1
|
Mohamed FF, Phanrungsuwan A, de Oliveira FA, Millán JL, Foster BL. Dentoalveolar defects and impaired alveolar bone healing in a neural crest directed conditional knockout mouse model of hypophosphatasia. Bone 2025; 198:117538. [PMID: 40398628 DOI: 10.1016/j.bone.2025.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
Hypophosphatasia (HPP) is an inherited error-of-metabolism caused by loss-of-function mutations in ALPL-encoded tissue-nonspecific alkaline phosphatase (TNAP). HPP has wide-ranging severity, including a clinical subtype called odontohypophosphatasia (odonto HPP), which selectively affects craniofacial structures. Dentoalveolar defects in HPP can affect enamel, dentin, and alveolar bone, and deficient acellular cementum contributes to tooth loss. Global Alpl knockout phenocopies effects of severe HPP, but early lethality precludes longer-term studies. Aiming to create a mouse model replicating dentoalveolar effects of HPP, we used Wnt1Cre2 mice to conditionally delete Alpl in ectomesenchymal cells that make dentin, cementum, periodontal ligament (PDL), and alveolar bone. We compared appendicular and craniofacial skeletal effects of Wnt1Cre2 to Prx1Cre conditional Alpl ablation in limb bud mesenchyme. We also tested alveolar bone socket healing in Wnt1Cre2; Alplfl/fl conditional knockout mice and the effect of TNAP-Fc-D10 enzyme replacement therapy (ERT) on socket healing. Prx1Cre; Alplfl/fl mice exhibited 38 % reduced circulating alkaline phosphatase (ALP) and long bone defects, but no craniofacial phenotypes. Wnt1Cre2; Alplfl/fl mice featured 60 % reduced ALP and profound mineralization defects in dentin, cementum, and alveolar bone, but no appendicular skeleton changes. Defects were noted in neural crest-derived intersphenoid synchondrosis of the cranial base and mandibular condyle of Wnt1Cre2; Alplfl/fl mice. Extraction of maxillary molars in Wnt1Cre2; Alplfl/fl mice revealed profound alveolar bone healing defects that were partially rescued by ERT. Cranial neural crest deletion of Alpl resulted in a mouse model phenocopying odonto HPP that can be used to investigate mechanisms underlying pathologies as well as interventions.
Collapse
Affiliation(s)
- F F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Phanrungsuwan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F Amadeu de Oliveira
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
3
|
Hallett SA, Dixon A, Marrale I, Batoon L, Brenes J, Zhou A, Arbiv A, Kaartinen V, Allen B, Ono W, Franceschi RT, Ono N. RUNX2 is essential for maintaining synchondrosis chondrocytes and cranial base growth. Bone Res 2025; 13:57. [PMID: 40442075 PMCID: PMC12122814 DOI: 10.1038/s41413-025-00426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 06/02/2025] Open
Abstract
The cranial base synchondroses, comprised of opposite-facing bidirectional chondrocyte layers, drive anteroposterior cranial base growth. In humans, RUNX2 haploinsufficiency causes cleidocranial dysplasia associated with deficient midfacial growth. However, how RUNX2 regulates chondrocytes in the cranial base synchondroses remains unknown. To address this, we inactivated Runx2 in postnatal synchondrosis chondrocytes using a tamoxifen-inducible Fgfr3-creER (Fgfr3-Runx2cKO) mouse model. Fgfr3-Runx2cKO mice displayed skeletal dwarfism and reduced anteroposterior cranial base growth associated with premature synchondrosis ossification due to impaired chondrocyte proliferation, accelerated hypertrophy, apoptosis, and osteoclast-mediated cartilage resorption. Lineage tracing reveals that Runx2-deficient Fgfr3+ cells failed to differentiate into osteoblasts. Notably, Runx2-deficient chondrocytes showed an elevated level of FGFR3 and its downstream signaling components, pERK1/2 and SOX9, suggesting that RUNX2 downregulates FGFR3 in the synchondrosis. This study unveils a new role of Runx2 in cranial base chondrocytes, identifying a possible RUNX2-FGFR3-MAPK-SOX9 signaling axis that may control cranial base growth.
Collapse
Affiliation(s)
- Shawn A Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ashley Dixon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Isabella Marrale
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - José Brenes
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Annabelle Zhou
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ariel Arbiv
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biological and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
4
|
Yang B, Tan M, Xiong F. Global trends in osteoimmunology and osteoporosis research: A bibliometric analysis from 2013 to 2022. Medicine (Baltimore) 2025; 104:e42367. [PMID: 40324222 PMCID: PMC12055078 DOI: 10.1097/md.0000000000042367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND A large number of studies have shown that osteoporosis is closely related to bone immunology. The purpose of this study is to conduct bibliometrics and visual analysis of the fields related to osteoimmunology and osteoporosis from 2013 to 2022 and to summarize the research hotspots and trends in this field. METHODS We searched the Web of Science core collection database for articles on osteoimmunology and osteoporosis published between 2013 and 2022. Vosviewer 1.6.18 and CiteSpace.6.2. R4 were used to analyze the retrieved data. RESULTS A total of 3218 articles on osteoimmunology and osteoporosis were included in this study. A total of 76 countries, 347 institutions, and 502 authors were included in the articles examined in this study. The main research countries were China, the United States, and South Korea. Shanghai Jiaotong University, Harvard University, and the University of California system were the main research institutions. The author who published the most papers was Xu, Jiake. CONCLUSIONS This study is the first to summarize the global research trends in the field of osteoimmunology and osteoporosis from 2013 to 2022. That helps researchers quickly understand the research hotspots and directions in this field.
Collapse
Affiliation(s)
- Bencheng Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingshuai Tan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fusheng Xiong
- Department of Spine Surgery, Suining Municipal Hospital of Traditional Chinese Medicine, Suining, Sichuan, China
| |
Collapse
|
5
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
6
|
Zhang M, Xiong W, Qiao R, Li M, Zhang C, Yang C, Zhu Y, He J, Ma Z. Irisin in the modulation of bone and cartilage homeostasis: a review on osteoarthritis relief potential. Front Physiol 2025; 16:1570157. [PMID: 40313878 PMCID: PMC12043700 DOI: 10.3389/fphys.2025.1570157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Osteoarthritis, a progressive and degenerative joint disease, disrupts the integrity of the entire joint structure, underscoring the urgency of identifying more effective therapeutic strategies and innovative targets. Among these, exercise therapy is considered a key component in the early management of osteoarthritis, functioning by stimulating the secretion of myokines from the skeletal muscle system. Irisin, a myokine predominantly secreted by skeletal muscle during exercise and encoded by the FNDC5 gene, has garnered attention for its regulatory effects on bone health. Emerging evidence suggests that irisin may play a protective role in osteoarthritis by promoting tissue homeostasis, enhancing subchondral bone density and microstructure, and inhibiting chondrocyte apoptosis. By improving chondrocyte viability, preserving extracellular matrix integrity, and maintaining homeostasis in osteoblasts, osteoclasts, and osteocytes, irisin emerges as a promising therapeutic target for osteoarthritis. This review delves into the role of irisin in osteoarthritis pathogenesis, highlighting its influence on cartilage and bone metabolism as well as its dynamic relationship with exercise. Additionally, this review suggests that further exploration on its specific molecular mechanisms, optimization of drug delivery systems, and strategic utilization of exercise-induced benefits will be pivotal in unlocking the full potential of irisin as a novel intervention for osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaying He
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Lang F, Li Y, Yao R, Jiang M. Osteopontin in Chronic Inflammatory Diseases: Mechanisms, Biomarker Potential, and Therapeutic Strategies. BIOLOGY 2025; 14:428. [PMID: 40282293 PMCID: PMC12024743 DOI: 10.3390/biology14040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), atherosclerosis, and inflammatory bowel disease (IBD), pose major global health concerns. These disorders are marked by persistent inflammation, immune system dysfunction, tissue injury, and fibrosis, ultimately leading to severe organ dysfunction and diminished quality of life. Osteopontin (OPN), a multifunctional extracellular matrix protein, plays a crucial role in immune regulation, inflammation, and tissue remodeling. It promotes immune cell recruitment, stimulates pro-inflammatory cytokine production, and contributes to fibrosis through interactions with integrins and CD44 receptors. Additionally, OPN activates key inflammatory pathways, including NF-κB, MAPK, and PI3K/Akt, further aggravating tissue damage in chronic inflammatory conditions. Our review highlights the role of OPN in chronic inflammation, its potential as a biomarker, and its therapeutic implications. We explore promising preclinical approaches, such as monoclonal antibodies, small molecule inhibitors, and natural compounds like curcumin, which have demonstrated potential in mitigating OPN-driven inflammation. However, challenges persist in selectively targeting OPN while maintaining its essential physiological roles, including bone remodeling and wound healing. Our review offers insights into therapeutic strategies and future research directions.
