1
|
Jiang T, Jin H, Ji X, Zheng X, Xu CX, Zhang PJ. Drivers of centrosome abnormalities: Senescence progression and tumor immune escape. Semin Cancer Biol 2025; 110:56-64. [PMID: 39929410 DOI: 10.1016/j.semcancer.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
Centrosome abnormalities are a distinguishing feature of cancer and play a role in the aging process. Cancer cells may evade the immune system by activating immune checkpoints, altering their surrounding microenvironment, abnormalities in antigen presentation and recognition, and metabolic reprogramming to inhibit T-cell activity, allowing cancer cells to survive and spread within the host. When the centrosomes are abnormally shaped or numbered, mitotic errors can occur, cellular senescence occurs, cell death occurs, genomic instability occurs, and aneuploidy forms, resulting in diseases such as cancer. The present study is exploring the strategy of research progress in which centrosome abnormalities contribute to the aging process in various different ways as well as fuel immune escape from cancer cells, providing a new direction for cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xintong Ji
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing 40003, China
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
2
|
Guan Y, Deng S, Zou X, Wei W, Li Z, Zhong J, Zhu Y, Zhang D, Ju Y, Sun QY, Zhang H. Nano-encapsulated senolytic cocktail attenuates germ cell senescence in female mice. Cell Mol Life Sci 2025; 82:164. [PMID: 40249520 PMCID: PMC12008094 DOI: 10.1007/s00018-025-05697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Low-quality oocytes directly affect fertilization and embryonic development, contributing to infertility in women, while germ cell senescence leads to reduced germ cell numbers and decreased egg quality. Dasatinib and quercetin (D and Q), as senolytic drugs, have been extensively explored in different age-related diseases. However, their effects on in vitro cultured senescent oocytes and the molecular mechanisms underpinning ovarian aging remain elusive. Here, we report that a nano-encapsulated senolytic D + Q cocktail efficiently improves the quality of post-ovulatory aging oocyte in vitro and follicle quantity in ovaries in a cyclophosphamide (Cy)-induced premature ovarian failure (POF) mouse model. Cocktail supplementation to cultured oocytes potently reduces reactive oxygen species (ROS) levels, maintains spindle integrity, decreases fragmented oocyte frequencies, rescues mislocalized cortical granules (CGs) and mitochondrial membrane potential (MMP), and alleviates DNA damage and apoptosis. Importantly, the cocktail effectively ameliorates fertility deficits in the model. Transcriptome analysis shows cocktail administration to fertility-deficient mice not only up-regulates developmental gene expression but also reduces senescence-associated secretory phenotype (SASP) accumulation. Therefore, our nano-encapsulated D + Q cocktail is a promising reagent for assisted reproductive technology and improving reproductive outcomes in POF.
Collapse
Affiliation(s)
- Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaopeng Zou
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Wenlu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Zechen Li
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Jiajing Zhong
- Department of Reproductive Health and Infertility, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 518025, People's Republic of China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
3
|
Lemos G, Fernandes CMADS, Watanabe IKM, Delbin MA, Silva FH, Calmasini FB. Trehalose induces bladder smooth muscle hypercontractility in mice: involvement of oxidative stress and cellular senescence. Front Physiol 2025; 16:1572139. [PMID: 40255637 PMCID: PMC12006093 DOI: 10.3389/fphys.2025.1572139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Autophagy, a conserved catabolic process, is critical for cellular homeostasis and its dysregulation has been implicated in a number of conditions including hypertension, obesity and bladder dysfunctions. The autophagy inducer trehalose has shown promise in treating diseases; however, some studies have reported detrimental effects in vascular tissue under health conditions. In the bladder, the effects of trehalose remain unclear. Therefore, in the present study, male C57BL6/JUnib mice (8 weeks old) were divided into control and trehalose-treated groups (120 mg/mouse/day via gavage) for 4 weeks. After treatment, bladders were harvested for functional, biochemical, and molecular analyses. The trehalose treatment increased the bladder smooth muscle (BSM) contractility to carbachol (CCh), without altering relaxation response to isoproterenol. The CCh-induced BSM hypercontractility was completely abolished by the in vitro incubation of apocynin and diphenyleneiodonium (DPI), implicating NADPH oxidase-derived reactive oxygen species (ROS) on this process. Accordingly, increased levels of superoxide anion (O2-) were found in the urothelial layer, but not in BSM, of trehalose-treated mice. Trehalose also increased senescence-associated β-galactosidase activity in the bladder but failed to upregulate autophagy-related proteins LAMP1 and Beclin-1 in the bladder. Collectively, we show for the first time that trehalose induces BSM hypercontractility in mice, linked to increased levels of O2- and senescent cell, independently of autophagy activation. Therefore, trehalose administration is an effective model for studying BSM hypercontractility in mice, particularly associated with oxidative stress and cellular senescence.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Andreia Delbin
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Sao Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Chen L, Wu B, Mo L, Chen H, Yin X, Zhao Y, Cui Z, Cui F, Chen L, Deng Q, Gao C, Yao P, Li Y, Tang Y. High-content screening identifies ganoderic acid A as a senotherapeutic to prevent cellular senescence and extend healthspan in preclinical models. Nat Commun 2025; 16:2878. [PMID: 40128218 PMCID: PMC11933296 DOI: 10.1038/s41467-025-58188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Accumulated senescent cells during the aging process are a key driver of functional decline and age-related disorders. Here, we identify ganoderic acid A (GAA) as a potent anti-senescent compound with low toxicity and favorable drug properties through high-content screening. GAA, a major natural component of Ganoderma lucidum, possesses broad-spectrum geroprotective activity across various species. In C. elegans, GAA treatment extends lifespan and healthspan as effectively as rapamycin. Administration of GAA also mitigates the accumulation of senescent cells and physiological decline in multiple organs of irradiation-stimulated premature aging mice, natural aged mice, and western diet-induced obese mice. Notably, GAA displays a capability to enhance physical function and adapts to conditional changes in metabolic demand as mice aged. Mechanistically, GAA directly binds to TCOF1 to maintain ribosome homeostasis and thereby alleviate cellular senescence. These findings suggest a feasible senotherapeutic strategy for protecting against cellular senescence and age-related pathologies.
