transcripts related to immune regulation and the response to DNA damage. Our study highlights the critical role that astrocytes play in maintaining CNS function throughout life and reveals molecular shifts that occur during development and aging in the cortex of male mice.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate ProgramVirginia TechBlacksburgVirginiaUSA
- School of NeuroscienceVirginia TechBlacksburgVirginiaUSA
| | - Jiangtao Li
- School of NeuroscienceVirginia TechBlacksburgVirginiaUSA
- Genetics, Bioinformatics and Computational Biology Graduate ProgramVirginia TechBlacksburgVirginiaUSA
| | | |
Collapse
|
5
|
Martins YA, Cardinali CAEF, Torrão AS. Age-related differences in long-term memory performance and astrocyte morphology in rat hippocampus. Neurobiol Aging 2025; 150:19-43. [PMID: 40043468 DOI: 10.1016/j.neurobiolaging.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.
Collapse
Affiliation(s)
- Yandara A Martins
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| | | | - Andréa S Torrão
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Popek M, Obara-Michlewska M, Szewczyk ŁM, Kołodziej M, Perlejewski K, Verkhratsky A, Albrecht J, Zielińska M. Oedematic-atrophic astrocytes in hepatic encephalopathy. Acta Neuropathol Commun 2025; 13:122. [PMID: 40450333 DOI: 10.1186/s40478-025-02045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025] Open
Abstract
Hepatic encephalopathy (HE) following acute liver failure (ALF) is considered as a primary toxic astrocytopathy, but in-depth characterisation of astrocytic contribution to the pathogenesis of this disease is far from complete. Using transmission electron microscopy, confocal fluorescent microscopy, and 3D reconstruction, we found complex morphological alterations of cortical astrocytes in mice with azoxymethane-induced ALF and post-mortem cortical tissue of patients at grade IV of HE. In both mice and post-mortem human tissues astrocytic primary branches demonstrated the territory occupied by astrocytes was increased, confirming astrocytic oedema. Astrocytic primary branches demonstrated swelling, while terminal leaflets showed atrophy quantified by the reduced area occupied by astrocytes, decreased number and the length of leaflets, decreased leaflets volume fraction, and altered astrocyte-to-neurone landscape. In mice these morphological changes develop in parallel with decreased expression of proteins critical for astrocytic modelling and function: the water channel aquaporin 4 (AQP4), the phosphorylated leaflet-associated ezrin, and the actin dynamics regulator, profilin 1 (PFN1). Pathological changes in astrocytes develop in parallel, and are likely causally linked to, the HE-linked neurological decline, manifested by a reduction in EEG power and by excessive glutamate in the brain microdialysates. We propose that HE evokes disease-specific remodelling of astrocytes to a "mixed", oedematic/atrophic phenotype. Concurrence of HE-specific phenotype with alterations in the expression of astrocytic proteins are a likely cause of aberrant astrocyte synaptic support resulting in severe, often fatal brain malfunction in HE.
Collapse
Grants
- SONATA 19 (No 2023/51/D/NZ5/02035 National Science Centre in Poland
- No 13 Statutory funds from Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- No 13 Statutory funds from Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- No 13 Statutory funds from Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- No 13 Statutory funds from Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- MINIATURA 3 (No 2019/03/X/NZ4/00623 Narodowe Centrum Nauki
- PID2022-143020OB-I00 Spanish MICINN
- IT1551-22 Basque Government
Collapse
Affiliation(s)
- Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, Warsaw, 02-106, Poland
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, Warsaw, 02-106, Poland
| | - Łukasz Mateusz Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, The University of Warsaw, Banacha St. 2c, Warsaw, 02-097, Poland
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Koszykowa St. 75, Warsaw, 00-662, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego St. 3C, Warsaw, 02-106, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country UPV/EHU, IKERBASQUE, Basque Foundation for Science, Leioa, Bilbao, 48940, Spain
- Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, LT-01102, Lithuania
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, Warsaw, 02-106, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, Warsaw, 02-106, Poland.
| |
Collapse
|
7
|
Shen T, Tai W, Jiang D, Ma S, Zhong X, Zou Y, Zhang CL. GADD45G operates as a pathological sensor orchestrating reactive gliosis and neurodegeneration. Neuron 2025:S0896-6273(25)00345-9. [PMID: 40409253 DOI: 10.1016/j.neuron.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Reactive gliosis is a hallmark of neuropathology and offers a potential target for addressing numerous neurological diseases. Here, we show that growth arrest and DNA damage inducible gamma (GADD45G), a stress sensor in astrocytes, is a nodal orchestrator of reactive gliosis and neurodegeneration. GADD45G expression in astrocytes is sufficient to incite astrogliosis, microgliosis, synapse loss, compromised animal behavior, and the aggravation of Alzheimer's disease (AD). Conversely, silencing GADD45G specifically in astrocytes preserves synapses and rescues the histological and behavioral phenotypes of AD. Mechanistically, GADD45G controls the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) and neuroimmune signaling pathways, including nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to profound molecular changes and the secretion of various factors that regulate both cell-autonomous and cell-nonautonomous reactive gliosis and glia-neuron interactions. These results uncover GADD45G signaling as a promising therapeutic target for AD and potentially for numerous other neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongfang Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
9
|
Sarti G, Traini C, Magni G, Attorre S, Tognozzi G, Calussi E, Giovannini MG, Vannucchi MG, Lana D. Chronic administration of prebiotics and probiotics prevent pathophysiological hallmarks of Alzheimer's disease in the cortex of APP/PS1 mice. Front Pharmacol 2025; 16:1596469. [PMID: 40444050 PMCID: PMC12119559 DOI: 10.3389/fphar.2025.1596469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Dysbiosis is a characteristic of patients with Alzheimer's disease (AD). The disbalance between Gram-negative and Gram-positive bacteria causes increased production of beta-amyloid (Aβ) in the gut, which can contribute to brain accumulation of Aβ. Recovering microbiota composition with symbiotic administration of prebiotics and probiotics may be a strategy to prevent or reduce AD symptomathology. The aim of this research was to study whether chronic administration of pre- and probiotics modifies the histopathological signs of neurodegeneration in the cortex of APP/PS1 mice, a transgenic mouse model of AD. We focused on neuritic plaques deposition, neuronal degeneration and glia activation. Methods Transgenic (TG) mice and Wild type (WT) littermates were fed daily with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). The treatment started at 2 months of age and lasted for 6 months. Controls were WT and TG mice fed with a standard diet. All groups were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging. Cortical sections were immunostained for neuritic plaques, neurons, astrocytes, microglia, and inflammatory proteins. Qualitative and quantitative analyses were carried out by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results Quantitative analyses in TG mice demonstrated intense Aβ load and accumulation of neurofilament heavy polypeptide (NHP) in neuritic plaques, neuronal degeneration, shrinkage of the cortex, increase of GFAP expression, and microglia and astrocytes activation. All these effects were mainly evident in cortical Layer 5. The symbiotic treatment with pre- and probiotics decreased Aβ deposition and neuritic plaques in the frontoparietal cortex. In addition, the treatment decreased the degeneration of neurons, the cortical shrinkage, increased GFAP expression, and modified microglia phenomic, decreasing significantly microglia activation. The abovementioned effects of the treatment were mostly evident in cortical Layer 5. Discussion These data confirm that prolonged dietary regimen enriched with pre- and probiotics counteracts many of the histopathological hallmarks of AD, and poses the bases for a simple, affordable treatment that may help prevent AD.