Collapse
Affiliation(s)
- Fuyuan Lang
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Yuanheng Li
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Ruizhe Yao
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
8
|
Ali ET, Mohammed AN, Khudairi AS, Sulaiman GM, Mohammed HA, Abomughayedh AM, Abomughaid MM. The Extensive Study of Magnesium Deficiency, 25-(OH) Vitamin D3, Inflammatory Markers, and Parathyroid Hormone in Relation to Bone Mineral Density in Iraqi Osteoporosis Patients: A Cross-Sectional Study. Health Sci Rep 2025; 8:e70641. [PMID: 40213265 PMCID: PMC11982515 DOI: 10.1002/hsr2.70641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Backgrounds and Aims Magnesium is essential for bone development and mineralization and may influence osteoporosis progression. However, its relationship with low bone mineral density (BMD) and fracture risk is not well understood. This study aimed to identify the primary risk factors and the effect of magnesium deficiency on bone density in osteoporosis patients. Methods The study involved 162 adults categorized into normal, osteopenia, and osteoporosis groups, plus 50 healthy individuals. BMD of the lumbar spine (L1-L4) and femur neck, body mass index, and T-scores were assessed via dual-energy X-ray absorptiometry, while serum magnesium, 25-(OH) Vitamin D3, inflammatory markers, and other clinical tests were measured. The results showed significant variations in BMD, T-scores, magnesium, and vitamin 25(OH)D levels. Results Notably, osteoporosis patients exhibited a substantial decline in mean BMD along with an increase in mean T-scores. They also had significantly lower serum levels of magnesium, vitamin 25(OH)D, and calcium, compared to other groups, while parathyroid hormone levels slightly increased. Inflammatory markers were significantly elevated in osteoporosis patients. Magnesium and vitamin 25(OH)D showed an inverse relationship with T-scores and a direct positive correlation with BMD and bone mineral content. Additionally, a negative correlation between magnesium and inflammatory markers was observed. The findings highlighted a strong correlation between magnesium deficiency and osteoporosis, with a more significant odds ratio compared to factors like 25(OH)D, PTH, BMD, T-score, and calcium. Conclusion Magnesium deficiency has a more pronounced impact on bone health than vitamin D deficiency. Thus, magnesium deficiency emerges as a major risk factor for osteoporosis progression and a predictor of fracture incidence in patients with osteoporosis or osteopenia.
Collapse
Affiliation(s)
- Eman T. Ali
- Department of Clinical Laboratory Sciences, College of PharmacyUniversity of BasrahBasrahIraq
| | | | | | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied SciencesUniversity of TechnologyBaghdadIraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityQassimSaudi Arabia
| | - Ali M. Abomughayedh
- Department of PharmacyAseer Central Hospital, Ministry of HealthAsirSaudi Arabia
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesUniversity of BishaBishaSaudi Arabia
| |
Collapse
|
9
|
Anloague A, Sabol HM, Kaur J, Khan S, Ashby C, Schinke C, Barnes CL, Alturkmani F, Ambrogini E, Gundesen MT, Lund T, Amstrup AK, Andersen TL, Diaz-delCastillo M, Roodman GD, Bellido T, Delgado-Calle J. A novel CCL3-HMGB1 signaling axis regulating osteocyte RANKL expression in multiple myeloma. Haematologica 2025; 110:952-966. [PMID: 39605211 PMCID: PMC11959238 DOI: 10.3324/haematol.2024.286484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell proliferative malignancy characterized by a debilitating bone disease. Osteolytic destruction, a hallmark of MM, is driven by increased osteoclast number and exacerbated bone resorption, primarily fueled by the excessive production of RANKL, the master regulator of osteoclast formation, within the tumor niche. We previously reported that osteocytes, the most abundant cells in the bone niche, promote tumor progression and support MM bone disease by overproducing RANKL. However, the molecular mechanisms underlying RANKL dysregulation in osteocytes in the context of MM bone disease are not entirely understood. Here, we present evidence that MM-derived CCL3 induces upregulation of RANKL expression in both human and murine osteocytes. Through a combination of in vitro, ex vivo, and in vivo models and clinical data, we demonstrate that genetic or pharmacologic inhibition of CCL3 prevents RANKL upregulation in osteocytes and attenuates the bone loss induced by MM cells. Mechanistic studies revealed that MM-derived CCL3 triggers the secretion of HMGB1 by osteocytes, a process required for osteocytic RANKL upregulation by MM cells. These findings identify a previously unknown CCL3-HMGB1 signaling axis in the MM tumor niche that drives bone resorption by promoting RANKL overproduction in osteocytes.
Collapse
Affiliation(s)
- Aric Anloague
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Hayley M Sabol
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Japneet Kaur
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Sharmin Khan
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Cody Ashby
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, US; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Carolina Schinke
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, US; Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR
| | - C Lowry Barnes
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR
| | - Farah Alturkmani
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences Little Rock, AR
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences Little Rock, AR, US; Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Michael Tveden Gundesen
- Department of Hematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Anne Kristine Amstrup
- Department of Endocrinology and Internal Medicine (MEA), THG, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Levin Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Forensic Medicine, University of Aarhus, Aarhus, Denmark
| | | | - G David Roodman
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Teresita Bellido
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, US; Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences Little Rock, AR, US; Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Jesus Delgado-Calle
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, US; Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences Little Rock, AR.
| |
Collapse
|
10
|
Ali MM, Nookaew I, Resende-Coelho A, Marques-Carvalho A, Warren A, Fu Q, Kim HN, O’Brien CA, Almeida M. Mechanisms of mitochondrial reactive oxygen species action in bone mesenchymal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.643319. [PMID: 40196660 PMCID: PMC11974693 DOI: 10.1101/2025.03.24.643319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mitochondrial (mt)ROS, insufficient NAD+, and cellular senescence all contribute to the decrease in bone formation with aging. ROS can cause senescence and decrease NAD+, but it remains unknown whether these mechanisms mediate the effects of ROS in vivo. Here, we generated mice lacking the mitochondrial antioxidant enzyme Sod2 in osteoblast lineage cells targeted by Osx1-Cre and showed that Sod2ΔOsx1 mice had low bone mass. Osteoblastic cells from these mice had impaired mitochondrial respiration and attenuated NAD+ levels. Administration of an NAD+ precursor improved mitochondrial function in vitro but failed to rescue the low bone mass of Sod2ΔOsx1 mice. Single-cell RNA-sequencing of bone mesenchymal cells indicated that ROS had no significant effects on markers of senescence but disrupted parathyroid hormone signaling, iron metabolism, and proteostasis. Our data supports the rationale that treatment combinations aimed at decreasing mtROS and senescent cells and increasing NAD+ should confer additive effects in delaying age-associated osteoporosis.
Collapse
Affiliation(s)
- Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics; University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research; University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adriana Marques-Carvalho
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Qiang Fu
- Center for Musculoskeletal Disease Research; University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research; University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles A O’Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research; University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research; University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Lead contact
| |
Collapse
|
11
|
Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Zhou Y, Liang Q, Lin Y, Bandyopadhyay S, Tan K, Choi Y, Liu XS, Qin L. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. Bone Res 2025; 13:39. [PMID: 40102423 PMCID: PMC11920254 DOI: 10.1038/s41413-025-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis and lineage tracing revealed that Adipoq+ cells contain not only MALPs but also some mesenchymal progenitors capable of osteogenic differentiation. In situ hybridization showed that RANKL mRNA is only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qi He
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huan Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hanli Guo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corben Braun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yilu Zhou
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiushi Liang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuewei Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shovik Bandyopadhyay
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yongwen Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Kiryaman G, Enabulele I, Banville ML, Divieti Pajevic P. The Evolving Role of PTH Signaling in Osteocytes. Endocrinology 2025; 166:bqaf034. [PMID: 39950982 PMCID: PMC12057396 DOI: 10.1210/endocr/bqaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 05/09/2025]
Abstract
Over the past decade, advancements in cell line development and genetic tools have led to a wealth of new insights into the effects of parathyroid hormone (PTH), particularly on osteocytes-cells deeply embedded within the bone's mineral matrix. These cells were once believed to be inactive bystanders, with little, if any, role in skeletal and mineral homeostasis. This concept of passive osteocytes has been challenged in recent years and osteocytes are now recognized for their crucial functions in skeletal mechanotransduction, bone modeling and remodeling, mineral ion regulation, and hematopoiesis. Moreover, osteocytes are key targets of PTH, and studies utilizing genetically modified mice, in which the PTH receptor is either deleted or overexpressed, have shed light on the hormone's complex effects on these cells. Several signaling molecules, including salt kinase inhibitors and histone deacetylases, have been identified as part of PTH's intracellular signaling cascade. In addition to its effects on bone metabolism, PTH has also been implicated in regulating bone energy metabolism, skeletal aging, and hematopoiesis. This review summarizes both classical and emerging effects of PTH on osteocytes, highlights the limitations of current research, and offers perspectives for future investigations in the field.