Collapse
Affiliation(s)
- Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, Hubei, China
| | - Bangfu Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingzhu Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZhaoYu Cui
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feipeng Cui
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, Hubei, China
| | - Chao Gao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Lu J, Cai J, Zhou Z, Ma J, Han T, Lu N, Zhu L. Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis. Biomaterials 2025; 321:123283. [PMID: 40222260 DOI: 10.1016/j.biomaterials.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study investigates the role of Gelatin-Catalase (Gel@CAT)-L hydrogel in mediating reactive oxygen species (ROS) production and maintaining mitochondrial homeostasis through SIRT3-mediated unfolded protein response (UPRmt), while exploring its involvement in the molecular mechanism of osteoarthritis (OA). METHODS Self-assembled Gel@CAT-L hydrogels were fabricated and characterized using transmission electron microscopy, mechanical testing, external release property evaluation, and oxygen production measurement. Biocompatibility was assessed via live/dead cell staining and CCK8 assays. An OA mouse model was established using destabilization of the medial meniscus (DMM) surgery. X-ray and micro-CT imaging were employed to evaluate the structural integrity of the mouse knee joints, while histological staining was used to assess cartilage degeneration. Immunohistochemistry was performed to analyze the expression of proteins including Col2a1, Aggrecan, MMP13, ADAMTS5, SIRT3, PINK1, and Parkin. Multi-omics analyses-encompassing high-throughput sequencing, proteomics, and metabolomics-were conducted to identify key genes and metabolic pathways targeted by Gel@CAT-L hydrogel intervention in OA. Immunofluorescence techniques were utilized to measure ROS levels, mitochondrial membrane potential, and the expression of SIRT3, PINK1, Parkin, LYSO, LC3B, Col2a1, and MMP13 in primary mouse chondrocytes and mouse knee joints. Flow cytometry was applied to quantify ROS-positive cells. RT-qPCR analysis was conducted to determine mRNA levels of Aggrecan, Col2a1, ADAMTS5, MMP13, SIRT3, mtDNA, HSP60, LONP1, CLPP, and Atf5 in primary mouse chondrocytes, mouse knee joints, and human knee joints. Western blotting was performed to measure protein expression levels of SIRT3, HSP60, LONP1, CLPP, and Atf5 in both primary mouse chondrocytes and mouse knee joints. Additionally, 20 samples each from the control (CON) and OA groups were collected for analysis. Hematoxylin and eosin staining was used to evaluate cartilage degeneration in human knee joints. The Mankin histological scoring system quantified the degree of cartilage degradation, while immunofluorescence analyzed SIRT3 protein expression in human knee joints. RESULTS In vitro experiments demonstrated that self-assembled Gel@CAT-L hydrogels exhibited excellent biodegradability and oxygen-releasing capabilities, providing a stable three-dimensional environment conducive to cell viability and proliferation while reducing ROS levels. Multi-omics analysis identified SIRT3 as a key regulatory gene in mitigating OA and revealed its central role in the UPRmt pathway. Furthermore, Gel@CAT-L was confirmed to regulate mitochondrial homeostasis. Both in vitro experiments and in vivo mouse model studies confirmed that Gel@CAT-L significantly reduced ROS levels and regulated mitochondrial autophagy by activating the SIRT3-mediated UPRmt pathway, thereby improving the pathological state of OA. Clinical trials indicated downregulation of SIRT3 and UPRmt-related proteins in OA patients. CONCLUSION Gel@CAT-L hydrogel activates SIRT3-mediated UPRmt to regulate ROS and mitochondrial homeostasis, providing potential therapeutic benefits for OA.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Jiao Cai
- Department of Medical Administration, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China
| | - Jun Ma
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China; Department of Orthopaedic Trauma, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200001, China
| | - Tianyu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China.
| |
Collapse
|
7
|
Nash J, Pym D, Davies A, Saunders C, George C, Williams JO, Grinberg OY, James PE. Enhanced oxygen availability and preserved aggregative function in platelet concentrates stored at reduced platelet concentration. Transfusion 2025; 65:575-587. [PMID: 39673310 PMCID: PMC11925141 DOI: 10.1111/trf.18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Storage of platelets as platelet concentrates for transfusion is limited to 7 days in the United Kingdom due to deleterious effects on platelet quality and function that occur over time. Oxygen (O2) availability and sufficient gaseous exchange are known to be essential in maintaining the viability and function of platelets stored for transfusion. Despite this, there is a paucity of studies undertaking direct measures of O2 and optimization of conditions throughout storage. We address this and modulate the storage conditions to improve platelet quality and function. STUDY DESIGN AND METHODS Electron paramagnetic resonance oximetry was implemented to directly measure the [O2] experienced by stored platelet concentrates and the O2 consumption rate under standard blood banking conditions. From these direct measures the mathematical modeling was then applied to predict the main parameters contributing to effective O2 distribution throughout the unit. RESULTS This study demonstrates reducing the storage [O2] to reflect near physiological levels significantly alters O2 distribution within the unit and negatively impacts platelet functionality and quality, and therefore is not a viable storage option. DISCUSSION We show the reduction of platelet concentration within a unit improves O2 availability and pH, promotes a more uniform distribution of O2 throughout prolonged storage, and maintains platelet agonist-induced aggregation comparable to 100% platelet concentration. This may be a viable option and could potentially lead to reduced donor demand.
Collapse
Affiliation(s)
- Jamie Nash
- Center for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
- Component Development and Research Laboratory, Welsh Blood Service NHS, Wales, UK
| | - Dean Pym
- Center for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - A Davies
- Center for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Christine Saunders
- Component Development and Research Laboratory, Welsh Blood Service NHS, Wales, UK
| | - Chloe George
- Component Development and Research Laboratory, Welsh Blood Service NHS, Wales, UK
| | - J O Williams
- Center for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - O Y Grinberg
- Dartmouth Medical School, Hanover, New Hampshire, USA
| | - Philip E James
- Center for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
8
|
Otgaar TC, Bernert M, Morris G, Baichan P, Bignoux MJ, Letsolo B, Weiss SFT, Ferreira E. 37 kDa LRP::FLAG enhances telomerase activity and reduces ageing markers in vivo. Cell Mol Life Sci 2025; 82:83. [PMID: 39985566 PMCID: PMC11846807 DOI: 10.1007/s00018-025-05593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
Ageing is a degenerative process characterised by a decline in physiological functioning of the organism. One of the core regulators of cellular ageing are telomeres, repetitive DNA sequences of TTAGGG that cap the ends of chromosomes and are maintained by the ribonucleoprotein complex, telomerase. Age-dependent progressive loss of the telomere ends eventually induces cell cycle arrest for the induction of either replicative senescence or apoptosis. It was previously established that overexpression of the 37 kDa/ 67 kDa laminin receptor (LRP/LR) increased telomerase activity and telomere length while concomitantly reducing senescence markers in aged normal cells in vitro. Therefore, it was hypothesized that elevating LRP/LR in vivo may increase telomerase activity and hinder the ageing process on an organism scale. To this end, aged C57BL/6J mice were treated/transfected to induce an overexpression of LRP::FLAG. Various physiological tests and histological analyses were performed to assess overall organism fitness as well as to discern the treatments' ability at reducing tissue degeneration and atrophy. It was found that mice overexpressing LRP::FLAG displayed improved physiological characteristics and markedly less tissue degeneration and atrophy when compared to control and non-treated mice. Alongside these improvements, certain organs displayed increased telomerase activity with a corresponding elongation in average telomere length. In addition the overexpression of LRP::FLAG significantly improved various proliferative and anti-ageing associated proteins while causing a concomitant decrease in senescence associated proteins. These findings are therefore indicative of a novel function of LRP/LR delaying the onset of senescence, while also promoting healthier ageing through elevating TERT and telomerase activity.
Collapse
Affiliation(s)
- Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Pavan Baichan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Boitelo Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa.
| |
Collapse
|
9
|
Puebla-Huerta A, Huerta H, Quezada-Gutierez C, Morgado-Cáceres P, Casanova-Canelo C, Niño SA, Linsambarth S, Díaz-Rivera O, López-Domínguez JA, Rodríguez-López S, González-Reyes JA, Bustos G, Silva-Pavez E, Lovy A, Quiroz G, González-Seguel C, Salas-Huenuleo E, Kogan MJ, Molgó J, Zakarian A, Villalba JM, Gonzalez-Billault C, Calì T, Ahumada-Castro U, Cárdenas JC. Calcium (Ca 2+) fluxes at mitochondria-ER contact sites (MERCS) are a new target of senolysis in therapy-induced senescence (TIS). NPJ AGING 2025; 11:11. [PMID: 39984524 PMCID: PMC11845618 DOI: 10.1038/s41514-025-00197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Therapy-induced senescence (TIS) alters calcium (Ca²⁺) flux and Mitochondria-ER Contact Sites (MERCS), revealing critical vulnerabilities in senescent cells. In this study, TIS was induced using Doxorubicin and Etoposide, resulting in an increased MERCS contact surface but a significant reduction in ER-mitochondria Ca²⁺ flux. Mechanistically, TIS cells exhibit decreased expression of IP3R isoforms and reduced interaction between type 1 IP3R and VDAC1, impairing Ca²⁺ transfer. This flux is crucial for maintaining the viability of senescent cells, highlighting its potential as a therapeutic target. Inhibition of ER-mitochondria Ca²⁺ flux demonstrates senolytic effects both in vitro and in vivo, offering a novel strategy for targeting senescent cells.