Collapse
Affiliation(s)
- Giorgia Sarti
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr-Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giorgio Tognozzi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Edoardo Calussi
- Section of Pathological Anatomy, Careggi University Hospital, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Raghunathan K, Eroglu C. Developmental roles of astrocytes in circuit wiring. Curr Opin Neurobiol 2025; 92:103042. [PMID: 40367704 DOI: 10.1016/j.conb.2025.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Astrocytes, the perisynaptic glial cells of the brain, play fundamental roles in sculpting synaptic circuits and instructing their remodeling and maturation during development. Astrocytes do so through a plethora of cell adhesion and secretory signaling to neurons. This rich communication between astrocytes and neurons is critical for balancing inhibitory and excitatory synaptic connectivity. Additionally, astrocytes refine neural circuits via synaptic engulfment and elimination. Here, we will review recent findings highlighting the diversity and significance of astrocyte-to-neuron communication during developmental circuit wiring. Moreover, we will point out emerging mechanisms of how neurons instruct astrocytes' maturation and synaptic functions to spotlight the essential bidirectional communication between these two cell types in shaping synaptic circuits during neurodevelopment.
Collapse
Affiliation(s)
- Kavya Raghunathan
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Zhang H, Zhang X, Chai Y, Wang Y, Zhang J, Chen X. Astrocyte-mediated inflammatory responses in traumatic brain injury: mechanisms and potential interventions. Front Immunol 2025; 16:1584577. [PMID: 40406119 PMCID: PMC12094960 DOI: 10.3389/fimmu.2025.1584577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Astrocytes play a pivotal role in the inflammatory response triggered by traumatic brain injury (TBI). They are not only involved in the initial inflammatory response following injury but also significantly contribute to Astrocyte activation and inflammasome release are key processes in the pathophysiology of TBI, significantly affecting the progression of secondary injury and long-term outcomes. This comprehensive review explores the complex triggering mechanisms of astrocyte activation following TBI, the intricate pathways controlling the release of inflammasomes from activated astrocytes, and the subsequent neuroinflammatory cascade and its multifaceted roles after injury. The exploration of these processes not only deepens our understanding of the neuroinflammatory cascade but also highlights the potential of astrocytes as critical therapeutic targets for TBI interventions. We then evaluate cutting-edge research aimed at targeted therapeutic approaches to modulate pro-inflammatory astrocytes and discuss emerging pharmacological interventions and their efficacy in preclinical models. Given that there has yet to be a relevant review elucidating the specific intracellular mechanisms targeting astrocyte release of inflammatory substances, this review aims to provide a nuanced understanding of astrocyte-mediated neuroinflammation in TBI and elucidate promising avenues for therapeutic interventions that could fundamentally change TBI management and improve patient outcomes. The development of secondary brain injury and long-term neurological sequelae. By releasing a variety of cytokines and chemokines, astrocytes regulate neuroinflammation, thereby influencing the survival and function of surrounding cells. In recent years, researchers have concentrated their efforts on elucidating the signaling crosstalk between astrocytes and other cells under various conditions, while exploring potential therapeutic interventions targeting these cells. This paper highlights the specific mechanisms by which astrocytes produce inflammatory mediators during the acute phase post-TBI, including their roles in inflammatory signaling, blood-brain barrier integrity, and neuronal protection. Additionally, we discuss current preclinical and clinical intervention strategies targeting astrocytes and their potential to mitigate neurological damage and enhance recovery following TBI. Finally, we explore the feasibility of pharmacologically assessing astrocyte activity post-TBI as a biomarker for predicting acute-phase neuroinflammatory changes.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yuhua Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
12
|
Ferreira GAM, Pinto LAM. Neural Stem Cell-Derived Astrogliogenesis: The Hidden Player of the Adult Hippocampal Cytogenic Niche. Glia 2025. [PMID: 40326621 DOI: 10.1002/glia.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The adult mammalian brain exhibits remarkable forms of neural plasticity, enabling it to adapt and reorganize in response to internal and external stimuli. These plastic mechanisms include cytogenesis, the capacity of producing new neuronal and glial cells in restricted brain regions through processes known as neuro- and gliogenesis, respectively. Although many advances have been made in understanding adult brain plastic processes associated with cell genesis, as well as its functional and behavioral implications, most of the evidence is focused on neuronal cells. Even though astrocytes play a critical role in maintaining a neurochemical and electrophysiological homeostasis in the brain and provide a pivotal support to neuronal activity, the molecular mechanisms underlying the formation and functional integration of newly formed astroglial cells are poorly understood. However, some studies have provided key insights into the molecular mechanisms driving the generation of adult neural stem cell (NSC)-derived astrocytes, focusing on the dentate gyrus of the hippocampal cytogenic niche. Recent work has demonstrated that intrinsic and extrinsic factors can modulate astrogliogenesis. In the context of neuropathogenesis, this mechanism may be compromised in the hippocampus, contributing to functional and behavioral impairments. Here, we review the mechanisms underlying NSC-derived hippocampal astrogliogenesis, examining current perspectives on how adult-born astrocytes develop in the adult brain, their functional relevance, and the intricate regulation of the astrogliogenic process.
Collapse
Affiliation(s)
- Gonçalo Alexandre Martins Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Alexandra Meireles Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Bn'ML-Behavioral and Molecular Lab, Braga, Portugal
| |
Collapse
|
13
|
Gonzalez L, Bezzi P. Astrocyte Dysfunctions in Obsessive Compulsive Disorder: Rethinking Neurobiology and Therapeutic Targets. J Neurochem 2025; 169:e70092. [PMID: 40400176 PMCID: PMC12095986 DOI: 10.1111/jnc.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes-once relegated to passive support roles-at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment.
Collapse
Affiliation(s)
- Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF)University of Lausanne (UNIL)LausanneSwitzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF)University of Lausanne (UNIL)LausanneSwitzerland
- Department of Physiology and PharmacologyUniversity of Rome SapienzaRomeItaly
| |
Collapse
|
14
|
Chen D, Yang YY, Yang Y. Astrocyte Loss Augments Body Weight Through Reduction in Adipose Sympathetic Outflows. Glia 2025; 73:1068-1076. [PMID: 39780483 PMCID: PMC11922664 DOI: 10.1002/glia.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Emerging evidence indicates that astrocytes modulate energy metabolism and homeostasis. However, one important but poorly understood element is the necessity of astrocytes in the control of body weight. Here, we apply viral vector-assisted brain-region selective loss of astrocytes to define physiological roles played by astrocytes in the arcuate nucleus of the hypothalamus (ARH) and to elucidate the involved mechanism. We find that astrocyte loss potently augments body weight in adult mice fed chow or high-fat diet. Mechanistically, we find that the loss of astrocytes reduces adipose tissue norepinephrine (NE) contents and chemogenetic stimulation of adipose tissue sympathetic inputs reverses the astrocyte loss-induced increase in body weight. Collectively, our findings in this study suggest a crucial physiological role of astrocytes in preventing diet-induced energy surfeit and obesity by modulating adipose tissue lipid metabolism through central sympathetic outflows to adipose tissues.