Collapse
Affiliation(s)
- Gokce Kiryaman
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Irobosa Enabulele
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Myra L Banville
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Divieti Pajevic
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
14
|
Zhang K, Liu Y, Lu Y, Liu G, Shen X. Involvement of icaritin in the regulation of osteocyte exosomal microRNAs. J Orthop Surg Res 2025; 20:164. [PMID: 39953581 PMCID: PMC11827220 DOI: 10.1186/s13018-025-05583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE To explore the effects of Icaritin (ICA) on the regulation of osteocyte exosomal miRNAs and to promote the understanding of the potential molecular mechanisms involved in bone repair by ICA. METHODS MLO-Y4 cells were treat with PBS or 10 µM ICA for 24 h and the supernatant was collected. Exosomes were isolated and purified according to standard methods, and identified by transmission electron microscopy, nanoparticle tracking analysis and protein blotting. Exosomal miRNAs were analysed by RNA sequencing. RESULTS Osteocyte exosomes were successfully isolated and characterised. MiRNA sequencing showed that two known exosomal miRNAs (miR-128-3p, miR-30a-5p) were significantly up-regulated and two were significantly down-regulated (miR-5112, miR-1285) after ICA intervention. CONCLUSION Based on the findings, ICA regulates several miRNAs of osteocytes, which deepen our understanding of the therapeutic effects and mechanisms of ICA on skeletal diseases. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteocytes are the most abundant cell type in bone tissue, of which the impact on bone homeostasis is still not clear. This study explored the impact of icaritin on osteocytes and their derived exosomes. By doing so, we hope to contribute to the understanding the therapeutic potential of ICA and osteocytes in maintaining bone health and treating conditions such as osteoporosis.
Collapse
Affiliation(s)
- Kaijia Zhang
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Yujiang Liu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Yue Lu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Gongwen Liu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Xiaofeng Shen
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China.
| |
Collapse
|
15
|
Ma G, Cheng S, Han Y, Tang W, Pang W, Chen L, Ding Z, Cao H. The p53-miR17 family-Rankl axis bridges liver-bone communication. Mol Ther 2025; 33:631-648. [PMID: 40308192 PMCID: PMC11853355 DOI: 10.1016/j.ymthe.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025] Open
Abstract
Our study elucidates the crucial role of the liver in bone homeostasis through the p53-miR17 family (miR17-miR20/miR20-miR106/miR93-miR106)-Rankl axis. We demonstrate the enhanced hepatocyte Rankl expression in inflammaging conditions, such as aging, ovariectomized (OVX) mice, and elderly humans. Mice with hepatocyte-specific Rankl deletion exhibit significant resistance to bone mass loss associated with aging, lipopolysaccharide (LPS)-induced inflammation, or estrogen deficiency, compared with controls. Our study highlights hepatocytes as the primary source of Rankl in the liver and serum under these conditions. We identify the p53-miR17 family axis as a crucial regulator for hepatocyte Rankl expression, with p53 inhibiting the miR17 family transcription. Through bioinformatics analysis and in vitro validation, we identify Rankl mRNA as a direct target of the miR17 family. Targeting this axis via CasRx-mediated mRNA editing or miRNA interference significantly attenuates bone mass loss in mice. Our investigation underscores the pivotal significance and therapeutic potential of modulating the p53-miR17 family-Rankl axis in the treatment of inflammaging-associated osteoporosis.
Collapse
Affiliation(s)
- Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Chen Y, Liu Y, Fu Z, Xu J, Guo L, Cao H, Gan L, Gao S, Liu Y. GalNAc-Conjugated siRNA Targeting Complement C3 Inhibits Osteoclast Activation in Periodontitis. Oral Dis 2025; 31:589-599. [PMID: 39472674 DOI: 10.1111/odi.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 04/09/2025]
Abstract
OBJECTIVE The complement cascade plays an important role in the inflammation amplification and tissue destruction of periodontitis. Importantly, complement C3 was proved to be the central element of complement cascade. Thus, targeting inhibition of C3 has become one of the focuses of treatment method development and exploration. METHODS The siRNAs targeting C3 were designed and screened for in vitro potency. The selected siRNA was conjugated to GalNAc (GalNAc-C3 siRNA) for liver-specific delivery. The mouse model of periodontitis was established by silk ligation. Stereomicroscopy, Micro-CT, histological and histochemical assessment, and immunofluorescence staining were performed to evaluate the level of bone destructive and osteoclast activity. The influence of GalNAc-C3 siRNA on inflammatory reactions was determined by qRT-PCR, ELISA, and flow cytometry. RESULTS GalNAc-C3 siRNA showed great in vivo potency and durability to silence hepatic C3 mRNA expression. GalNAc-C3 siRNA treatment could effectively inhibit the production of inflammatory cytokines (IL-17A, TNF-α, IL-6, and IFN-γ) and restrain Th17 differentiation. Importantly, the expression of RANKL and differentiation of osteoclast were inhibited by GalNAc-C3 siRNA. CONCLUSION GalNAc-C3 siRNA could efficiently play a role in bone protection by inhibiting inflammatory responses and osteoclast activities. This therapeutic siRNA may become an effective treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongguo Fu
- Suzhou Ribo Life Science co. Ltd., Jiangsu, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Huiqing Cao
- Suzhou Ribo Life Science co. Ltd., Jiangsu, China
| | - Liming Gan
- Suzhou Ribo Life Science co. Ltd., Jiangsu, China
- Ribocure Pharmaceuticals AB, Gothenburg, Sweden
| | - Shan Gao
- Suzhou Ribo Life Science co. Ltd., Jiangsu, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Lee DK, Jin X, Choi PR, Cui Y, Che X, Lee S, Hur K, Kim HJ, Choi JY. Phospholipase C β4 promotes RANKL-dependent osteoclastogenesis by interacting with MKK3 and p38 MAPK. Exp Mol Med 2025; 57:323-334. [PMID: 39894822 PMCID: PMC11873240 DOI: 10.1038/s12276-025-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 02/04/2025] Open
Abstract
Phospholipase C β (PLCβ) is involved in diverse biological processes, including inflammatory responses and neurogenesis; however, its role in bone cell function is largely unknown. Among the PLCβ isoforms (β1-β4), we found that PLCβ4 was the most highly upregulated during osteoclastogenesis. Here we used global knockout and osteoclast lineage-specific PLCβ4 conditional knockout (LysM-PLCβ4-/-) mice as subjects and demonstrated that PLCβ4 is a crucial regulator of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation. The deletion of PLCβ4, both globally and in the osteoclast lineage, resulted in a significant reduction in osteoclast formation and the downregulation of osteoclast marker genes. Notably, male LysM-PLCβ4-/- mice presented greater bone mass and fewer osteoclasts in vivo than their wild-type littermates, without altered osteoblast function. Mechanistically, we found that PLCβ4 forms a complex with p38 mitogen-activated protein kinase (MAPK) and MAPK kinase 3 (MKK3) in response to RANKL-induced osteoclast differentiation, thereby modulating p38 activation. An immunofluorescence assay further confirmed the colocalization of PLCβ4 with p38 after RANKL exposure. Moreover, p38 activation rescued impaired osteoclast formation and restored the reduction in p38 phosphorylation caused by PLCβ4 deficiency. Thus, our findings reveal that PLCβ4 controls osteoclastogenesis via the RANKL-dependent MKK3-p38 MAPK pathway and that PLCβ4 may be a potential therapeutic candidate for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Poo-Reum Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ying Cui
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
18
|
Panahipour L, Abbasabadi AO, Shao F, Gruber R. Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures. Cytotechnology 2025; 77:39. [PMID: 39781111 PMCID: PMC11707159 DOI: 10.1007/s10616-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.7 macrophage cell lines for their potential to modulate in vitro osteoclastogenesis in murine bone marrow cultures. We also tested the impact of necrotic lysates on modulating the expression of inflammatory cues in murine ST2 bone marrow stromal cells. We report here that independent of human or murine origin, all cell lysates significantly reduced in vitro osteoclastogenesis in bone marrow cultures, as indicated by the expression of the osteoclast marker genes cathepsin K and tartrate-resistant acid phosphatase and the respective histochemical staining in multinucleated cells. We also found that lysates from HSC2 and TR146 cells significantly pushed the expression of CCL2, CCL5, CXCL1, IL1, and IL6 in ST2 cells. These findings suggest that oral cell lysates reduce in vitro osteoclastogenesis, but only damaged oral squamous carcinoma cells can force murine stromal cells to produce an inflammatory environment.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Feng Shao
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
19
|