Collapse
Affiliation(s)
- Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Hernán Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Camila Quezada-Gutierez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Morgado-Cáceres
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - César Casanova-Canelo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Sandra A Niño
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Biology, Laboratory of Cellular and Neuronal Dynamics, Faculty of Sciences, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Sergio Linsambarth
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Osman Díaz-Rivera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - José Alberto López-Domínguez
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación del Cáncer of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Ophthalmology and Visual Sciences Center for Vision Research, SUNY Upstate Medical University, Syracuse, USA
| | - Gabriel Quiroz
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | | | | | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont, Santiago, Chile
- Advanced Center of Chronic Diseases (ACCDiS), Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Equipe Mixte de Recherche CNRS 9004, Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Biology, Laboratory of Cellular and Neuronal Dynamics, Faculty of Sciences, Universidad de Chile, Santiago, Región Metropolitana, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Public Health Unit, Institute for Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padua, Padua, Italy; Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile.
| | - J César Cárdenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
10
|
Zhang F, Cheng D, Porter KI, Heck EA, Wang S, Zhang H, Davis CJ, Robertson GP, Zhu J. Modification of the telomerase gene with human regulatory sequences resets mouse telomeres to human length. Nat Commun 2025; 16:1211. [PMID: 39905075 PMCID: PMC11794480 DOI: 10.1038/s41467-025-56559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Telomeres shorten with each cell division, serving as biomarkers of aging, with human tissues exhibiting short telomeres and restricted telomerase expression. In contrast, mice have longer telomeres and widespread telomerase activity, limiting their relevance as models for human telomere biology. To address this, we engineer a mouse strain with a humanized mTert gene (hmTert), replacing specific non-coding sequences with human counterparts. The hmTert gene, which is repressed in adult tissues except the gonads and thymus, closely mimics human TERT regulation. This modification rescues telomere dysfunction in mTert-knockout mice. Successive intercrosses of Terth/- mice stabilized telomere length below 10 kb, while Terth/h mice achieve a human-like average length of 10-12 kb, compared to 50 kb in wildtype mice. Despite shortened telomeres, Terth/h mice maintain normal body weight and cell homeostasis. These mice, with humanized telomere regulation, represent a valuable model to study human aging and cancer.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - De Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- 268 Linxin Road, Suite 11, Shanghai, 200335, China
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Emily A Heck
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Christopher J Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Gavin P Robertson
- Department of Pharmacology, Pathology, Dermatology, and Surgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
11
|
Kang D, Lee J, Yook G, Jeong S, Shin J, Kim MS, Kim YJ, Jung H, Ahn J, Kim TW, Chang MJ, Chang CB, Kang SB, Yang WH, Lee YH, Cho JW, Yi EC, Kang C, Kim JH. Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation. Nat Commun 2025; 16:1094. [PMID: 39904978 PMCID: PMC11794700 DOI: 10.1038/s41467-024-55085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Geunho Yook
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Sehan Jeong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jungkwon Shin
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Mi-Sung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Moon Jong Chang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Chanhee Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Suzuki Y, Yamaguchi K, Hardell KNL, Ota K, Kamikado T, Kawamura Y, Buffenstein R, Oka K, Miura K. Establishment of primary and immortalized fibroblasts reveals resistance to cytotoxic agents and loss of necroptosis-inducing ability in long-lived Damaraland mole-rats. GeroScience 2025; 47:1381-1396. [PMID: 39623066 PMCID: PMC11872962 DOI: 10.1007/s11357-024-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/27/2024] [Indexed: 03/04/2025] Open
Abstract
The Damaraland mole-rat (DMR; Fukomys damarensis) is a long-lived (~ 20 years) Bathyergid rodent that diverged 26 million years ago from its close relative, the naked mole-rat (NMR). While the properties of NMR cultured fibroblasts have been extensively studied and have revealed several unusual features of this cancer-resistant, long-lived species, comparative DMR studies are extremely limited. We optimized conditions for successfully culturing primary DMR skin fibroblasts and also established immortalized DMR cells using simian virus 40 early region expression. Like NMRs, DMR fibroblasts are more resistant than mice to various cytotoxins including heavy metals, DNA-damaging agents, oxidative stressors, and proteasome inhibitors. DMR genome sequencing analyses revealed the presence of premature stop codons in the master regulator genes of necroptosis, an inflammatory programmed cell death-receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), although these mutations have different locations to those found in the NMR. DMR cells, like NMR cells, did not show significantly increased cell death in response to necroptosis induction. Our data suggest that both Bathyergid species require species-specific cell culture conditions for optimized growth, display similar resistance to cytotoxins, and show loss-of-function mutations abrogating the ability to employ necroptosis. These shared traits may contribute to their evolved adaptations to their subterranean lifestyle and prolonged longevity. These convergent insights and valuable resource may be pertinent to biomedical research.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanta Yamaguchi
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | | | - Kurumi Ota
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Taira Kamikado
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
| | - Kaori Oka
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Kyoko Miura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
13
|
Jin C, Wang X, Yang J, Kim S, Hudgins AD, Gamliel A, Pei M, Contreras D, Devos M, Guo Q, Vijg J, Conti M, Hoeijmakers J, Campisi J, Lobo R, Williams Z, Rosenfeld MG, Suh Y. Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses. NATURE AGING 2025; 5:275-290. [PMID: 39578560 PMCID: PMC11839473 DOI: 10.1038/s43587-024-00762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
The ovary is the first organ to age in the human body, affecting both fertility and overall health. However, the biological mechanisms underlying human ovarian aging remain poorly understood. Here we present a comprehensive single-nuclei multi-omics atlas of four young (ages 23-29 years) and four reproductively aged (ages 49-54 years) human ovaries. Our analyses reveal coordinated changes in transcriptomes and chromatin accessibilities across cell types in the ovary during aging, notably mTOR signaling being a prominent ovary-specific aging pathway. Cell-type-specific regulatory networks reveal enhanced activity of the transcription factor CEBPD across cell types in the aged ovary. Integration of our multi-omics data with genetic variants associated with age at natural menopause demonstrates a global impact of functional variants on gene regulatory networks across ovarian cell types. We nominate functional non-coding regulatory variants, their target genes and ovarian cell types and regulatory mechanisms. This atlas provides a valuable resource for understanding the cellular, molecular and genetic basis of human ovarian aging.