Collapse
Affiliation(s)
- Dan Chen
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Li Z, Su T, Yang Y, Zhao H. Construction of Multicellular Neural Tissue Using Three-Dimensional Printing Technology: Cell Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40256794 DOI: 10.1089/ten.teb.2024.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The study of the human nervous system remains challenging due to its inherent complexity and difficulty in obtaining original samples. Three-dimensional (3D) bioprinting is a rapidly evolving technology in the field of tissue engineering that has made significant contributions to several disciplines, including neuroscience. In order to more accurately reflect the intricate multicellular milieu of the in vivo environment, an increasing number of studies have commenced experimentation with the coprinting of diverse cell types. This article provides an overview of technical details and the application of 3D bioprinting with multiple cell types in the field of neuroscience, focusing on the challenges of coprinting and the research conducted based on multicellular printing. This review discusses cell interactions in coprinting systems, stem cell applications, the construction of brain-like organoids, the establishment of disease models, and the potential for integrating 3D bioprinting with other 3D culture techniques.
Collapse
Affiliation(s)
- Zhixiang Li
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Tong Su
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Yujie Yang
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Huan Zhao
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| |
Collapse
|
16
|
Badia-Soteras A, Mak A, Blok TM, Boers-Escuder C, van den Oever MC, Min R, Smit AB, Verheijen MHG. Astrocyte-synapse structural plasticity in neurodegenerative and neuropsychiatric diseases. Biol Psychiatry 2025:S0006-3223(25)01125-4. [PMID: 40254258 DOI: 10.1016/j.biopsych.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Synaptic dysfunction is a common feature across a broad spectrum of brain diseases, spanning from psychopathologies such as post-traumatic stress disorder (PTSD) and substance use disorders (SUD) to neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD). While neuroscience research aiming to understand the mechanisms underlying synaptic dysfunction has traditionally focused on the neuronal elements of the synapse, recent research increasingly acknowledges the contribution of astrocytes as a third element controlling synaptic transmission. This also sparked interest to investigate the tripartite synapse and its role in the etiology of neurological diseases. According to recent evidence, changes in the structural interaction between astrocytes and synapses not only play a pivotal role in modulating synaptic function and behavioral states, but are also implicated in the initiation and progression of various brain diseases. This review aims to integrate recent findings that provide insight into the molecular mechanisms underpinning astrocytic structural changes at the synapse. We offer a comprehensive discussion of the potential implications of compromised astrocyte-synapse interactions, and put forward that astrocytic synaptic coverage is generally reduced in numerous neurological disorders, with the extent of it being disease- and stage- specific. Finally, we propose outstanding questions on astrocyte-synapse structural plasticity that are relevant for future therapeutic strategies to tackle neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Brain Scienes, Imperial College London, London , United Kingdom; UK Dementia Research Institute at Imperial College London, London , United Kingdom
| | - Aline Mak
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Thomas M Blok
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam, University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Vijayaraghavan M, Murali SP, Thakur G, Li XJ. Role of glial cells in motor neuron degeneration in hereditary spastic paraplegias. Front Cell Neurosci 2025; 19:1553658. [PMID: 40302786 PMCID: PMC12037628 DOI: 10.3389/fncel.2025.1553658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
This review provides a comprehensive overview of hereditary spastic paraplegias (HSPs) and summarizes the recent progress on the role of glial cells in the pathogenesis of HSPs. HSPs are a heterogeneous group of neurogenetic diseases characterized by axonal degeneration of cortical motor neurons, leading to muscle weakness and atrophy. Though the contribution of glial cells, especially astrocytes, to the progression of other motor neuron diseases like amyotrophic lateral sclerosis (ALS) is well documented, the role of glial cells and the interaction between neurons and astrocytes in HSP remained unknown until recently. Using human pluripotent stem cell-based models of HSPs, a study reported impaired lipid metabolisms and reduced size of lipid droplets in HSP astrocytes. Moreover, targeting lipid dysfunction in astrocytes rescues axonal degeneration of HSP cortical neurons, demonstrating a non-cell-autonomous mechanism in axonal deficits of HSP neurons. In addition to astrocytes, recent studies revealed dysfunctions in HSP patient pluripotent stem cell-derived microglial cells. Increased microgliosis and pro-inflammation factors were also observed in HSP patients' samples, pointing to an exciting role of innate immunity and microglia in HSP. Building upon these recent studies, further investigation of the detailed molecular mechanism and the interplay between glial cell dysfunction and neuronal degeneration in HSP by combining human stem cell models, animal models, and patient samples will open avenues for identifying new therapeutic targets and strategies for HSP.
Collapse
Affiliation(s)
- Manaswini Vijayaraghavan
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Sarvika Periyapalayam Murali
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Nentwig TB, Obray JD, Kruyer A, Wilkes ET, Vaughan DT, Scofield MD, Chandler LJ. Central amygdala astrocyte plasticity underlies GABAergic dysregulation in ethanol dependence. Transl Psychiatry 2025; 15:132. [PMID: 40199844 PMCID: PMC11978928 DOI: 10.1038/s41398-025-03337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Dependence is a hallmark of alcohol use disorder characterized by excessive alcohol intake and withdrawal symptoms. The central nucleus of the amygdala (CeA) is a key brain structure underlying the synaptic and behavioral consequences of ethanol dependence. While accumulating evidence suggests that astrocytes regulate synaptic transmission and behavior, there is a limited understanding of the role astrocytes play in ethanol dependence. The present study used a combination of viral labeling, super resolution confocal microscopy, 3D image analysis, and slice electrophysiology to determine the effects of chronic intermittent ethanol (CIE) exposure on astrocyte plasticity in the CeA. During withdrawal from CIE exposure, we observed increased GABA transmission, an upregulation in astrocytic GAT3 levels, and an increased proximity of astrocyte processes near CeA synapses. Furthermore, GAT3 levels and synaptic proximity were positively associated with voluntary ethanol drinking in dependent rats. Slice electrophysiology confirmed that the upregulation in astrocytic GAT3 levels was functional, as CIE exposure unmasked a GAT3-sensitive tonic GABA current in the CeA. A causal role for astrocytic GAT3 in ethanol dependence was assessed using viral-mediated GAT3 overexpression and knockdown approaches. However, GAT3 knockdown or overexpression had no effect on somatic withdrawal symptoms, dependence-escalated ethanol intake, aversion-resistant drinking, or post-dependent ethanol drinking in male or female rats. Moreover, intra-CeA pharmacological inhibition of GAT3 did not alter dependent ethanol drinking. Together, these findings indicate that ethanol dependence induces GABAergic dysregulation and astrocyte plasticity in the CeA. However, these changes in astrocytic GAT3 do not appear to be necessary for the drinking related phenotypes associated with dependence.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - J Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Erik T Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Lines J, Corkrum M, Aguilar J, Araque A. The Duality of Astrocyte Neuromodulation: Astrocytes Sense Neuromodulators and Are Neuromodulators. J Neurochem 2025; 169:e70054. [PMID: 40191899 PMCID: PMC11978396 DOI: 10.1111/jnc.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Neuromodulation encompasses different processes that regulate neuronal and network function. Classical neuromodulators originating from long-range nuclei, such as acetylcholine, norepinephrine, or dopamine, act with a slower time course and wider spatial range than fast synaptic transmission and action potential firing. Accumulating evidence in vivo indicates that astrocytes, which are known to actively participate in synaptic function at tripartite synapses, are also involved in neuromodulatory processes. The present article reviews recent findings obtained in vivo indicating that astrocytes express receptors for neuromodulators that elevate their internal calcium and stimulate the release of gliotransmitters, which regulate synaptic and network function, and hence mediate, at least partially, the effects of neuromodulators. In addition, we propose that astrocytes act in local support of neuromodulators by spatially and temporally integrating neuronal and neuromodulatory signals to regulate neural network function. The presence of astrocyte-neuron hysteresis loops suggests astrocyte-neuron interaction at tripartite synapses scales up to astrocyte-neuronal networks that modulate neural network function. We finally propose that astrocytes sense the environmental conditions, including neuromodulators and network function states, and provide homeostatic control that maximizes the dynamic range of neural network activity. In summary, we propose that astrocytes are critical in mediating the effects of neuromodulators, and they also act as neuromodulators to provide neural network homeostasis thus optimizing information processing in the brain. Hence, astrocytes sense ongoing neuronal activity along with neuromodulators and, acting as neuromodulators, inform the neurons about the state of the internal system and the external world.