Zhang S, Gao M, Song S, Zhao T, Zhou B, Wang H, Tian W, Zhao W, Zhao J. Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances. Genesis 2025; 63:e70012. [PMID: 39959950 DOI: 10.1002/dvg.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
Osteoporosis is a metabolic bone disease primarily caused by a decreased bone formation and increased bone resorption. Osteoclasts are a special class of terminally differentiated cells that play an important role in normal bone remodeling and bone loss in osteoporosis as well as in a variety of osteolytic diseases. Osteoclasts can be differentiated from monocyte-macrophage cells of the hematopoietic system; they are the key cells in bone resorption. Osteoclast formation and differentiation are regulated by various cytokines and transcription factors. In this review, we summarize recent advances in research on the regulation of osteoclast differentiation and function by factors such as M-CSF, RANKL, AP-1, NFATC1, MITF, and PU.1. Understanding these cytokines and transcription factors can not only help identify targets for osteoclast differentiation but also aid in intervening in the treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Meng Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Shuzhe Song
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Tongdan Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Wenpeng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
20
|
Ninomiya H, Fukuda S, Nishida-Fukuda H, Shibata Y, Sato T, Nakamichi Y, Nakamura M, Udagawa N, Miyazawa K, Suzuki T. Osteoprotegerin secretion and its inhibition by RANKL in osteoblastic cells visualized using bioluminescence imaging. Bone 2025; 191:117319. [PMID: 39500402 DOI: 10.1016/j.bone.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Bone remodeling is regulated by the interaction between receptor activator of nuclear factor kappa-B ligand (RANKL) and its receptor RANK on osteoblasts and osteoclasts, respectively. Osteoprotegerin (OPG) is secreted from osteoblasts and inhibits osteoclast differentiation by acting as a decoy receptor for RANKL. Despite its importance, the mechanism underlying the secretion of OPG remains poorly understood. Here, we applied a method of video-rate bioluminescence imaging using a fusion protein with Gaussia luciferase (GLase) and visualized the secretion of OPG from living mouse osteoblastic MC3T3-E1 cells. The bioluminescence imaging revealed that the secretion of OPG fused to GLase (OPG-GLase) occurred frequently and widely across the cell surface. Notably, co-expression of RANKL significantly reduced the secretion of OPG-GLase, indicating an inhibitory role of RANKL on OPG secretion within cells. Further imaging and biochemical analyses using deletion mutants of OPG and RANKL, as well as RANKL mutants that cause autosomal recessive osteopetrosis, demonstrated the essential role of protein-protein interaction between OPG and RANKL in the inhibition of OPG secretion. Treatment with proteasome inhibitors resulted in increased levels of OPG in both culture medium and cell lysates. However, the fold-increase of OPG was similar regardless of the presence or absence of RANKL, suggesting that the regulation of OPG secretion by RANKL is independent of proteasome activity. This report visualized the secretion of OPG from living cells and provided evidence for a novel intracellular inhibitory effect of RANKL on OPG secretion.
Collapse
Affiliation(s)
- Hotsuna Ninomiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Hisayo Nishida-Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yuto Shibata
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
21
|
Miura M, Kitaura H, Ohori F, Narita K, Ren J, Noguchi T, Marahleh A, Ma J, Lin A, Fan Z, Mizoguchi I. Role of CXCL10 released from osteocytes in response to TNF-α stimulation on osteoclasts. Sci Rep 2025; 15:3040. [PMID: 39856227 PMCID: PMC11760356 DOI: 10.1038/s41598-025-87092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a significant cytokine that regulates bone resorption under inflammatory conditions. However, its mechanism of action in osteocytes remains unclear. In this study, highly purified osteocytes were isolated from dentin matrix protein 1 (DMP1)-Topaz mice using cell sorter. RNA sequencing (RNA-seq) revealed that TNF-α stimulation increased C-X-C motif chemokine ligand 10 (CXCL10) gene expression in osteocytes. Although CXCL10 did not affect osteoclast differentiation in vitro, it enhanced the migration of osteoclast precursors. Additionally, in the transwell co-culture system, TNF-α induced the migration of osteoclast precursors. However, this effect was attenuated by a CXCL10-neutralizing antibody. In vivo, mice were administered supracalvarial injections of TNF-α with or without the CXCL10-neutralizing antibody for 5 days. The percentage of CXCL10-positive osteocytes increased after TNF-α administration. Additionally, osteoclast formation and bone resorption were assessed. CXCL10-neutralizing antibody-treated calvariae exhibited a significantly lower number of osteoclasts and bone resorption than those treated with TNF-α alone. These results indicated that TNF-α-induced CXCL10, which affects the migration of osteocyte-derived osteoclast precursors, may enhance TNF-α-triggered osteoclast formation and bone resorption in vivo.
Collapse
Affiliation(s)
- Mariko Miura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kohei Narita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Jiayi Ren
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Angyi Lin
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Ziqiu Fan
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
22
|
Xu H, Luo Y, An Y, Wu X. The mechanism of action of indole-3-propionic acid on bone metabolism. Food Funct 2025; 16:406-421. [PMID: 39764708 DOI: 10.1039/d4fo03783a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity. Additionally, IPA provides indirect protection to bone health by regulating host immune responses and inflammation via activation of receptors such as the Aryl hydrocarbon Receptor (AhR) and the Pregnane X Receptor (PXR). This review summarizes the roles and signaling pathways of IPA in bone metabolism and its impact on various bone metabolic disorders. Furthermore, we discuss the therapeutic potential and limitations of IPA in treating bone metabolic diseases, aiming to offer novel strategies for clinical management.
Collapse
Affiliation(s)
- Huimin Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi An
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Sheng MHC, Rundle CH, Baylink DJ, Lau KHW. Conditional Deletion of Gremlin-1 in Cathepsin K-expressing Mature Osteoclasts Altered the Skeletal Response to Calcium Depletion in Sex-Dependent Manner. Calcif Tissue Int 2025; 116:28. [PMID: 39789342 PMCID: PMC11717885 DOI: 10.1007/s00223-024-01337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover. In response to calcium depletion, male cKO mutants showed greater increases in osteoclastic resorption and trabecular bone loss than male WT littermates, indicating an enhanced skeletal sensitivity to calcium depletion in male mutants. The enhanced sensitivity to calcium depletion was sex-dependent, as female cKO mutants showed lower increases in osteoclastic resorption and bone loss than female WT littermates as well as male cKO mutants. The sex disparity in osteoclastic resorption response to calcium stress was intrinsic to osteoclasts since osteoclasts of male but not female cKO mutants showed greater in vitro bone resorption activity than osteoclasts of WT littermates of respective sex. Male cKO mutants displayed smaller bone formation response to calcium depletion than male WT littermates, while female mutants showed bigger bone formation response than female WT littermates, indicating that cKO mutants also displayed sex disparity in bone formation response. The sex disparity in bone formation response was not caused by intrinsic differences in osteoblasts but might be due to sex-dependent differential osteoclastic release of osteogenic factors. In summary, osteoclast-derived gremlin-1 has complicated and sex-dependent regulatory roles in skeletal response to calcium stress.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David J Baylink
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
25
|
Blank MA, Sims NA. Isolation, Purification, Generation, and Culture of Osteocytes. Methods Mol Biol 2025; 2885:51-66. [PMID: 40448755 DOI: 10.1007/978-1-0716-4306-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Osteocytes reside within the bone matrix and produce both paracrine and endocrine factors that influence the skeleton and other tissues. Despite their abundance and physiological importance, osteocytes have been challenging to study in vitro because they are difficult to extract and purify and do not retain their phenotype in standard culture conditions. New techniques for this purpose are emerging. This chapter will describe two methods and adaptations we use to study osteocytes: (1) isolating and purifying primary osteocytes from murine bone, with and without hematopoietic lineage depletion and (2) differentiating cultured osteoblasts or osteoblast-lineage cell lines (including cell lines termed "osteocytic") until they reach a stage of osteocytic gene expression. We will also discuss the limitations of these methods and possible directions for future improvements.