Collapse
Affiliation(s)
- Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amir Gamliel
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mingzhuo Pei
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Melody Devos
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francico, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jan Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands
- Institute for Genome Stability in Ageing and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, Cologne, Germany
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rogerio Lobo
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zev Williams
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Lanzillotta S, Esteve D, Lanzillotta C, Tramutola A, Lloret A, Forte E, Pesce V, Picca A, Di Domenico F, Perluigi M, Barone E. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. Free Radic Biol Med 2025; 227:80-93. [PMID: 39586382 DOI: 10.1016/j.freeradbiomed.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of chromosome 21, and leading to various developmental and cognitive defects. A critical feature of DS is the occurrence of oxidative distress particularly in the brain, which exacerbates neurodevelopmental processes. Mitochondria play a crucial role in cell energy metabolism and their impairment is one of the major causes of oxidative distress in several pathologies. Hence, this study investigates mitochondrial proteostasis by the mean of the mitochondrial Unfolded Protein Response (UPRmt) and the mitochondrial protein quality control (MQC) mechanisms in the context of DS, focusing on their implications in redox homeostasis in brain development. We analyzed key UPRmt markers and mitochondrial function in the frontal cortex isolated fromTs2Cje mice, a model for DS, across different developmental stages. Our results demonstrate significant alterations in UPRmt markers, particularly at postnatal day 0 (P0) and 1 month (1M). These changes indicate early UPRmt activation, primarily driven by the ATF5/GRP75 axis, although compromised by reduced levels of other components. Impaired UPRmt correlates with decreased mitochondrial activity, evidenced by reduced oxygen consumption rates and altered expression of OXPHOS complexes. Additionally, elevated oxidative stress markers such as 3-nitrotyrosine (3-NT), 4-hydroxynonenal (HNE), and protein carbonyls (PC) were observed, linking mitochondrial dysfunction to increased oxidative damage. Defects of MQC, including disrupted biogenesis, increased fission, and the activation of mitophagy were evident mostly at P0 and 1M consistent with UPRmt activation. Principal Component Analysis revealed distinct phenotypic differences between Ts2Cje and control mice, driven by these molecular alterations. Our findings underscore the critical role of UPRmt and MQC in DS brain development, highlighting potential therapeutic targets to mitigate mitochondrial dysfunction and oxidative distress, thereby alleviating some of the neurodevelopmental and cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Chang S, Moon R, Nam D, Lee SW, Yoon I, Lee DS, Choi S, Paek E, Hwang D, Hur JK, Nam Y, Chang R, Park H. Hypoxia increases methylated histones to prevent histone clipping and heterochromatin redistribution during Raf-induced senescence. Nucleic Acids Res 2025; 53:gkae1210. [PMID: 39660649 PMCID: PMC11797049 DOI: 10.1093/nar/gkae1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Hypoxia enhances histone methylation by inhibiting oxygen- and α-ketoglutarate-dependent demethylases, resulting in increased methylated histones. This study reveals how hypoxia-induced methylation affects histone clipping and the reorganization of heterochromatin into senescence-associated heterochromatin foci (SAHF) during oncogene-induced senescence (OIS) in IMR90 human fibroblasts. Notably, using top-down proteomics, we discovered specific cleavage sites targeted by Cathepsin L (CTSL) in H3, H2B and H4 during Raf activation, identifying novel sites in H2B and H4. Hypoxia counteracts CTSL-mediated histone clipping by promoting methylation without affecting CTSL's activity. This increase in methylation under hypoxia protects against clipping, reshaping the epigenetic landscape and influencing chromatin accessibility, as shown by ATAC-seq analysis. These insights underscore the pivotal role of hypoxia-induced histone methylation in protecting chromatin from significant epigenetic shifts during cellular aging.
Collapse
Affiliation(s)
- Soojeong Chang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Ramhee Moon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Insoo Yoon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seunghyuk Choi
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunok Paek
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Youhyun Nam
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
16
|
Major-Styles CT, Munns J, Zeng A, Vanden Oever M, O'Neill JS, Edgar RS. Chronic CRYPTOCHROME deficiency enhances cell-intrinsic antiviral defences. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230344. [PMID: 39842480 PMCID: PMC11753882 DOI: 10.1098/rstb.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025] Open
Abstract
The within-host environment changes over circadian time and influences the replication and severity of viruses. Genetic knockout of the circadian transcription factors CRYPTOCHROME 1 and CRYPTOCHROME 2 (CRY1-/-/CRY2-/-; CKO) leads to altered protein homeostasis and chronic activation of the integrated stress response (ISR). The adaptive ISR signalling pathways help restore cellular homeostasis by downregulating protein synthesis in response to endoplasmic reticulum overloading or viral infections. By quantitative mass spectrometry analysis, we reveal that many viral recognition proteins and type I interferon (IFN) effectors are significantly upregulated in lung fibroblast cells from CKO mice compared with wild-type (WT) mice. This basal 'antiviral state' restricts the growth of influenza A virus and is governed by the interaction between proteotoxic stress response pathways and constitutive type I IFN signalling. CKO proteome composition and type I IFN signature were partially phenocopied upon sustained depletion of CRYPTOCHROME (CRY) proteins using a small-molecule CRY degrader, with modest differential gene expression consistent with differences seen between CKO and WT cells. Our results highlight the crosstalk between circadian rhythms, cell-intrinsic antiviral defences and protein homeostasis, providing a tractable molecular model to investigate the interface of these key contributors to human health and disease.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Christine T. Major-Styles
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Aiwei Zeng
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | | | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| |
Collapse
|
17
|
Guo S, Pan Q, Chen B, Huang Y, Li S, Gou C, Gao Y. Placental trophoblast aging in advanced maternal age is related to increased oxidative damage and decreased YAP. Front Cell Dev Biol 2025; 13:1479960. [PMID: 39906872 PMCID: PMC11790555 DOI: 10.3389/fcell.2025.1479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction The advanced maternal age (AMA) pregnancies escalate rapidly, which are frequently linked to higher risks of adverse outcomes. Advanced maternal age (AMA) placenta exhibited premature aging, presumably resulting in trophoblast dysfunction, inadequate placentation. However, the precise reasons and mechanisms of trophoblast aging in AMA placenta remain unclear, posing a significant limitation to provide effective guidance for prenatal healthcare in clinical settings. Notably, the organism shows heightened vulnerability to oxidative damage as it ages. YAP (Yes-associated protein) was reported to play a critical role in regulation of aging and resisting oxidative damage, yet these roles had not been elucidated in the placenta. Therefore, this study explored the relationship between trophoblast cell aging and oxidative injury and YAP in AMA pregnancy, which not only provided an insight into the mechanisms of trophoblast cell aging, but also provide valuable directions for healthcare during AMA pregnancy. Methods In this study, human term placentas were collected from AMA and normal pregnancies for the analysis of aging, oxidative damage and YAP level. HTR8/SVneo cells were manipulated with (hydrogen peroxide) H2O2 to explore the effects of oxidative damage on trophoblast cell senescence and YAP levels. YAP expression in HTR8/SVneo cells was manipulated to investigate its role in trophoblastic senescence and oxidative damage. Results Compared with the control group, the AMA placenta exhibits increased aging biomarkers, which is coupled with an elevation in oxidative damage within placental trophoblast cells and a notable decline in YAP levels. Cellular experiments demonstrated that oxidative damage from H2O2 triggered trophoblast cell senescence and resulted in a reduction of YAP levels. Furthermore, employing molecular modification to silence YAP expression in these cells led to an induction of aging. Conversely, overexpressing YAP ameliorated both trophoblast cell aging and the associated DNA oxidative damage that arised from H2O2. Conclusion The decline of YAP in AMA pregnancy should be responsible for the increased oxidative injury and premature placenta aging, indicating that YAP plays a significant role in combating oxidative damage and delaying aging, thereby providing a new guidance for prenatal care in AMA pregnancies. Maintaining YAP levels or implementing anti-oxidative stress interventions could potentially mitigate the incidence of complications involved AMA pregnancy.
Collapse
Affiliation(s)
- Song Guo
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokang Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Gou
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Haj M, Frey Y, Levon A, Maliah A, Ben-Yishay T, Slutsky R, Smoom R, Tzfati Y, Ben-David U, Levy C, Elkon R, Ziv Y, Shiloh Y. The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts. Proc Natl Acad Sci U S A 2025; 122:e2419196122. [PMID: 39772747 PMCID: PMC11745328 DOI: 10.1073/pnas.2419196122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging. We found that lung fibroblasts derived from ATM-deficient mice provide a versatile experimental system to explore the mechanisms driving the premature senescence of primary fibroblasts lacking ATM. Atm-/- fibroblasts failed to proliferate under ambient oxygen conditions (21%). Although they initially proliferated under physiological oxygen levels (3%), they rapidly entered senescence. In contrast, wild-type (WT) lung fibroblasts did not senesce under 3% oxygen and eventually underwent immortalization and neoplastic transformation. However, rapid senescence could be induced in WT cells either by Atm gene ablation or persistent chemical inhibition of ATM kinase activity, with senescence induced by ATM inhibition being reversible upon inhibitor removal. Moreover, the concomitant loss of ATM and p53 led to senescence evasion, vigorous growth, rampant genome instability, and subsequent immortalization and transformation. Our findings reveal that the rapid senescence of Atm-/- lung fibroblasts is driven by the collaborative action of the cGAS-STING, p38 MAPK, and p53 pathways in response to persistent DNA damage, ultimately leading to the induction of interferon-α1 and downstream interferon-stimulated genes. We propose that accelerated cellular senescence may exacerbate specific A-T symptoms, particularly contributing to the progressive, life-threatening interstitial lung disease often observed in A-T patients during adulthood.