Collapse
Affiliation(s)
- Justin Lines
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Corkrum
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan Aguilar
- Experimental Neurophysiology. Hospital Nacional de Parapléjicos. SESCAM. Finca de la Peraleda, S/N, 45071 Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Khanteymoori A, Peterson C, Atamny R, Hohenhaus M, Beck J, Howells DW, Schwab JM, Watzlawick R. Targeting Nerve Fiber Outgrowth Inhibition After Experimental Spinal Cord Injury: A Systematic Review and Meta-analysis of Chondroitinase ABC. Neurorehabil Neural Repair 2025; 39:312-320. [PMID: 39772811 DOI: 10.1177/15459683241311337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Spinal cord injury (SCI) can impair motor, sensory, and autonomic function. The formation of the glial scar comprises protective as well as inhibitory neurite outgrowth properties operated by the deposition of chondroitin sulfate proteoglycans (CSPG). Chondroitinase ABC (ChABC) can degrade CSPG and foster neuroaxonal plasticity as a therapeutic approach to restore locomotor function after SCI. OBJECTIVES To systematically review experimental ChABC treatments after SCI and assess their efficacy for locomotor function a comprehensive literature search was conducted following pre-registered Prospero Study protocol, selecting animal studies evaluating neurobehavioral outcomes after traumatic SCI followed by the calculation of normalized effect sizes applying meta-analysis and meta-regression methodology. Additional analyses were performed to investigate the impact of animal type, strain, sex, sample size, injury models, level of injury, and treatment duration. RESULTS Within the overall analysis of 1066 animals, a considerable amount of heterogeneity was observed. A subgroup analysis comprising experiments applying the same neurobehavioral measurement (blood-brain barrier/Basso-Mouse-Scale [BMS]-subgroup) demonstrated a 15.9% (95% CI = 11.3%-20.6%) improvement in locomotor outcomes. Different experimental characteristics influenced neurological recovery, including sex, level of injury, used anesthetic, reported dosage of ChABC treatment, the timepoint of assessment and perioperative temperature control. Sensitivity analysis applying Trim and Fill identified 19 hypothetical missing experiments suggestive of reporting bias. CONCLUSION Reporting bias in experimental SCI research is prevalent and not limited to a specific intervention. ChABC treatment can exert beneficial effects on locomotor recovery after SCI.
Collapse
Affiliation(s)
- Alireza Khanteymoori
- Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Clayton Peterson
- College of Arts and Science, The Ohio State University, Columbus, OH, USA
| | - Roza Atamny
- Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - David W Howells
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jan M Schwab
- Department of Neurology, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Ralf Watzlawick
- Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Zhou B, Li Q, Su M, Liao P, Luo Y, Luo R, Yu Y, Luo M, Lei F, Li X, Jiao J, Yi L, Wang J, Yang L, Liao D, Zhou C, Zhang X, Xiao H, Zuo Y, Liu J, Zhu T, Jiang R. Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia. Mol Psychiatry 2025:10.1038/s41380-025-02978-2. [PMID: 40169801 DOI: 10.1038/s41380-025-02978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingran Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengchan Su
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunqing Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiyan Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Lei
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Xin Li
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Zhang
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
23
|
Musotto R, Wanderlingh U, Pioggia G. Ca 2+ waves in astrocytes: computational modeling and experimental data. Front Cell Neurosci 2025; 19:1536096. [PMID: 40226297 PMCID: PMC11985530 DOI: 10.3389/fncel.2025.1536096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
This paper examines different computational models for Calcium wave propagation in astrocytes. Through a comparative analysis of models by Goldbeter, De Young-Keizer, Atri, Li-Rinzel, and De Pittà and of experimental data, the study highlights the model contributions for the understanding of Calcium dynamics. Tracing the evolution from simple to complex models, this work emphasizes the importance of integrating experimental data in order to further refine these models. The results allow to improve our understanding of the physiological functions of astrocytes, suggesting the importance of more accurate astrocyte models.
Collapse
Affiliation(s)
- Rosa Musotto
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| | - Ulderico Wanderlingh
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| |
Collapse
|
24
|
Manning A, Mendelson BZ, Bender PTR, Bainer K, Ruby R, Shifflett VR, Dariano DF, Webb BA, Geldenhuys WJ, Anderson CT. The Astrocytic Zinc Transporter ZIP12 Is a Synaptic Protein That Contributes to Synaptic Zinc Levels in the Mouse Auditory Cortex. J Neurosci 2025; 45:e2067242025. [PMID: 39809542 PMCID: PMC11949477 DOI: 10.1523/jneurosci.2067-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein zinc transporter 3 (ZnT3). Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses. We identify small-molecule compounds that antagonize the function of ZIP12 in heterologous expression systems, and we use one of these compounds, ZIP12 modulator 8, to increase the concentration of ZnT3-dependent zinc at synapses in the brain of male and female mice to inhibit the activity of neuronal AMPA and NMDA glutamate receptors. These results identify a cellular mechanism and provide a pharmacological toolbox to target the molecular machinery that supports the actions of synaptic zinc in the brain.