Collapse
Affiliation(s)
- Martha A Blank
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Guo Z, Hu Y, Zhou J, Zhang Y, Zhang J, Yang L, Wang S, Wu J, Yang J. Inhibition of osteocyte apoptosis does not prevent iron overload-induced bone resorption and bone loss. Biochem Biophys Res Commun 2025; 743:151152. [PMID: 39673971 DOI: 10.1016/j.bbrc.2024.151152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Iron overload leads to apoptosis and increased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in osteocytes, which in turn accelerates osteoclastogenesis. Since osteocytes are the main RANKL producers, we hypothesized that apoptotic osteocytes increase RANKL expression in osteocytes, which in turn stimulates osteoclastogenesis and bone resorption. In this study, alendronate or IG9402, a bisphosphonate (BP) analog which does not inhibit bone resorption, inhibited iron overload-induced osteocyte apoptosis and increased RANKL expression. Both BPs also prevented osteoblast apoptosis but did not inhibit the increase in osteoblastic RANKL. Alendronate, but not IG9402, prevented the increase in osteoclastogenesis and serum levels of the bone resorption marker C-telopeptide of type I collagen (CTX) in iron-overloaded mice. Alendronate also prevented the iron overload-induced reduction in femoral bone mineral density, disruption of bone microstructure, and weakness of bone strength. Although IG9402 did not prevent bone loss due to iron overload, it partially prevented reduction of strength, suggesting that osteocyte viability contributes to the maintenance of bone strength. In conclusion, although osteocyte apoptosis in the presence of iron overload leads to an increase in osteocytic RANKL production. However, blocking these events was not sufficient to inhibit iron overload-induced osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Yandong Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Junde Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Linbo Yang
- Department of Orthopedic Trauma, Dongguan Eighth People's Hospital, Dongguan, 523325, Guangdong, China
| | - Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China.
| | - Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
27
|
Sobacchi C, Menale C, Crisafulli L, Ficara F. Role of RANKL Signaling in Bone Homeostasis. Physiology (Bethesda) 2025; 40:0. [PMID: 39255276 DOI: 10.1152/physiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," Naples, Italy
| | - Laura Crisafulli
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Francesca Ficara
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
28
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
29
|
Wang Z, Deng W, Tang K, Zhou Y, Chen J, Wang B, Zhang Z, Zou J, Zhao W. Isoginkgetin Inhibits RANKL-induced Osteoclastogenesis and Alleviates Bone Loss. Biochem Pharmacol 2025; 231:116673. [PMID: 39613114 DOI: 10.1016/j.bcp.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Osteoporosis is characterized by excessive osteoclast activity leading to bone loss, decreased bone mineral density, and increased susceptibility to fractures. Through in vivo/vitro experiments, along with network pharmacology analysis, we aimed to explore the underlying mechanisms of Isoginkgetin (IGG) in inhibiting osteoclastogenesis, providing valuable insights for further research in the future. Firstly, we ascertained the safe concentration of IGG stimulation on BMMs, followed by a systematic exploration of the concentration gradient at which IGG inhibited osteoclastogenesis using TRAP analysis. An osteoporosis model was established to further validate the in vitro experimental findings by combining Micro-CT and immunohistochemical analysis. The results show that IGG did not exhibit cytotoxicity or proliferative effects on BMMs at concentrations equal to or less than 10 μM. Additionally, IGG inhibited the activity of osteoclastogenesis and bone resorption function at lower concentrations. RT-PCR and Western Blot results demonstrated that IGG could downregulate genes and proteins associated with osteoclastogenesis. The Western Blot results also showed that IGG inhibited the phosphorylation expression of P38, ERK, and P65 in the MAPK and NF-κB pathways. At the same time, it rescued the degradation of IκB-α at 15 and 60 min. IGG can also impact the relative expression levels of oxidative proteins such as SOD-1, HO-1, and catalase, thereby influencing cellular equilibrium and stress levels, ultimately inhibiting the formation of mature OC. In vivo experiments demonstrated that IGG alleviated bone loss caused by osteoclasts and improved relevant parameters of trabecular bone. So, IGG effectively attenuated osteoclastogenesis, and improved bone density, thereby portraying its role in osteoporosis management.
Collapse
Affiliation(s)
- Zihe Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Wei Deng
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Yi Zhou
- Nanjing University of Chinese Medicine, China
| | - Junchun Chen
- Shenzhen University of Advanced Technology, Chinese Academy of Sciences, China
| | - Bin Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Zhida Zhang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| | - Jian Zou
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; Dongguan Hospital of Traditional Chinese Medicine, China.
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| |
Collapse
|
30
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Ye L, Hua Z, Ding X, Wang J. Global Highly Cited Publication Trends and Research Hotspots in Osteoporosis and Bone Metabolic Cells: A Bibliometric and Visualization Analysis from 2013 to 2023. Endocr Metab Immune Disord Drug Targets 2025; 25:386-399. [PMID: 39005119 DOI: 10.2174/0118715303300989240702043834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis. OBJECTIVE This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of "Osteoporosis and bone metabolic cells". Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain. METHODS The Web of Science (WOS) Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles. RESULTS Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. Nature medicine has the highest journal impact factor of 82.9, highlighting its prominence. The journal of bone and mineral research ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact. CONCLUSION This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingshan Ye
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| | - Xinxin Ding
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
32
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Lu S, Fang C. Isosakuranetin inhibits subchondral osteoclastogenesis for attenuating osteoarthritis via suppressing NF-κB/CXCL2 axis. Int Immunopharmacol 2024; 143:113321. [PMID: 39388890 DOI: 10.1016/j.intimp.2024.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
As the most predominant form of arthritis, osteoarthritis (OA) is featured with irreversible progress and involvement of the whole joint. Since OA onset, abnormal mechanical load initiates excessive osteoclastogenesis, evolving a rapid turnover of subchondral bone, cyst creation, synovitis, cartilage degradation, and ultimately resulting in joint failure. Additionally, aberrant vascularization and nociceptive pain are invoked by osteoclast-induced angiogenesis and sensory innervation in the subchondral bone. Rhizoma anemarrhenae (Zhimu) has been extensively demonstrated to show multiple pharmacological effects including anti-inflammation, anti-aging, and immunomodulation. Herein, Broussonin a (BRA), Markogein (MAN), and Isosakuranetin (ISN) derived from Rhizoma anemarrhenae, were initially discovered for their affinity with Bone marrow mononuclear cell (BMMC) membranes using the Cell membrane chromatography/Time of flight mass spectrometry (CMC/TOFMS) method, while only ISN exerted a significant inhibitory effect on RANKL-induced osteoclastogenesis in BMMC in vitro. Intriguingly, we disclosed that ISN blunted the overactivation of Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in subchondral bone in OA mice, as indicated by enhanced bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabeculae thickness (Tb.Th), as well as diminished trabecular pattern factor (Tb.pf). Treatment with ISN also impaired aberrant angiogenesis and nociceptive reaction in the subchondral bone marrow. Moreover, ISN hindered the loss of articular cartilage proteoglycan and lowered the Osteoarthritis Research Society International (OARSI) grade, boosting the expression amount of Aggrecan (ACAN) and Collagen II (COL II) positive cells while reducing Matrix metalloproteinase 13 (MMP-13) positive cells. For mechanisms, We verified that ISN hampered subchondral osteoclastogenesis by blocking nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 2 (CXCL2) stimulation. Taken together, we reveal that ISN impedes the progression of OA by preventing hyperactivated subchondral osteoclastogenesis via suppressing the NF-κB/CXCL2 axis.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
34
|
Tripathi AK, Dabeer S, Song J, Vikulina T, Roser-Page S, Alvarez JA, Archer DR, Weitzmann MN. Hydroxyurea blunts mitochondrial energy metabolism and osteoblast and osteoclast differentiation exacerbating trabecular bone loss in sickle cell mice. Cell Death Dis 2024; 15:907. [PMID: 39695103 DOI: 10.1038/s41419-024-07296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Sickle cell disease (SCD) is a severe hematological disorder characterized by erythrocyte sickling that causes significant morbidity and mortality. Skeletal complications of SCD include a high incidence of bone loss, especially in vertebrae, leading to fragility fractures that contribute to disease burden. Whether hydroxyurea (HU), a front-line therapy for SCD ameliorates bone disease has not been established. To investigate HU action on SCD-related vertebral defects, we used HU-treated "Townes" mice, an SCD animal model and performed high-resolution micro-computed tomography (µCT) imaging to resolve bone volume and micro-architectural structure of cortical and trabecular bone, the two major compartments contributing to bone mass and strength. Our data revealed that cortical bone was significantly diminished in the vertebrae of skeletally mature (representing adults) and immature (representing children) SCD mice, while only mature mice lost trabecular bone mass. Administration of HU ameliorated cortical bone loss in mature SCD mice, but paradoxically promoted trabecular bone decline in both groups. We further investigated the mechanisms of HU action in wild-type C57BL6/J mice. HU caused dose-dependent trabecular bone loss due to diminished osteoclast and osteoblast function, indicative of a low bone turnover state. Mechanistic investigations in vitro revealed that HU impeded osteoblast-progenitor proliferation and early differentiation, and diminished osteoclastogenic cytokine production, blunting osteoclast formation as well as the activity of mature osteoclasts. HU further, suppressed mitochondrial, but not glycolytic energy metabolism in both differentiating osteoblasts and differentiated osteoclasts. Collectively, these findings reveal that despite ameliorating cortical bone loss, HU inhibits trabecular bone formation and resorption, by suppressing mitochondrial energy metabolism and blunting the differentiation and/or activity of osteoblasts and osteoclasts. Together HU drives a low bone turnover state culminating in trabecular bone loss. Further investigation into HU's impact on bone in SCD patients is warranted for understanding and managing skeletal complications in this population.