Collapse
Affiliation(s)
- Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yann Frey
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Amit Levon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
19
|
Al Shueili B, Dantas A, Mahe E, Chu TH, Yang Y, Labit E, Kutluberk E, Lasaleta N, Masson A, Omairi H, Ito K, Krawetz RJ, Midha R, Cairncross G, Riabowol K. Knockout of the ING5 epigenetic regulator confirms roles in stem cell maintenance and tumor suppression in vivo. PLoS One 2025; 20:e0313255. [PMID: 39787145 PMCID: PMC11717183 DOI: 10.1371/journal.pone.0313255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells. Here we find that CRISPR/Cas9 ING5 knockout (KO) mice are sub-fertile but show no decrease in lifespan or ability to heal wounds despite indications of depleted stem cell pools in several tissues. ING5 KO mouse embryo fibroblasts accumulate in G2 of the cell cycle, have high levels of abnormal nuclei and show high basal levels of the γH2AX indicator of DNA damage. KO animals also develop severe dermatitis at a 5-fold higher rate that wild-type littermates. Consistent with ING5 serving a tumor suppressive role, ING5 KO mice developed germinal centre diffuse large B-cell lymphomas at a rate 6-fold higher than control mice at 18 months of age. These data suggest that ING5 functions in vivo to maintain stem cell character in multiple organs, that reduction of stem cell populations is not limiting for murine lifespan and that like a subset of other ING family members, ING5 functions as a tumor suppressor in hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Buthaina Al Shueili
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Arthur Dantas
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Etienne Mahe
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tak Ho Chu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Yang Yang
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Elodie Labit
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Eren Kutluberk
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nicolas Lasaleta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Anand Masson
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Hiba Omairi
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Kenichi Ito
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Roman J. Krawetz
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
- Departments of Surgery, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Gregory Cairncross
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| | - Karl Riabowol
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Masakazu Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Zhao H, Liu Z, Chen H, Han M, Zhang M, Liu K, Jin H, Liu X, Shi M, Pu W, Werner M, Meister M, Kauschke SG, Sun R, Wang J, Shen R, Wang QD, Ma X, Tchorz JS, Zhou B. Identifying specific functional roles for senescence across cell types. Cell 2024; 187:7314-7334.e21. [PMID: 39368477 DOI: 10.1016/j.cell.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16Ink4a-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16Ink4a+ cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16Ink4a+ macrophages significantly mitigates hepatocellular damage, whereas eliminating p16Ink4a+ ECs aggravates liver injury. Additionally, targeted reprogramming of p16Ink4a+ ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16Ink4a+ cells and offers insights for developing cell-type-specific senolytic therapies in the future.
Collapse
Affiliation(s)
- Huan Zhao
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zixin Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Chen
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Maoying Han
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hengwei Jin
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuxiu Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengyang Shi
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus Werner
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Meister
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Jinjin Wang
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xin Ma
- Department of Pharmacology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bin Zhou
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
23
|
Ishikawa T, Matsuda M, Ishikawa H, Toyomura J, Ohyama A, Sakamoto N, Zaboronok A, Ishikawa E. Establishment of a novel benign meningioma cell line spontaneously immortalized under hypoxic conditions. Hum Cell 2024; 38:22. [PMID: 39612090 DOI: 10.1007/s13577-024-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Meningiomas are the most frequent brain tumors, typically benign and curable by surgery. However, some patients experience repeated recurrences from residual tumors. To address such cases, the development of novel therapeutic options is crucial. For this purpose, the availability of cell lines that possess the characteristics of benign meningiomas is essential. Here, we established a benign meningioma cell line under 3% O2 hypoxic conditions without the induction of immortalization genes. This cell line, named TKB-MEN2, has been stably grown for over two years with more than 20 passages. There were no hotspot telomerase reverse transcriptase (TERT) promoter mutations or cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) homozygous deletions, which are genetic features typical of malignant meningiomas. Cultured under hypoxic conditions, this cell line showed fewer characteristics of cellular senescence, such as morphological changes, IL-6 secretion, and lower senescence-associated b-galactosidase activity, compared to the same cell line cultured under 20% O2 conditions. This immortalized non-transgenic cell line appears to reflect the characteristics of a genuine benign meningioma, potentially allowing the identification of new therapeutic targets and the development of novel therapies for benign meningiomas.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Graduate School of Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan.
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Akihiro Ohyama
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| |
Collapse
|
24
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
25
|
Ukon Y, Kaito T, Hirai H, Kitahara T, Bun M, Kodama J, Tateiwa D, Nakagawa S, Ikuta M, Furuichi T, Kanie Y, Fujimori T, Takenaka S, Yamamuro T, Otsuru S, Okada S, Yamashita M, Imamura T. Cellular senescence by loss of Men1 in osteoblasts is critical for age-related osteoporosis. Aging Cell 2024; 23:e14254. [PMID: 39384404 PMCID: PMC11464108 DOI: 10.1111/acel.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests an association between age-related osteoporosis and cellular senescence in the bone; however, the specific bone cells that play a critical role in age-related osteoporosis and the mechanism remain unknown. Results revealed that age-related osteoporosis is characterized by the loss of osteoblast Men1. Osteoblast-specific inducible knockout of Men1 caused structural changes in the mice bones, matching the phenotypes in patients with age-related osteoporosis. Histomorphometrically, Men1-knockout mice femurs decreased osteoblastic activity and increased osteoclastic activity, hallmarks of age-related osteoporosis. Loss of Men1 induces cellular senescence via mTORC1 activation and AMPK suppression, rescued by metformin treatment. In bone morphogenetic protein-indued bone model, loss of Men1 leads to accumulation of senescent cells and osteoporotic bone formation, which are ameliorated by metformin. Our results indicate that cellular senescence in osteoblasts plays a critical role in age-related osteoporosis and that osteoblast-specific inducible Men1-knockout mice offer a promising model for developing therapeutics for age-related osteoporosis.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takashi Kaito
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hiromasa Hirai
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takayuki Kitahara
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masayuki Bun
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Joe Kodama
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Daisuke Tateiwa
- Department of Orthopaedic SurgeryOsaka General Medical CenterOsakaOsakaJapan
| | - Shinichi Nakagawa
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masato Ikuta
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takuya Furuichi
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yuya Kanie
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takahito Fujimori
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shota Takenaka
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Satoru Otsuru
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Seiji Okada
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masakatsu Yamashita
- Department of ImmunologyEhime University Graduate School of MedicineToonEhimeJapan
| | - Takeshi Imamura
- Department of Molecular Medicine for PathogenesisEhime University Graduate School of MedicineToonEhimeJapan
| |
Collapse
|
26
|
Aquino LVCD, Olindo SL, Silva YLFE, Oliveira LRMD, Moura YBF, Rodrigues ALR, Praxedes ÉA, Oliveira MFD, Silva AR, Pereira AF. Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies. Acta Histochem 2024; 126:152185. [PMID: 39059228 DOI: 10.1016/j.acthis.2024.152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND In vitro culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for Galea spixii, therefore, it can be used to learn about its cellular biology and genetic diversity. OBJECTIVE We established fibroblast lines of six G. spixii individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them. METHODS Fibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation. RESULTS After the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified. CONCLUSION Fibroblasts up to the tenth passage could be cultured in vitro. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.