Collapse
Affiliation(s)
- Abbey Manning
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Benjamin Z Mendelson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Philip T R Bender
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Kaitlin Bainer
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Rayli Ruby
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Victoria R Shifflett
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Donald F Dariano
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Bradley A Webb
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Werner J Geldenhuys
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia 26506
| | - Charles T Anderson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| |
Collapse
|
25
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette U, Kim RD, Ma TC, Groh AMR, Hill EJ, Lewis EM, Januszewski M, Light SEW, Smith CJ, Stratton JA, Sloan SA, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in vertebrates. Cell Rep 2025; 44:115344. [PMID: 39982817 DOI: 10.1016/j.celrep.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2024] [Accepted: 02/01/2025] [Indexed: 02/23/2025] Open
Abstract
Astrocytes are a highly abundant glial cell type and perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogeneous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of the brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: myocilin (Myoc). We show that glia limitans superficialis astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from zebrafish, rodents, and non-human primates to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Melissa L Cooper
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne E Marchildon
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Uriel Rufen-Blanchette
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel D Kim
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Thong C Ma
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M Lewis
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Sarah E W Light
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Un Jung Kang
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Moses V Chao
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Mongi-Bragato B, Sánchez MA, Avalos MP, Boezio MJ, Guzman AS, Rigoni D, Perassi EM, Mas CR, Bisbal M, Bollati FA, Cancela LM. Activation of Nuclear Factor-kappa B in the nucleus accumbens core is necessary for chronic stress-induced glutamate and neuro-immune alterations that facilitate cocaine self-administration. Brain Behav Immun 2025; 128:1-15. [PMID: 40139275 DOI: 10.1016/j.bbi.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Stressful events are associated with impaired glutamate signaling and neuroimmune adaptations that may increase the vulnerability of individuals to cocaine addiction. We previously demonstrated that chronic stress induced reactive microglia and increased TNF-α expression in the nucleus accumbens core (NAcore), both alterations strongly linked with impaired glutamate homeostasis and the facilitation of cocaine self-administration. The nuclear factor kappa-B (NF-κB) is a critical regulator of many immune- and addiction-related genes, such as the gene coding for glutamate transporter (GLT-1), and it is considered a master regulator of inflammation, reported to be a key driver of microglia activation in psychiatric diseases. However, no studies have examined the role of NF-κB signaling within the NAcore in the neuroimmune and glutamate mechanism, underpinning stress-induced vulnerability to cocaine self-administration. Here we investigate whether viral dominant negative inhibition of I kappa B kinase (IKKdn), a signaling molecule responsible for NF-κB activation, would prevent stress-induced facilitation to cocaine self-administration and associated changes in accumbal GLT-1 and TNF-α expression. We also explore N-myc proto-oncogene protein (N-myc) levels as a link between NF-κB and stress-induced GLT-1 downregulation. For seven days (days 1-7), adult male rats were restrained for 2 h/day. Animals were administered an intra-NAcore with IKKdn or empty lentiviruses on day 14 after the first restraint stress session. Marked activation of NF-κB was detected in the NAcore of stressed subjects, along with increased NF-κB expression in astrocytes. Consistently, viral NF-κB inhibition prevented stress-induced facilitation of cocaine self-administration. Moreover, NF-κB blockade results in the restoration of stress-induced reduction in GLT-1 levels and was effective in suppressing stress-induced TNF-α within the NAcore. These findings suggest that accumbal NF-κB signaling exerts a central control over stress-altered downstream neuroimmune and glutamate function underlying vulnerability to cocaine use disorders.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| | - Marianela Adela Sánchez
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - María Paula Avalos
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - María Julieta Boezio
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Andrea Susana Guzman
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Diana Rigoni
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Eduardo Marcelo Perassi
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Carlos Ruben Mas
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Departamento de Química Bilógica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Friuli 2434, Colinas de Vélez Sarsfield (5016) Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Flavia Andrea Bollati
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| | - Liliana Marina Cancela
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| |
Collapse
|
27
|
Uytiepo M, Zhu Y, Bushong E, Chou K, Polli FS, Zhao E, Kim KY, Luu D, Chang L, Yang D, Ma TC, Kim M, Zhang Y, Walton G, Quach T, Haberl M, Patapoutian L, Shahbazi A, Zhang Y, Beutter E, Zhang W, Dong B, Khoury A, Gu A, McCue E, Stowers L, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. Science 2025; 387:eado8316. [PMID: 40112060 DOI: 10.1126/science.ado8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Memory engrams are formed through experience-dependent plasticity of neural circuits, but their detailed architectures remain unresolved. Using three-dimensional electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway after chemogenetic labeling of cellular ensembles recruited during associative learning. Neurons with a remote history of activity coinciding with memory acquisition showed no strong preference for wiring with each other. Instead, their connectomes expanded through multisynaptic boutons independently of the coactivation state of postsynaptic partners. The rewiring of ensembles representing an initial engram was accompanied by input-specific, spatially restricted upscaling of individual synapses, as well as remodeling of mitochondria, smooth endoplasmic reticulum, and interactions with astrocytes. Our findings elucidate the physical hallmarks of long-term memory and offer a structural basis for the cellular flexibility of information coding.
Collapse
Affiliation(s)
- Marco Uytiepo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yongchuan Zhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Katherine Chou
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Filip Souza Polli
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Zhao
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Danielle Luu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lyanne Chang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Dong Yang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tsz Ching Ma
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mingi Kim
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuting Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Grant Walton
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tom Quach
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Luca Patapoutian
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Arya Shahbazi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxuan Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Beutter
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Weiheng Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Dong
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aureliano Khoury
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alton Gu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elle McCue
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Anton Maximov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
28
|
Komleva Y, Shpiliukova K, Bondar N, Salmina A, Khilazheva E, Illarioshkin S, Piradov M. Decoding brain aging trajectory: predictive discrepancies, genetic susceptibilities, and emerging therapeutic strategies. Front Aging Neurosci 2025; 17:1562453. [PMID: 40177249 PMCID: PMC11962000 DOI: 10.3389/fnagi.2025.1562453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The global extension of human lifespan has intensified the focus on aging, yet its underlying mechanisms remain inadequately understood. The article highlights aspects of genetic susceptibility to impaired brain bioenergetics, trends in age-related gene expression related to neuroinflammation and brain senescence, and the impact of stem cell exhaustion and quiescence on accelerated brain aging. We also review the accumulation of senescent cells, mitochondrial dysfunction, and metabolic disturbances as central pathological processes in aging, emphasizing how these factors contribute to inflammation and disrupt cellular competition defining the aging trajectory. Furthermore, we discuss emerging therapeutic strategies and the future potential of integrating advanced technologies to refine aging assessments. The combination of several methods including genetic analysis, neuroimaging techniques, cognitive tests and digital twins, offer a novel approach by simulating and monitoring individual health and aging trajectories, thereby providing more accurate and personalized insights. Conclusively, the accurate estimation of brain aging trajectories is crucial for understanding and managing aging processes, potentially transforming preventive and therapeutic strategies to improve health outcomes in aging populations.