Collapse
Affiliation(s)
- Ashish Kumar Tripathi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sadaf Dabeer
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jun Song
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tatyana Vikulina
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Susanne Roser-Page
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David R Archer
- Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
35
|
Zhang JW, Zhao FB, Ma B, Shen XQ, Geng YM. Fluoxetine inhibited RANKL-induced osteoclastic differentiation in vitro. Open Med (Wars) 2024; 19:20241094. [PMID: 39711842 PMCID: PMC11662947 DOI: 10.1515/med-2024-1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024] Open
Abstract
Selective serotonin reuptake inhibitor correlates with decreased bone mineral density and impedes orthodontic tooth movement. The present study aimed to examine the effects of fluoxetine on osteoclast differentiation and function. Human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.7 cells were cultured with RANKL to stimulate osteoclast differentiation. The resulting multinucleated cells displayed characteristics of mature osteoclasts. Fluoxetine at 0.01-1 μM did not impact cellular viability or oxidative stress. However, 10 μM fluoxetine significantly reduced clonal growth, cell viability, and increased cytotoxicity and lipid peroxidation in RAW 264.7 cells. Further, application of 0.1 μM fluoxetine potently suppressed osteoclast differentiation of both RAW264.7 and hPBMCs, with reduced osteoclast numbers and downregulation of osteoclastic genes matrix metalloproteinase-9, cathepsin K, and integrin β3 at mRNA and protein levels. Fluoxetine also disrupted F-actin ring formation essential for osteoclast resorptive function. Mechanistically, fluoxetine inhibited NF-kB signaling by reducing phosphorylation of pathway members IκBα and p65, preventing IκBα degradation and blocking p65 nuclear translocation. In conclusion, this study demonstrates fluoxetine suppressing osteoclast differentiation in association with disrupting NF-kB activation, providing insight into orthodontic treatment planning for patients taking fluoxetine.
Collapse
Affiliation(s)
- Jing-wen Zhang
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-bing Zhao
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing’er Ma
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-qing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan-ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- East China Institute of Digital Medical Engineering, Shangrao, China
| |
Collapse
|
36
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
37
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Li X, Zhang C, Vail CE, Sherrill JT, Xiong J. Piezo1 expression in mature osteocytes is dispensable for the skeletal response to mechanical loading. Bone 2024; 190:117276. [PMID: 39389439 DOI: 10.1016/j.bone.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Mechanical loading is essential for bone growth and homeostasis, with osteocytes considered the primary mechanosensors. Deleting the mechanosensitive ion channel Piezo1 from Dmp1-Cre-targeted cells, which include both osteoblasts and osteocytes, resulted in reduced bone mass and impaired skeletal responses to mechanical stimuli. To specifically isolate Piezo1's role in osteocytes, we used Sost-Cre mice to generate mice with Piezo1 deletion exclusively in mature osteocytes. These mice exhibited lower bone mineral density, decreased cancellous bone mass, and reduced cortical thickness with decrease periosteal expansion. However, unlike mice lacking Piezo1 in both osteoblasts and osteocytes, those with Piezo1 deletion in mature osteocytes responded normally to mechanical loading. These findings suggest that Piezo1 expression in mature osteocytes contributes to bone maintenance under normal physiological condition, but is dispensable for the skeletal response to mechanical loading.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Connie Zhang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cameron E Vail
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John T Sherrill
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
39
|
Yin Y, Chen G, Yang C, Wang J, Peng J, Huang X, Tang Q, Chen L. Osteocyte ferroptosis induced by ATF3/TFR1 contributes to cortical bone loss during ageing. Cell Prolif 2024; 57:e13657. [PMID: 38764128 PMCID: PMC11471391 DOI: 10.1111/cpr.13657] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Cortical bone loss is intricately associated with ageing and coincides with iron accumulation. The precise role of ferroptosis, characterized by iron overload and lipid peroxidation, in senescent osteocytes remains elusive. We found that ferroptosis was a crucial mode of osteocyte death in cortical bone during ageing. Using a single-cell transcriptome analysis, we identified activating transcription factor 3 (ATF3) as a critical driver of osteocyte ferroptosis. Elevated ATF3 expression in senescent osteocytes promotes iron uptake by upregulating transferrin receptor 1 while simultaneously inhibiting solute carrier family 7-member 11-mediated cystine import. This process leads to an iron overload and lipid peroxidation, culminating in ferroptosis. Importantly, ATF3 inhibition in aged mice effectively alleviated ferroptosis in the cortical bone and mitigated cortical bone mass loss. Taken together, our findings establish a pivotal role of ferroptosis in cortical bone loss in older adults, providing promising prevention and treatment strategies for osteoporosis and fractures.
Collapse
Affiliation(s)
- Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Guang‐Jin Chen
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Chen Yang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Jia‐Jia Wang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Jin‐Feng Peng
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Xiao‐Fei Huang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Qing‐Ming Tang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li‐Li Chen
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
40
|
James A, Hendrixson J, Kadhim I, Marques-Carvalho A, Laster J, Crawford J, Thostenson J, Sato A, Almeida M, Onal M. CRISPR activation of Tfeb , a master regulator of autophagy and lysosomal biogenesis, in osteoblast lineage cells increases bone mass and strength. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615175. [PMID: 39386619 PMCID: PMC11463346 DOI: 10.1101/2024.09.26.615175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a recycling pathway in which damaged or dysfunctional proteins, protein aggregates, and organelles are delivered to lysosomes for degradation. Insufficiency of autophagy is thought to contribute to several age-related diseases including osteoporosis. Consistent with this, elimination of autophagy from the osteoblast lineage reduces bone formation and causes low bone mass. However, whether increasing autophagy would benefit bone health is unknown. Here, we increased expression of the endogenous Transcription Factor EB gene ( Tfeb ) in osteoblast lineage cells in vivo via CRISPR activation. Tfeb overexpression stimulated autophagy and lysosomal biogenesis in osteoblasts. Tfeb overexpressing male mice displayed a robust increase in femoral and vertebral cortical thickness at 4.5 months of age. Histomorphometric analysis revealed that the increase in femoral cortical thickness was due to increased bone formation at the periosteal surface. Tfeb overexpression also increased femoral trabecular bone volume. Consistent with these results, bone strength was increased in Tfeb overexpressing mice. Female Tfeb overexpressing mice also displayed a progressive increase in bone mass over time and at 12 months of age had high cortical thickness and trabecular bone volume. This increase in vertebral trabecular bone volume was due to elevated bone formation. Osteoblastic cultures showed that Tfeb overexpression increased proliferation and osteoblast formation. Overall, these results demonstrate that stimulation of autophagy in osteoblast lineage cells promotes bone formation and strength and may represent an effective approach to combat osteoporosis.