Collapse
Affiliation(s)
| | - Samara Lima Olindo
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | | | | | | | | - Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil. erikaalmeida-@hotmail.com
| | - Moacir Franco de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasma Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | |
Collapse
|
27
|
Austad SN. Judith Campisi (1948-2024): tribute and personal memory. GeroScience 2024:10.1007/s11357-024-01297-8. [PMID: 39090503 DOI: 10.1007/s11357-024-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- Steven N Austad
- Department of Biology, University of Alabama at Birmingham, 1720 Second Avenue South, Birmingham, AL, 35294-1120, USA.
| |
Collapse
|
28
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling Pericellular Oxygen Tension in Cell Culture Reveals Distinct Breast Cancer Responses to Low Oxygen Tensions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402557. [PMID: 38874400 PMCID: PMC11321643 DOI: 10.1002/advs.202402557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Saad Khan
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
| | - Khushbu Bhatt
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMA02115USA
| | - Alexandra Nukovic
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Guanyu Zhou
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of MedicineUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Daniele M. Gilkes
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Cellular and Molecular Medicine ProgramThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMD21218USA
- Johns Hopkins Institute for NanoBioTechnologyThe Johns Hopkins UniversityBaltimoreMD21218USA
| | - Nikolai Slavov
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Departments of BioengineeringBiologyChemistry and Chemical BiologySingle Cell Center and Barnett InstituteNortheastern UniversityBostonMA02115USA
- Parallel Squared Technology InstituteWatertownMA02472USA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Biomechanics and Bioengineering (BMBI)UTC CNRS UMR 7338University of Technology of CompiègneSorbonne UniversityCompiègne60203France
| |
Collapse
|
29
|
Alva R, Wiebe JE, Stuart JA. The effect of baseline O 2 conditions on the response of prostate cancer cells to hypoxia. Am J Physiol Cell Physiol 2024; 327:C97-C112. [PMID: 38646786 DOI: 10.1152/ajpcell.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The transcriptional response to hypoxia is largely regulated by the hypoxia-inducible factors (HIFs), which induce the expression of genes involved in glycolysis, angiogenesis, proliferation, and migration. Virtually all cell culture-based hypoxia experiments have used near-atmospheric (18% O2) oxygen levels as the baseline for comparison with hypoxia. However, this is hyperoxic compared with mammalian tissue microenvironments, where oxygen levels range from 2% to 9% O2 (physioxia). Thus, these experiments actually compare hyperoxia to hypoxia. To determine how the baseline O2 level affects the subsequent response to hypoxia, we cultured PC-3 prostate cancer cells in either 18% or 5% O2 for 2 wk before exposing them to hypoxia (∼1.1% pericellular O2) for 12-48 h. RNA-seq revealed that the transcriptional response to hypoxia was dependent on the baseline O2 level. Cells grown in 18% O2 before hypoxia exposure showed an enhanced induction of HIF targets, particularly genes involved in glucose metabolism, compared with cells grown in physioxia before hypoxia. Consistent with this, hypoxia significantly increased glucose consumption and metabolic activity only in cells previously cultured in 18% O2, but not in cells preadapted to 5% O2. Transcriptomic analyses also indicated effects on cell proliferation and motility, which were followed up by functional assays. Although unaffected by hypoxia, both proliferation and migration rates were greater in cells cultured in 5% O2 versus 18% O2. We conclude that an inappropriately hyperoxic starting condition affects the transcriptional and metabolic responses of PC-3 cells to hypoxia, which may compromise experiments on cancer metabolism in vitro.NEW & NOTEWORTHY Although human cell culture models have been instrumental to our understanding of the mechanisms involved in the cellular response to hypoxia, in virtually all experiments, cells are routinely cultured in near-atmospheric (∼18% O2) oxygen levels, which are hyperoxic relative to physiological conditions in vivo. Here, we show for the first time that cells cultured in physiological O2 levels (5% O2) respond differently to subsequent hypoxia than cells grown at 18%.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jacob E Wiebe
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jeffrey A Stuart
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| |
Collapse
|
30
|
Lanzillotta C, Tramutola A, Lanzillotta S, Greco V, Pagnotta S, Sanchini C, Di Angelantonio S, Forte E, Rinaldo S, Paone A, Cutruzzolà F, Cimini FA, Barchetta I, Cavallo MG, Urbani A, Butterfield DA, Di Domenico F, Paul BD, Perluigi M, Duarte JMN, Barone E. Biliverdin Reductase-A integrates insulin signaling with mitochondrial metabolism through phosphorylation of GSK3β. Redox Biol 2024; 73:103221. [PMID: 38843768 PMCID: PMC11190564 DOI: 10.1016/j.redox.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3β complex in response to insulin, hindering the accumulation of pGSK3βS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3βS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Andrea Urbani
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Joao M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy.
| |
Collapse
|
31
|
Niimi P, Gould V, Thrush-Evensen K, Levine ME. The Latent Aging of Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596284. [PMID: 38854054 PMCID: PMC11160607 DOI: 10.1101/2024.05.28.596284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
As epigenetic clocks have evolved from powerful estimators of chronological aging to predictors of mortality and disease risk, it begs the question of what role DNA methylation plays in the aging process. We hypothesize that while it has the potential to serve as an informative biomarker, DNA methylation could also be a key to understanding the biology entangled between aging, (de)differentiation, and epigenetic reprogramming. Here we use an unsupervised approach to analyze time associated DNA methylation from both in vivo and in vitro samples to measure an underlying signal that ties these phenomena together. We identify a methylation pattern shared across all three, as well as a signal that tracks aging in tissues but appears refractory to reprogramming, suggesting that aging and reprogramming may not be fully mirrored processes.
Collapse
Affiliation(s)
- Peter Niimi
- Program in Experimental Pathology, Yale University, New Haven, CT, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Victoria Gould
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | - Morgan E Levine
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| |
Collapse
|
32
|
Anerillas C, Perramon-Güell A, Altés G, Cuesta S, Vaquero M, Olomí A, Rodríguez-Barrueco R, Llobet-Navàs D, Egea J, Dolcet X, Yeramian A, Encinas M. Sprouty1 is a broad mediator of cellular senescence. Cell Death Dis 2024; 15:296. [PMID: 38670941 PMCID: PMC11053034 DOI: 10.1038/s41419-024-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.
Collapse
Affiliation(s)
- Carlos Anerillas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
- Homeostasis de tejidos y órganos program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid, Madrid, Spain.
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Gisela Altés
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Sara Cuesta
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Fundación de Investigación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Novena Planta, Investigación, Av Ana de Viya, 21, Cádiz, Spain
| | - Marta Vaquero
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Hospital Universitari Arnau de Vilanova, Rovira Roure, 80, Lleida, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Ruth Rodríguez-Barrueco
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Xavi Dolcet
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Andrée Yeramian
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
| |
Collapse
|
33
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
34
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Yu C, Zhao J, Cheng F, Chen J, Chen J, Xu H, Shi K, Xia K, Ding S, Wang K, Wang R, Chen Y, Li Y, Li H, Chen Q, Yu X, Shao F, Liang C, Li F. Silencing circATXN1 in Aging Nucleus Pulposus Cell Alleviates Intervertebral Disc Degeneration via Correcting Progerin Mislocalization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0336. [PMID: 38533181 PMCID: PMC10964222 DOI: 10.34133/research.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jing Zhao
- Department of Chemistry,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jiangjie Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jinyang Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Haibin Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Siwen Ding
- Westlake Street Community Health Service Center, Hangzhou 310009, Zhejiang, PR China
| | - Kanbin Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Ronghao Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yazhou Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yi Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Zhejiang University, Haining 314400, Zhejiang, PR China
- Biomedical and Health Translational Research Centre,
Zhejiang University, Haining 314400, Zhejiang, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| |
Collapse
|
36
|
Lipskaia L, Breau M, Cayrou C, Churikov D, Braud L, Jacquet J, Born E, Fouillade C, Curras-Alonso S, Bauwens S, Jourquin F, Fiore F, Castellano R, Josselin E, Sánchez-Ferrer C, Giovinazzo G, Lachaud C, Gilson E, Flores I, Londono-Vallejo A, Adnot S, Géli V. mTert induction in p21-positive cells counteracts capillary rarefaction and pulmonary emphysema. EMBO Rep 2024; 25:1650-1684. [PMID: 38424230 PMCID: PMC10933469 DOI: 10.1038/s44319-023-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Christelle Cayrou
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Laura Braud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Juliette Jacquet
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Emmanuelle Born
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Charles Fouillade
- Institut Curie, Inserm U1021, CNRS UMR 3347, University Paris-Saclay, PSL Research University, Orsay, France
| | - Sandra Curras-Alonso
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Frederic Jourquin
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Frederic Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Rémy Castellano
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Emmanuelle Josselin
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | | | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Christophe Lachaud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Team DNA Interstrand Crosslink Lesions and Blood Disorders, Marseille, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Adnot
- Institute for Lung Health, Justus Liebig University, Giessen, Germany.