Collapse
Affiliation(s)
| | | | - Nikolai Bondar
- Research Center of Neurology, Moscow, Russia
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Elena Khilazheva
- Department of Biological Chemistry with Courses in Medical, Research Institute of Molecular Medicine and Pathobiochemistry, Pharmaceutical and Toxicological Chemistry Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russia
| | | | | |
Collapse
|
29
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
30
|
Sun X, Pan S, Li D, Su M, Zheng H, Zhang YW, Li Y. Cell Adhesion Molecule Protocadherin-γC5 Ameliorates Aβ Plaque Pathogenesis by Modulating Astrocyte Function in Alzheimer's Disease. J Neurosci 2025; 45:e0967242025. [PMID: 39843233 PMCID: PMC11884392 DOI: 10.1523/jneurosci.0967-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Accumulation of astrocytes around β-amyloid (Aβ) plaques is one of the earliest neuropathological changes in Alzheimer's disease (AD), but the underlying mechanisms and significance remain unclear. Cell adhesion molecule protocadherin-γC5 (Pcdh-γC5) has been reported to implicate in AD. Here, we find elevated expression levels of Pcdh-γC5 in the brain of 5×FAD mice and Aβ-treated astrocytes and further reveal that Pcdh-γC5 deficiency leads to exacerbated Aβ deposition in 5×FAD mice. Deletion of Pcdh-γC5 impairs astrocyte migration, astrocytic response to Aβ signaling, and Aβ phagocytosis in both cultured astrocytes in vitro and 5×FAD mice in vivo. Both male and female mice were used in this study. Our findings support a model in which increased expression level of Pcdh-γC5 promotes astrocyte migration in response to Aβ signaling and engulfment and phagocytosis of neurotoxic Aβ plaques, therefore exerting a critical neuroprotective function in AD.
Collapse
Affiliation(s)
- Xiangyi Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Sili Pan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dandan Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Min Su
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
- School of Inspection, Ningxia Medical University, Yinchuan 750004, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
31
|
A E F Cardinali C, Martins YA, C M Moraes R, Costa AP, Torrão AS. Benfotiamine Ameliorates Streptozotocin-Induced Alzheimer's Disease in Rats by Modulating Neuroinflammation, Oxidative Stress, and Microglia. Mol Neurobiol 2025:10.1007/s12035-025-04811-x. [PMID: 40038195 DOI: 10.1007/s12035-025-04811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, characterized by progressive memory loss and cognitive decline. Recent evidence indicates that inflammation plays a central role in AD pathogenesis, with elevated inflammatory markers and risk genes linked to innate immune functions. Glial cell dysfunction, particularly in astrocytes and microglia, is crucial to the neuroinflammatory process, contributing to oxidative stress, synaptic dysfunction, neuronal death, and impaired neurogenesis. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analogue, on microglial morphology, inflammation, and oxidative stress parameters in a sporadic Alzheimer-like disease model induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days significantly reduced inflammation in the hippocampus and provided protection against oxidative damage in the entorhinal cortex by activating the Nrf-2 pathway and enhancing the expression of antioxidant enzymes such as SOD1 and CAT. These findings suggest that BFT exerts neuroprotective effects in AD, particularly impacting glial cell function and redox homeostasis.
Collapse
Affiliation(s)
- Camila A E F Cardinali
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil.
| | - Yandara A Martins
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| | - Ruan C M Moraes
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
- Department of Psychiatry & Behavioral Neurobiology, The University of Alabama at Birmingham, Alabama, USA
| | - Andressa P Costa
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| | - Andréa S Torrão
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
32
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
33
|
Sławińska U, Hammar I, Jankowska E. Modulation of Sensory Input to the Spinal Cord by Peripheral Afferent Fibres via GABAergic Astrocytes. Eur J Neurosci 2025; 61:e70057. [PMID: 40123195 PMCID: PMC11931268 DOI: 10.1111/ejn.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
A long-lasting GABA-dependent increase in the excitability of afferent fibres, and thus modulation of the sensory input to the spinal cord, may be evoked by epidural polarization. However, the direct effects of fibre polarization are short-lasting and the sustained increase in their excitability appears to be secondary to the release of GABA from nearby astrocytes. We have now investigated whether the modulation of spinal sensory input by stimulation of a peripheral nerve, previously attributed to synaptically evoked intraspinal field potentials, is evoked in a similar way. However, as neither its dependence on GABA nor its relays have been investigated, we addressed the question of whether the increase in the excitability of epidurally stimulated afferent fibres following a peripheral nerve stimulation does or does not depend on GABA and whether it might be mediated by astrocytes. The effects of conditioning stimulation of the tibial nerve were evaluated from changes in the excitability of both Group I and II muscle afferents, estimated from action potentials recorded in peripheral nerves and in field potentials recorded in the dorsal horn respectively in acute experiments on deeply anaesthetized rats. The excitability of the afferents was increased by stimulation of Group II and/or cutaneous but not Group I muscle afferents. The effects were significantly weakened by blocking GABA channels by gabazine and by astrocyte toxin L-alpha-aminoadipic acid (L-AAA), indicating that the excitability of both Group I and II afferent fibres may be modulated by GABAergic astrocytes, the new role played by astrocytes.
Collapse
Affiliation(s)
- Urszula Sławińska
- Institute of Physiology and Neuroscience, Sahlgrenska AcademyGöteborg UniversityGöteborgSweden
- Nencki Institute of Experimental Biology PASWarsawPoland
| | - Ingela Hammar
- Institute of Physiology and Neuroscience, Sahlgrenska AcademyGöteborg UniversityGöteborgSweden
| | - Elzbieta Jankowska
- Institute of Physiology and Neuroscience, Sahlgrenska AcademyGöteborg UniversityGöteborgSweden
| |
Collapse
|
34
|
Bianchimano P, Leone P, Smith EM, Gutierrez-Vazquez C, Wind-Andersen E, Bongers G, Cristancho S, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment alters levels of indole derivatives and secondary bile acids modulating the expression of mTOR pathway genes in astrocytes during EAE. Brain Behav Immun 2025; 125:355-370. [PMID: 39826581 DOI: 10.1016/j.bbi.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Astrocytes play important roles in the central nervous system (CNS) during health and disease. Prior studies have shown that gut commensal-derived indole derivatives as well as secondary bile acids modulate astrocyte function during the late stage of EAE (recovery phase). Here we showed that administering vancomycin to mice starting during the early stage of EAE improved disease recovery, an effect that is mediated by the gut microbiota. We observed that 6 taxa within the Clostridia vadin BB60 group were enriched in vancomycin-treated mice compared to untreated EAE mice. Vancomycin-treated EAE mice also had elevated serum levels of the anti-inflammatory tryptophan-derived metabolite, indole-3-lactic acid and decreased levels of deoxycholic acid, a pro-inflammatory secondary bile acid. RNA sequencing revealed altered expression of several genes belonging to the mammalian target of rapamycin (mTOR) pathway in astrocytes obtained during the late stage of EAE from vancomycin-treated EAE mice. Furthermore, we observed a link between serum levels of indole derivatives and bile acids and expression of several genes belonging to the mTOR pathway. Interestingly, the mTOR signaling cascades have been implicated in several key biological processes including innate (e.g., astrocyte) immune responses as well as neuronal toxicity/degeneration. In addition, rapamycin, a specific inhibitor of mTOR, has been shown to inhibit the induction and progression of established EAE. Collectively, our findings suggest that the neuroprotective effect of vancomycin is at least partially mediated by indole derivatives and secondary bile acids modulating the expression of mTOR pathway genes in astrocytes.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Erli Wind-Andersen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sebastian Cristancho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
36
|
Novakovic MM, Prakriya M. Calcium signaling at the interface between astrocytes and brain inflammation. Curr Opin Neurobiol 2025; 90:102940. [PMID: 39673911 PMCID: PMC11839377 DOI: 10.1016/j.conb.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Astrocytes are the most prevalent glial cells of the brain and mediate vital roles in the development and function of the nervous system. Astrocytes, along with microglia, also play key roles in initiating inflammatory immune responses following brain injury, stress, or disease-related triggers. While these glial immune responses help contain and resolve cellular damage to the brain, dysregulation of astrocyte activity can in some cases amplify inflammation and worsen impact on neural tissue. As nonexcitable cells, astrocytes excitability is regulated primarily by Ca2+ signals that control key functions such as gene expression, release of inflammatory mediators, and cell metabolism. In this review, we examine the molecular and functional architecture of Ca2+ signaling networks in astrocytes and their impact on astrocyte effector functions involved in inflammation and immunity.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA.