Collapse
|
41
|
Li H, Xu WX, Tan JC, Hong YM, He J, Zhao BP, Zhou JA, Zheng YM, Lei M, Zheng XQ, Ding J, Liu NN, Gao JJ, Zhang CQ, Wang H. Single-cell multi-omics identify novel regulators required for osteoclastogenesis during aging. iScience 2024; 27:110734. [PMID: 39280596 PMCID: PMC11401210 DOI: 10.1016/j.isci.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Age-related osteoporosis manifests as a complex pathology that disrupts bone homeostasis and elevates fracture risk, yet the mechanisms facilitating age-related shifts in bone marrow macrophages/osteoclasts (BMMs/OCs) lineage are not fully understood. To decipher these mechanisms, we conducted an investigation into the determinants controlling BMMs/OCs differentiation. We performed single-cell multi-omics profiling on bone marrow samples from mice of different ages (1, 6, and 20 months) to gain a holistic understanding of cellular changes across time. Our analysis revealed that aging significantly instigates OC differentiation. Importantly, we identified Cebpd as a vital gene for osteoclastogenesis and bone resorption during the aging process. Counterbalancing the effects of Cebpd, we found Irf8, Sox4, and Klf4 to play crucial roles. By thoroughly examining the cellular dynamics underpinning bone aging, our study unveils novel insights into the mechanisms of age-related osteoporosis and presents potential therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben-Peng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Al-Bogami MM, Alkhorayef M, Sulieman A, Bradley D, Jawad AS, Mageed RA. The clinical assessment of changes in bone density in rheumatoid arthritis patients': Role of DEXA scan and bone turnover biomarkers. Appl Radiat Isot 2024; 211:111373. [PMID: 38851075 DOI: 10.1016/j.apradiso.2024.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/12/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
In addition to generalised of bone loss and a higher fracture risk, rheumatoid arthritis (RA) causes periarticular bone erosions. Improvements in bone density/erosion and turnover may not go hand in hand with a positive clinical response to biological anti-inflammatory drugs assesed by disease activity score 28 (DAS28) in RA patients. This study aimed to understand how biologic anti-inflammatory drugs affect bone density, erosion, and turnover in RA patients. We examined bone mineral density (BMD) and bone turnover biomarkers. The study population consisted of 62 RA patients, 49 (79%) of whom were female and 13 (21%) of whom were male. The patients ranged in age from 40 to 79 years old. The patients' BMD was measured using a DEXA scan, and their plasma levels of bone turnover biomarkers CTX and osteocalcin were quantified utilizing an ELISA. BMD of the hip and lumbar spine in responder patients rose after therapy by 0.001g/cm2 (0.11 percent, p0.001 vs. before treatment) and 0.0396g/cm2 (3.96 percent, p0.001 vs. before treatment), respectively. Clinically non-responder patients' DAS28 revealed minor reductions in hip BMD values of -0.008g/cm2 (-0.78 percent, p0.001 vs. before therapy), as well as an improvement in lumbar spine BMD of 0.03g/cm2 (3.03 percent, p0.001 vs. before treatment). After 12 weeks of therapy, the CTX levels in responder patients dropped from 164 125 pg/ml to 131 129 pg/ml. Osteocalcin levels in non-responder patients increased substantially from 11.6 ng/ml to 14.9 ng/ml after 12 weeks of therapy compared to baseline (p = 0.01). Treatment with biologic anti-inflammatory medicines decreases widespread bone loss in RA patients' hip and lumbar spine. The beneficial effects of therapy on BMD were not associated with changes in disease activity of RA patients. Changes in plasma levels of bone turnover biomarkers such as sCTX and osteocalcin confirmed the treatment's beneficial effects.
Collapse
Affiliation(s)
- M M Al-Bogami
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | - M Alkhorayef
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, P.O Box 10219 Riyadh 11433, Saudi Arabia
| | - A Sulieman
- Radiological Sciences Department, College of Applied Medical Sciences - Al Ahsa, King Saud bin Abdulaziz University for Health Sciences, Alhofuf, P.O.Box 2477, Al-Ahsa 3198, Saudi Arabia
| | - David Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, United Kingdom
| | - A S Jawad
- Department of Rheumatology, The Royal London Hospital, Mile End Road, London, UK
| | - R A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
Qin L, Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Lin Y, Zhou Y, Liang Q, Bandyopadhyay S, Tan K, Choi Y, Liu S. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. RESEARCH SQUARE 2024:rs.3.rs-4809633. [PMID: 39257979 PMCID: PMC11384808 DOI: 10.21203/rs.3.rs-4809633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis, lineage tracing, and in situ hybridization revealed that Adipoq+ cells contain not only MALPs but also late mesenchymal progenitors capable of osteogenic differentiation. However, RANKLmRNA was only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae within 1 month due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
| | | | - Qi He
- University of Pennsylvania
| | | | | | | | | | | | | | | | | | | | - Kai Tan
- The Children's Hospital of Philadelphia
| | - Yongwon Choi
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
44
|
Guo Z, Wu J, Hu Y, Zhou J, Li Q, Zhang Y, Zhang J, Yang L, Wang S, Zhang H, Yang J. Exogenous iron caused osteocyte apoptosis, increased RANKL production, and stimulated bone resorption through oxidative stress in a murine model. Chem Biol Interact 2024; 399:111135. [PMID: 38971422 DOI: 10.1016/j.cbi.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Iron overload is a risk factor for osteoporosis due to its oxidative toxicity. Previous studies have demonstrated that an excessive amount of iron increases osteocyte apoptosis and receptor activator of nuclear factor κ-B ligand (RANKL) production, which stimulates osteoclast differentiation in vitro. However, the effects of exogenous iron supplementation-induced iron overload on osteocytes in vivo and its role in iron overload-induced bone loss are unknown. This work aimed to develop an iron overloaded murine model of C57BL/6 mice by intraperitoneal administration of iron dextran for two months. The iron levels in various organs, bone, and serum, as well as the microstructure and strength of bone, apoptosis of osteocytes, oxidative stress in bone tissue, and bone formation and resorption, were assessed. The results showed that 2 months of exogenous iron supplementation significantly increased iron levels in the liver, spleen, kidney, bone tissue, and serum. Iron overload negatively affected bone microstructure and strength. Osteocyte apoptosis and empty lacunae rate were elevated by exogenous iron. Iron overload upregulated RANKL expression but had no significant impact on osteoprotegerin (OPG) and sclerostin levels. Static and dynamic histologic analyses and serum biochemical assay showed that iron overload increased bone resorption without significantly affecting bone formation. Exogenous iron promoted oxidative stress in osteocytes in vivo and in vitro. Additional supplementation of iron chelator (deferoxamine) or N-acetyl-l-cysteine (NAC) partially alleviated bone loss, osteocyte apoptosis, osteoclast formation, and oxidative stress due to iron overload. These findings, in line with prior in vitro studies, suggest that exogenous iron supplementation induces osteoclastogenesis and osteoporosis by promoting osteocyte apoptosis and RANKL production via oxidative stress.
Collapse
Affiliation(s)
- Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yandong Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Junde Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Linbo Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
45
|
Rong Y, Liang X, Jiang K, Jia H, Li H, Lu B, Li G. Global Trends in Research of Programmed Cell Death in Osteoporosis: A Bibliometric and Visualized Analysis (2000-2023). Orthop Surg 2024; 16:1783-1800. [PMID: 38923347 PMCID: PMC11293941 DOI: 10.1111/os.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis (OP) is a systemic metabolic bone disease that is characterized by decreased bone mineral density and microstructural damage to bone tissue. Recent studies have demonstrated significant advances in the research of programmed cell death (PCD) in OP. However, there is no bibliometric analysis in this research field. This study searched the Web of Science Core Collection (WoSCC) database for literature related to OP and PCD from 2000 to 2023. This study used VOSviewers 1.6.20, the "bibliometrix" R package, and CiteSpace (6.2.R3) for bibliometric and visualization analysis. A total of 2905 articles from 80 countries were included, with China and the United States leading the way. The number of publications related to PCD in OP is increasing year by year. The main research institutions are Shanghai Jiao Tong University, Chinese Medical University, Southern Medical University, Zhejiang University, and Soochow University. Bone is the most popular journal in the field of PCD in OP, and the Journal of Bone and Mineral Research is the most co-cited journal. These publications come from 14,801 authors, with Liu Zong-Ping, Yang Lei, Manolagas Stavros C, Zhang Wei, and Zhao Hong-Yan having published the most papers. Ronald S. Weinstein was co-cited most often. Oxidative stress and autophagy are the current research hot spots for PCD in OP. This bibliometric study provides the first comprehensive summary of trends and developments in PCD research in OP. This information identifies the most recent research frontiers and hot directions, which will provide a definitive reference for scholars studying PCD in OP.