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France.
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France.
| |
Collapse
|
37
|
Otero-Albiol D, Santos-Pereira JM, Lucena-Cacace A, Clemente-González C, Muñoz-Galvan S, Yoshida Y, Carnero A. Hypoxia-induced immortalization of primary cells depends on Tfcp2L1 expression. Cell Death Dis 2024; 15:177. [PMID: 38418821 PMCID: PMC10902313 DOI: 10.1038/s41419-024-06567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Cellular senescence is a stress response mechanism that induces proliferative arrest. Hypoxia can bypass senescence and extend the lifespan of primary cells, mainly by decreasing oxidative damage. However, how hypoxia promotes these effects prior to malignant transformation is unknown. Here we observed that the lifespan of mouse embryonic fibroblasts (MEFs) is increased when they are cultured in hypoxia by reducing the expression of p16INK4a, p15INK4b and p21Cip1. We found that proliferating MEFs in hypoxia overexpress Tfcp2l1, which is a main regulator of pluripotency and self-renewal in embryonic stem cells, as well as stemness genes including Oct3/4, Sox2 and Nanog. Tfcp2l1 expression is lost during culture in normoxia, and its expression in hypoxia is regulated by Hif1α. Consistently, its overexpression in hypoxic levels increases the lifespan of MEFs and promotes the overexpression of stemness genes. ATAC-seq and Chip-seq experiments showed that Tfcp2l1 regulates genes that control proliferation and stemness such as Sox2, Sox9, Jarid2 and Ezh2. Additionally, Tfcp2l1 can replicate the hypoxic effect of increasing cellular reprogramming. Altogether, our data suggest that the activation of Tfcp2l1 by hypoxia contributes to immortalization prior to malignant transformation, facilitating tumorigenesis and dedifferentiation by regulating Sox2, Sox9, and Jarid2.
Collapse
Affiliation(s)
- D Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - A Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - C Clemente-González
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - S Muñoz-Galvan
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Y Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - A Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
38
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Abstract
Mouse embryonic fibroblasts (MEFs) are primary fibroblasts purified from mouse embryos at a defined time post-fertilization. MEFs have versatile applications, including use as feeder cell layers or sources of untransformed primary cells for a variety of biological assays. MEFs are most commonly isolated between embryonic day (E)12.5 and E13.5 but can be isolated from embryos as early as E8.5 and as late as E15.5. The individual embryos are harvested by carefully removing uterine tissue, yolk sac, and placenta. The embryos are euthanized, and non-mesenchymal tissues, such as the fetal liver and heart, are removed before tissue homogenization. The remaining fetal tissue is homogenized by mechanical mincing using a sterile blade, followed by enzymatic digestion and resuspension. During tissue dissociation, the duration of trypsin-EDTA/DNase digestion and enzyme concentration are critical parameters to produce high-quality MEFs with the highest rates of cell viability and proliferation potential. MEFs can be cryopreserved at passage (P) 0 if >80% confluent, passaged for further expansion before freezing down, or directly utilized for downstream applications, i.e., preparation as feeder cell layers. Primary MEFs possess a limited proliferation capacity of ∼20 cell divisions, beyond which the percentage of senescent cells rapidly increases; thus, cultures should only be expanded/passaged to a maximum of P5. Critical for cell viability during cryopreservation and thawing of MEFs is the slow decrease in temperature when freezing, the rapid increase when thawing, the use of a cryoprotective agent, and an optimal cell density. While it is critical to generate high-quality MEFs to standardize and optimize preparation procedures and utilize fresh reagents, some variability in proliferation capacity and cell viability between MEF preparations remains. Thus, MEF preparation, culture, and cryopreservation procedures are continuously being optimized. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Purification, passaging, and expansion of MEFs Supporting Protocol: Cryopreservation and thawing of MEFs.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| |
Collapse
|
41
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
42
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling pericellular oxygen tension in cell culture reveals distinct breast cancer responses to low oxygen tensions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560369. [PMID: 37873449 PMCID: PMC10592900 DOI: 10.1101/2023.10.02.560369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Oxygen (O2) tension plays a key role in tissue function and pathophysiology. O2-controlled cell culture, in which the O2 concentration in an incubator's gas phase is controlled, is an indispensable tool to study the role of O2 in vivo. For this technique, it is presumed that the incubator setpoint is equal to the O2 tension that cells experience (i.e., pericellular O2). We discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0.0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to anoxic exposure followed by rapid reoxygenation. To better understand the relationship between incubator gas phase and pericellular O2 tensions, we developed a reaction-diffusion model that predicts pericellular O2 tension a priori. This model revealed that the effect of cellular O2 consumption is greatest in smaller volume culture vessels (e.g., 96-well plate). By controlling pericellular O2 tension in cell culture, we discovered that MCF7 cells have stronger glycolytic and glutamine metabolism responses in anoxia vs. hypoxia. MCF7 also expressed higher levels of HIF2A, CD73, NDUFA4L2, etc. and lower levels of HIF1A, CA9, VEGFA, etc. in response to hypoxia vs. anoxia. Proteomics revealed that 4T1 cells had an upregulated epithelial-to-mesenchymal transition (EMT) response and downregulated reactive oxygen species (ROS) management, glycolysis, and fatty acid metabolism pathways in hypoxia vs. anoxia. Collectively, these results reveal that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable to model hypoxia. We demonstrate that controlling atmospheric O2 tension in cell culture incubators is insufficient to control O2 in cell culture and introduce the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexandra Nukovic
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Guanyu Zhou
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center and Barnett Institute, Northeastern University, Boston, MA 02115 USA
- Parallel Squared Technology Institute, Watertown, MA 02135 USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
43
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 539] [Impact Index Per Article: 269.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
44
|
Yang D, Sun B, Li S, Wei W, Liu X, Cui X, Zhang X, Liu N, Yan L, Deng Y, Zhao X. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1951. [PMID: 37585504 DOI: 10.1126/scitranslmed.add1951] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
Cellular senescence, characterized by stable cell cycle arrest, plays an important role in aging and age-associated pathologies. Eliminating senescent cells rejuvenates aged tissues and ameliorates age-associated diseases. Here, we identified that natural killer group 2 member D ligands (NKG2DLs) are up-regulated in senescent cells in vitro, regardless of stimuli that induced cellular senescence, and in various tissues of aged mice and nonhuman primates in vivo. Accordingly, we developed and demonstrated that chimeric antigen receptor (CAR) T cells targeting human NKG2DLs selectively and effectively diminish human cells undergoing senescence induced by oncogenic stress, replicative stress, DNA damage, or P16INK4a overexpression in vitro. Targeting senescent cells with mouse NKG2D-CAR T cells alleviated multiple aging-associated pathologies and improved physical performance in both irradiated and aged mice. Autologous T cells armed with the human NKG2D CAR effectively delete naturally occurring senescent cells in aged nonhuman primates without any observed adverse effects. Our findings establish that NKG2D-CAR T cells could serve as potent and selective senolytic agents for aging and age-associated diseases driven by senescence.