| |
Collapse
|
37
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
38
|
Marinelli S. BoNT/Action beyond neurons. Toxicon 2025; 255:108250. [PMID: 39862929 DOI: 10.1016/j.toxicon.2025.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control. BoNT/A also interacts with glial cells, such as Schwann cells, satellite glial cells, astrocytes, microglia, and oligodendrocytes. Schwann cells, key to peripheral nerve regeneration, are directly influenced by BoNT/A, which promotes their proliferation and enhances remyelination. Satellite glial cells, involved in sensory neuron regulation, show reduced glutamate release in response to BoNT/A, aiding in pain relief. In the CNS, BoNT/A modulates astrocyte activity, reducing excitotoxicity and inflammation, which is relevant in conditions like epilepsy. Microglia, the CNS's immune cells, shift from a pro-inflammatory to a neuroprotective state when treated with BoNT/A, enhancing tissue repair. Additionally, BoNT/A promotes oligodendrocyte survival and remyelination, especially after spinal cord injury. Overall, BoNT/A's ability to target both neurons and glial cells presents a multifaceted therapeutic strategy for neurological disorders, pain management, and CNS repair. Further research is necessary to fully elucidate its mechanisms and optimize its clinical application.
Collapse
Affiliation(s)
- Sara Marinelli
- National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy.
| |
Collapse
|
39
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
40
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Castro MML, Amaral Junior FLD, Mendes FDCCDS, Anthony DC, Brites DMTDO, Diniz CWP, Sosthenes MCK. Intriguing astrocyte responses in CA1 to reduced and rehabilitated masticatory function: Dorsal and ventral distinct perspectives in adult mice. Arch Oral Biol 2025; 169:106097. [PMID: 39395318 DOI: 10.1016/j.archoralbio.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE We sought to investigate the plasticity of diet-induced changes in astrocyte morphology of stratum lacunosum-moleculare (SLM) in CA1. DESIGN Three diet regimes were adopted in 15 mice, from the 21st postnatal day to 6 months. The first diet regimen was pellet feed, called Hard Diet (HD). The second, with reduced masticatory, received a pellet-diet followed by a powdered-diet, and it was identified as Hard Diet/Soft Diet (HD/SD). Finally, the group with rehabilitated masticatory was named Hard Diet/Soft Diet/Hard Diet (HD/SD/HD). In the end, euthanasia and brain histological processing were performed, in which astrocytic immunoreactivity to glial-fibrillary-acidic-protein (GFAP) was tested. In reconstructed astrocytes, morphometric analysis was performed. RESULTS Astrocyte morphometric revealed that changes in masticatory regimens impact astrocyte morphology. In the dorsal CA1, switching from a hard diet to a soft diet led to reductions in most variables, whereas in the ventral, fewer variables were affected, highlighting regional differences in astrocyte responses. Cluster analysis further showed that diet-induced changes in astrocyte morphology were reversible in the dorsal region, but not in the ventral region, indicating a persistent impact on astrocyte diversity and complexity in the ventral even after rehabilitation. Correlation tests between astrocyte morphology and behavioral performance demonstrated disrupted relationships under masticatory stress, with effects persisting after rehabilitation. CONCLUSION Changes in the diet result in significant alterations in astrocyte morphology, suggesting a direct link between dietary modulation and cellular structure. Morphometric analyses revealed distinct alterations in astrocyte morphology in response to changes in the masticatory regimen, with both dorsal/ventral regions displaying notable changes. Moreover, the regional differential effects on astrocytes underscore the complexity of mastication on neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
43
|
Tsering W, de la Rosa A, Ruan IY, Philips JL, Bathe T, Villareal JA, Prokop S. Preferential clustering of microglia and astrocytes around neuritic plaques during progression of Alzheimer's disease neuropathological changes. J Neurochem 2025; 169:e16275. [PMID: 39655787 PMCID: PMC11629606 DOI: 10.1111/jnc.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP. In a recent study, we demonstrated that during the progression of Alzheimer's disease neuropathologic changes (ADNC), a transformation of non-NP into NP occurs which is tightly linked to the emergence of cortical, but not hippocampal neurofibrillary tangle (NFT) pathology. This highlights the central role of NP in AD pathogenesis as well as brain region-specific differences in NP formation. In order to correlate the transformation of plaque types with local immune activation, we quantified the clustering and phenotype of microglia and accumulation of astrocytes around non-NP and NP during the progression of ADNC. We hypothesize that glial clustering occurs in response to formation of neuritic dystrophy around NP. First, we show that Iba1-positive microglia preferentially cluster around NP. Utilizing microglia phenotypic markers, we furthermore demonstrate that CD68-positive phagocytic microglia show a strong preference to cluster around NP in both the hippocampus and frontal cortex. A similar preferential clustering is observed for CD11c and ferritin-positive microglia in the frontal cortex, while this preference is less pronounced in the hippocampus, highlighting differences between hippocampal and cortical Aβ plaques. Glial fibrillary acidic protein-positive astrocytes showed a clear preference for clustering around NP in both the frontal cortex and hippocampus. These data support the notion that NP are intimately associated with the neuroimmune response in AD and underscore the importance of the interplay of protein deposits and the immune system in the pathophysiology of AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Neuroscience, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ana de la Rosa
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Isabelle Y. Ruan
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jennifer L. Philips
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jonathan A. Villareal
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Norman Fixel Institute for Neurological DiseasesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
44
|
Ngoc KH, Jeon Y, Ko J, Um JW. Multifarious astrocyte-neuron dialog in shaping neural circuit architecture. Trends Cell Biol 2025; 35:74-87. [PMID: 38853082 DOI: 10.1016/j.tcb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Astrocytes are multifaceted glial cell types that perform structural, functional, metabolic, and homeostatic roles in the brain. Recent studies have revealed mechanisms underlying the diversity of bidirectional communication modes between astrocytes and neurons - the fundamental organizing principle shaping synaptic properties at tripartite synapses. These astrocyte-neuron interactions are critical for the proper functioning of synapses and neural circuits. This review focuses on molecular mechanisms that direct these interactions, highlighting the versatile roles of multiple adhesion-based paths that likely modulate them, often in a context-dependent manner. It also describes how astrocyte-mediated processes go awry in certain brain disorders and provides a timely insight on the pivotal roles of astrocyte-neuron interactions in synaptic integrity and their relevance to understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Khai H Ngoc
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Younghyeon Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
45
|