Collapse
Affiliation(s)
- Yi‐fa Rong
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐Zhen Liang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Kai Jiang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Hai‐Feng Jia
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Han‐Zheng Li
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Bo‐Wen Lu
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Gang Li
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
46
|
Yuca H, Şenocak TÇ, Yiğit O, Albayrak MG, Güvenalp Z. Semi-quantitative analysis on sea buckthorn phenolic-rich extract coating bone-like open porous NiTi-based alloy. Heliyon 2024; 10:e34594. [PMID: 39114081 PMCID: PMC11305284 DOI: 10.1016/j.heliyon.2024.e34594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
This study investigates the feasibility of coating Ni-Ti alloy with sea buckthorn extract via a hydrothermal method for targeted delivery of beneficial phenolic compounds to bone tissue. The qualitative analysis confirmed the presence of flavonoids and tannins in sea buckthorn extract, supporting its osteogenic potential. The microhardness of the NiTi alloy substrate was suitable for biomedical applications, and successful coating was achieved without compromising its properties. NiTi alloy samples were coated with 18.1, 20.1, and 12.4 mg of extract, respectively. Comprehensive evaluations confirmed the successful integration of the extract onto the alloy's surface. The coated system exhibited sustained release properties over five days, with the highest release occurring on the first day (on average 32.1 % for the first peak and 72.1 % for the second peak), as determined by HPLC analysis. The findings demonstrate the potential of this novel approach in developing dual-functionality implants for bone health promotion. Overall, this study underscores the promising potential of Ni-Ti alloy coated with sea buckthorn extract as a targeted drug delivery system for bone tissue.
Collapse
Affiliation(s)
- Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkiye
- Medicinal and Aromatic Plant and Drug Research Center, Ataturk University, 25240, Erzurum, Turkiye
| | - Taha Çağrı Şenocak
- Engineering Faculty, Department of Metallurgical and Materials Engineering, Ataturk University, Erzurum, 25240, Turkiye
| | - Oktay Yiğit
- Technology Faculty, Department of Metallurgical and Materials Engineering, Firat University, Elazig, 23119, Turkiye
- College of Engineering, Department of Chemical Engineering and Materials Science, Michigan State University, Lansıng, Michigan, 48912, USA
| | - Muhammet Gökhan Albayrak
- Engineering Faculty, Department of Metallurgical and Materials Engineering, Firat University, Elazig, 23119, Turkiye
| | - Zühal Güvenalp
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkiye
- Medicinal and Aromatic Plant and Drug Research Center, Ataturk University, 25240, Erzurum, Turkiye
| |
Collapse
|
47
|
Soloviova M, Beltrán-Vargas JC, Castro LFD, Belmonte-Beitia J, Pérez-García VM, Caballero M. A Mathematical Model for Fibrous Dysplasia: The Role of the Flow of Mutant Cells. Bull Math Biol 2024; 86:108. [PMID: 39007985 DOI: 10.1007/s11538-024-01336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Fibrous dysplasia (FD) is a mosaic non-inheritable genetic disorder of the skeleton in which normal bone is replaced by structurally unsound fibro-osseous tissue. There is no curative treatment for FD, partly because its pathophysiology is not yet fully known. We present a simple mathematical model of the disease incorporating its basic known biology, to gain insight on the dynamics of the involved bone-cell populations, and shed light on its pathophysiology. We develop an analytical study of the model and study its basic properties. The existence and stability of steady states are studied, an analysis of sensitivity on the model parameters is done, and different numerical simulations provide findings in agreement with the analytical results. We discuss the model dynamics match with known facts on the disease, and how some open questions could be addressed using the model.
Collapse
Affiliation(s)
- Mariia Soloviova
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela 3, Ciudad Real, 13071, Spain.
| | - Juan C Beltrán-Vargas
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela 3, Ciudad Real, 13071, Spain
| | - Luis Fernandez de Castro
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - Juan Belmonte-Beitia
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela 3, Ciudad Real, 13071, Spain
| | - Víctor M Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela 3, Ciudad Real, 13071, Spain
| | - Magdalena Caballero
- Department of Mathematics, Universidad de Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| |
Collapse
|
48
|
Dole NS, Betancourt-Torres A, Kaya S, Obata Y, Schurman CA, Yoon J, Yee CS, Khanal V, Luna CA, Carroll M, Salinas JJ, Miclau E, Acevedo C, Alliston T. High-fat and high-carbohydrate diets increase bone fragility through TGF-β-dependent control of osteocyte function. JCI Insight 2024; 9:e175103. [PMID: 39171528 PMCID: PMC11343608 DOI: 10.1172/jci.insight.175103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity can increase the risk of bone fragility, even when bone mass is intact. This fragility stems from poor bone quality, potentially caused by deficiencies in bone matrix material properties. However, cellular and molecular mechanisms leading to obesity-related bone fragility are not fully understood. Using male mouse models of obesity, we discovered TGF-β signaling plays a critical role in mediating the effects of obesity on bone. High-carbohydrate and high-fat diets increase TGF-β signaling in osteocytes, which impairs their mitochondrial function, increases cellular senescence, and compromises perilacunar/canalicular remodeling and bone quality. By specifically inhibiting TGF-β signaling in mouse osteocytes, some of the negative effects of high-fat and high-carbohydrate diets on bones, including the lacunocanalicular network, perilacunar/canalicular remodeling, senescence, and mechanical properties such as yield stress, were mitigated. DMP1-Cre-mediated deletion of TGF-β receptor II also blunted adverse effects of high-fat and high-carbohydrate diets on energy balance and metabolism. These findings suggest osteocytes are key in controlling bone quality in response to high-fat and high-carbohydrate diets. Calibrating osteocyte function could mitigate bone fragility associated with metabolic diseases while reestablishing energy balance.
Collapse
Affiliation(s)
- Neha S. Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Andrés Betancourt-Torres
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Yoshihiro Obata
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cristal S. Yee
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Vivek Khanal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Clarissa Aguirre Luna
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Madeline Carroll
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Jennifer J. Salinas
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth Miclau
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
49
|
Schiavone ML, Crisafulli L, Camisaschi C, De Simone G, Liberati FR, Palagano E, Rucci N, Ficara F, Sobacchi C. Rankl genetic deficiency and functional blockade undermine skeletal stem and progenitor cell differentiation. Stem Cell Res Ther 2024; 15:203. [PMID: 38971808 PMCID: PMC11227705 DOI: 10.1186/s13287-024-03803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.
Collapse
Affiliation(s)
- M L Schiavone
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - L Crisafulli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - C Camisaschi
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - G De Simone
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - F R Liberati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - E Palagano
- Institute of Biosciences and Bioresources, CNR, via Madonna Del Piano 10, Sesto Fiorentino, 50019, FI, Italy
| | - N Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, L'Aquila, 67100, Italy
| | - F Ficara
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy.
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy.
| |
Collapse
|
50
|
Niu J, Bi F, Tian Q, Tian K. Melittin Treats Periprosthetic Osteolysis in a Rat Model by Inhibiting the NF-kB Pathway and Regulating the Ratio of Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin. J Arthroplasty 2024; 39:1845-1855. [PMID: 38336308 DOI: 10.1016/j.arth.2024.01.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Aseptic loosening around the prosthesis is a common cause of failure in total joint arthroplasty. Polyethylene wear particles trigger the release of inflammatory factors by macrophages. Key mediators involved in osteoclastogenesis include interleukin-6, tumor necrosis factor-α, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and bone protection hormone (Osteoprotegerin [OPG]). The purpose of our experiment was to see whether melittin can slow down the release of inflammatory mediators through the NF-kB pathway, regulate the RANKL/OPG ratio, reduce osteoclast formation, and delay the onset of arthritis in rats. METHODS A total of 20 male Sprague-Dawley rats (10 months, Specific Pathogen Free, 350 g ± 20 g) were randomly divided into 5 groups: sham group, model group, melittin concentration 1 group (0.2 mg/kg), concentration 2 group (0.4 mg/kg), and concentration 3 group (0.6 mg/kg). All rats were implanted with TA2 high-purity titanium rods. A drill was used to create a bone canal along the long axis of the femur in the intercondylar notch. The model group and experimental groups were exposed to polyethylene particles, while the sham group did not receive any particles. RESULTS The melittin group exhibited significantly increased serum levels of serum P, calcium-phosphorus product, OPG, PINP, PINP/CTX-I, and OPG/RANKKL (P < .05). In the experimental group, micro computed tomography scanning results revealed a decrease in the amount of bone defect around the prosthesis. Immunofluorescence analysis demonstrated a decrease in the expression of IKKα and P65, while the expression of OPG showed an upward trend. Both Hematoxylin-Eosin and Tartrate-Resistant Acid Phosphatase staining revealed less osteoclast and inflammatory cell infiltration in bone resorption pits. CONCLUSIONS Our study demonstrates that melittin has the ability to inhibit the NF-kB pathway in a rat model, and reduce the impact of RANKL/OPG, thereby delaying osteoclast activity and alleviating periprosthetic osteolysis.
Collapse
Affiliation(s)
- Junqi Niu
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Fanggang Bi
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Qing Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Ke Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| |
Collapse
|