Lendemeijer B, de Vrij FMS. In vitro models for human neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:213-227. [PMID: 40122626 DOI: 10.1016/b978-0-443-19104-6.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia are a heterogenous population of cells in the nervous system. In the central nervous system, this group is classified into astrocytes, oligodendrocytes, and microglia. Neuroglia in the peripheral nervous system are divided into Schwann cells and enteric glia. These groups of cells display considerable differences in their developmental origin, morphology, function, and regional abundance. Compared to animal models, human neuroglia differ in their transcriptomic profile, morphology, and function. Investigating the physiology of healthy or diseased human neuroglia in vivo is challenging due to the inaccessibility of the tissue. Therefore, researchers have developed numerous in vitro models attempting to replicate the natural tissue environment. Earlier models made use of postmortem, postsurgical, or fetal tissue to establish human neuroglial cells in vitro, either as a pure population of the desired cell type or as organotypic slice cultures. Advancements in human stem cell differentiation techniques have greatly enhanced the possibilities for creating in vitro models of human neuroglia. This chapter provides an overview of the current models used to study the functioning and development of human neuroglia in vitro, both in health and disease.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, United States
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Williamson MR, Kwon W, Woo J, Ko Y, Maleki E, Yu K, Murali S, Sardar D, Deneen B. Learning-associated astrocyte ensembles regulate memory recall. Nature 2025; 637:478-486. [PMID: 39506118 PMCID: PMC11924044 DOI: 10.1038/s41586-024-08170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The physical manifestations of memory formation and recall are fundamental questions that remain unresolved1. At the cellular level, ensembles of neurons called engrams are activated by learning events and control memory recall1-5. Astrocytes are found in close proximity to neurons and engage in a range of activities that support neurotransmission and circuit plasticity6-10. Moreover, astrocytes exhibit experience-dependent plasticity11-13, although whether specific ensembles of astrocytes participate in memory recall remains obscure. Here we show that learning events induce c-Fos expression in a subset of hippocampal astrocytes, and that this subsequently regulates the function of the hippocampal circuit in mice. Intersectional labelling of astrocyte ensembles with c-Fos after learning events shows that they are closely affiliated with engram neurons, and reactivation of these astrocyte ensembles stimulates memory recall. At the molecular level, learning-associated astrocyte (LAA) ensembles exhibit elevated expression of nuclear factor I-A, and its selective deletion from this population suppresses memory recall. Taken together, our data identify LAA ensembles as a form of plasticity that is sufficient to provoke memory recall and indicate that astrocytes are an active component of the engram.
Collapse
Affiliation(s)
- Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
47
|
Lin SS, Zhou B, Tang Y, Verkhratsky A. Revealing and Characterizing Astrocytic Atrophy in an Animal Model of Depression. Methods Mol Biol 2025; 2896:271-285. [PMID: 40111613 DOI: 10.1007/978-1-0716-4366-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Astrocyte atrophy is the main histopathological hallmark of major depressive disorder (MDD) in humans and in animal models of depression. In particular, depression and depressive-like behaviors are associated with a substantial decrease in size and complexity of astrocytes in the prefrontal cortex. This results in the reduced homeostatic support of synaptic transmission, which arguably translates into abnormal activity of neuronal networks and pathological changes in mood and behavior. Treatment of experimental animals with antidepressants as well as with acupuncture in the specific acupoints alleviates depressive-like behaviors and rescues astrocytic atrophy. Here, we describe the methodology for inducing and monitoring the depressive-like behaviors in mice using chronic unpredictable mild stress (CUMS), with subsequent in-depth analysis of astrocytic morphology using confocal microscopy in conjunction with astrocyte-specific labeling by virally transfected genetically encoded fluorescent probe mCherry and intracellular injection of Lucifer yellow. We also describe immunocytochemical visualization of astrocyte-specific cytoskeletal linker ezrin, which is involved in controlling perisynaptic astrocytic leaflets.
Collapse
Affiliation(s)
- Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- University of the Basque Country, CIBERNED, Bizkaia, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
48
|
Verkhratsky A, Semyanov A. Physiology of neuroglia of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:69-91. [PMID: 40122632 DOI: 10.1016/b978-0-443-19104-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
49
|
Vesga-Jimenez DJ, Vivi E, Di Benedetto B. An In Vitro Assay to Measure Astrocyte-Dependent Synaptic Phagocytosis in Health and Major Depressive Disorder. Methods Mol Biol 2025; 2896:191-201. [PMID: 40111606 DOI: 10.1007/978-1-0716-4366-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Immunofluorescent methods in vitro have been widely used to characterize the distribution and extent of colocalization of molecules located in various intracellular compartments. These are key processes to better understand the role of those molecules in physiological and pathological conditions. In the brain, interactions of astrocytes with neurons are fundamental for the establishment and proper functioning of neuronal circuits. Among these, the phagocytosis of synapses that need to be removed is a process known as synaptic pruning. When this process is dysregulated, it might lead to the development of several brain disorders. Here, we describe the adaptation of a method to characterize the astrocyte-mediated synaptic phagocytosis and evaluate astrocytic (dys)functions in healthy cells and cells derived from an animal model of major depressive disorder (MDD).
Collapse
Affiliation(s)
| | - Eugenia Vivi
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
50
|
Wu L, Sun Y, Wu Z, Liu R, Yin Y, Wong NL, Ju W, Zhang H. A rich component of Fructus Aurantii, meranzin hydrate, exerts antidepressant effects via suppressing caspase4 to regulate glial cell and neuronal functions in the hippocampus. Biomed Pharmacother 2025; 182:117746. [PMID: 39675136 DOI: 10.1016/j.biopha.2024.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024] Open
Abstract
Fructus Aurantii, a Chinese herbal medicine, has been indicated to have antidepressant effects in our previous study. However, the main component and specific mechanisms of the antidepressant effects of Fructus Aurantii still need to be further revealed. This study aimed to explore the main antidepressant component of Fructus Aurantii and the underlying mechanisms of its antidepressant effects in the hippocampus. The results showed that the component of meranzin hydrate (MH) was enrichment in Fructus Aurantii. MH could alleviate depressive phenotypes in LPS-induced mice after a single administration 1 day later. High genetic and proteinic levels of caspase4 in the hippocampus in LPS-induced mice were reversed by MH after a single administration 1 day later. Moreover, MH was capable of relieving inflammatory factors (TNF-a and IL-1β) and LPS in the serum in LPS-induced mice. Subsequently, activation of hippocampal caspase4 blocked MH's antidepressant effects and its effects on suppression of microglia and improvement of astrocyte in the hippocampus. Furthermore, MH could increase long-term potential (LTP) in the hippocampal dentate gyrus (DG) and activation of hippocampal caspase4 blocked MH's enhancement on neuronal activities and synaptic plasticity in the hippocampal DG. To sum up, the antidepressant effects of a rich component MH in Fructus Aurantii suppressed the activation of caspase4 by maintaining glial cells function to promote neuronal activities and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Nga-Lee Wong
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China.
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China; The Guangdong-Hongkong, Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain, Periphery Homeostasis and Comprehensive Health, Guangzhou 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai 519070, PR China.
| |
Collapse
|