Collapse
Affiliation(s)
- Dong Yang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shirong Li
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenwen Wei
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Xiaoyue Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Xianning Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Nan Liu
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanzhen Yan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| |
Collapse
|
45
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
46
|
Haj M, Levon A, Frey Y, Hourvitz N, Campisi J, Tzfati Y, Elkon R, Ziv Y, Shiloh Y. Accelerated replicative senescence of ataxia-telangiectasia skin fibroblasts is retained at physiologic oxygen levels, with unique and common transcriptional patterns. Aging Cell 2023; 22:e13869. [PMID: 37254625 PMCID: PMC10410012 DOI: 10.1111/acel.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The genetic disorder, ataxia-telangiectasia (A-T), is caused by loss of the homeostatic protein kinase, ATM, and combines genome instability, tissue degeneration, cancer predisposition, and premature aging. Primary fibroblasts from A-T patients exhibit premature senescence when grown at ambient oxygen concentration (21%). Here, we show that reducing oxygen concentration to a physiological level range (3%) dramatically extends the proliferative lifespan of human A-T skin fibroblasts. However, they still undergo senescence earlier than control cells grown under the same conditions and exhibit high genome instability. Comparative RNA-seq analysis of A-T and control fibroblasts cultured at 3% oxygen followed by cluster analysis of differentially expressed genes and functional enrichment analysis, revealed distinct transcriptional dynamics in A-T fibroblasts senescing in physiological oxygen concentration. While some transcriptional patterns were similar to those observed during replicative senescence of control cells, others were unique to the senescing A-T cells. We observed in them a robust activation of interferon-stimulated genes, with undetected expression the interferon genes themselves. This finding suggests an activation of a non-canonical cGAS-STING-mediated pathway, which presumably responds to cytosolic DNA emanating from extranuclear micronuclei detected in these cells. Senescing A-T fibroblasts also exhibited a marked, intriguely complex alteration in the expression of genes associated with extracellular matrix (ECM) remodeling. Notably, many of the induced ECM genes encode senescence-associated secretory phenotype (SASP) factors known for their paracrine pro-fibrotic effects. Our data provide a molecular dimension to the segmental premature aging observed in A-T patients and its associated symptoms, which develop as the patients advance in age.
Collapse
Affiliation(s)
- Majd Haj
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Amit Levon
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yann Frey
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Noa Hourvitz
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Yehuda Tzfati
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Ran Elkon
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yael Ziv
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yosef Shiloh
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| |
Collapse
|
47
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
48
|
Georgieva I, Tchekalarova J, Iliev D, Tzoneva R. Endothelial Senescence and Its Impact on Angiogenesis in Alzheimer's Disease. Int J Mol Sci 2023; 24:11344. [PMID: 37511104 PMCID: PMC10379128 DOI: 10.3390/ijms241411344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial cells are constantly exposed to environmental stress factors that, above a certain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This narrative review highlights the complex interplay between senescence, oxidative stress, extracellular vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging and Alzheimer's disease. The interaction between the vascular and nervous systems is essential for the development of a healthy brain, especially since neurons are exceptionally dependent on nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antiangiogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered non-productive angiogenesis in Alzheimer's disease due to dysregulated Delta-Notch and VEGF signaling are further explored. Additionally, potential therapeutic strategies such as exercise and caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debilitating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced senescence and as an early detection marker for Alzheimer's disease are considered. The intricate relationship between endothelial senescence and angiogenesis provides valuable insights into the mechanisms underlying angiogenesis-related disorders and opens avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 23, 1113 Sofia, Bulgaria
| | - Dimitar Iliev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
49
|
Haston S, Gonzalez-Gualda E, Morsli S, Ge J, Reen V, Calderwood A, Moutsopoulos I, Panousopoulos L, Deletic P, Carreno G, Guiho R, Manshaei S, Gonzalez-Meljem JM, Lim HY, Simpson DJ, Birch J, Pallikonda HA, Chandra T, Macias D, Doherty GJ, Rassl DM, Rintoul RC, Signore M, Mohorianu I, Akbar AN, Gil J, Muñoz-Espín D, Martinez-Barbera JP. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 2023; 41:1242-1260.e6. [PMID: 37267953 DOI: 10.1016/j.ccell.2023.05.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.
Collapse
Affiliation(s)
- Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK.
| | | | - Samir Morsli
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jianfeng Ge
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Virinder Reen
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ilias Moutsopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Polina Deletic
- Division of Medicine, University College London, London, UK
| | - Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Romain Guiho
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Hui Yuan Lim
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Jodie Birch
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Husayn A Pallikonda
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - David Macias
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Gary J Doherty
- Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Doris M Rassl
- Royal Papworth Hospital NHS Foundation Trust. Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Robert C Rintoul
- Royal Papworth Hospital NHS Foundation Trust. Cambridge Biomedical Campus, Cambridge CB2 0AY, UK; Department of Oncology, University of Cambridge, Cambridge, UK; CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK; CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
50
|
Vitale F, Cacciottola L, Yu FS, Barretta M, Hossay C, Donnez J, Dolmans MM. Importance of oxygen tension in human ovarian tissue in vitro culture. Hum Reprod 2023:7194693. [PMID: 37308325 DOI: 10.1093/humrep/dead122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
STUDY QUESTION Is there any difference between 20% and 5% oxygen (O2) tension in vitro culture (IVC) on the viability and quality of human follicles contained in cultured ovarian cortex? SUMMARY ANSWER An O2 tension of 5% yields higher follicle viability and quality than does 20% O2 tension after 6 days of IVC. WHAT IS KNOWN ALREADY The primordial follicle (PMF) pool resides within the ovarian cortex, where the in vivo O2 tension ranges between 2% and 8%. Some studies suggest that lowering O2 tension to physiological levels may improve in vitro follicle quality rates. STUDY DESIGN, SIZE, DURATION This prospective experimental study included frozen-thawed ovarian cortex from six adult patients (mean age: 28.5 years; age range: 26-31 years) who were undergoing laparoscopic surgery for non-ovarian diseases. Ovarian cortical fragments were cultured for 6 days at (i) 20% O2 with 5% CO2 and (ii) 5% O2 with 5% CO2. Non-cultured fragments served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Cortical fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; Ki67 staining to evaluate PMF proliferation; cleaved caspase-3 immunostaining to identify follicle apoptosis; 8-hydroxy-2-deoxyguanosine and gamma-H2AX (γH2AX) immunolabeling to detect oxidative stress damage and DNA double-strand breaks (DSBs) in oocytes and granulosa cells (GCs); and β-galactosidase staining to assess follicle senescence. Droplet digital PCR was also performed to further explore the gene expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 4 (GPX4) from the antioxidant defense system and cyclin-dependent kinase inhibitors (p21 and p16) as tissue senescence-related genes. MAIN RESULTS AND THE ROLE OF CHANCE Apoptosis (P = 0.002) and follicle senescence (P < 0.001) rates were significantly lower in the 5% O2 group than in the 20% O2 group. Moreover, GCs in follicles in the 20% O2 group exhibited significantly (P < 0.001) higher oxidative stress damage rates than those in the 5% O2 group. DNA DSB damage rates in GCs of follicles were also significantly higher (P = 0.001) in the 20% O2 group than in the 5% O2 group. SOD2 expression was significantly greater in the 5% O2 group compared to the 20% O2 group (P = 0.04) and the non-cultured group (P = 0.002). Expression of p21 was significantly increased in both the 20% O2 (P = 0.03) and 5% O2 (P = 0.008) groups compared to the non-cultured group. Moreover, the 20% O2 group showed significantly greater p16 expression (P = 0.04) than the non-cultured group, while no significant variation was observed between the 5% O2 and no culture groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on improving follicle outcomes during the first step of ovarian tissue IVC, where follicles remain in situ within the tissue. The impact of O2 tension in further steps, such as secondary follicle isolation and maturation, was not investigated here. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that 5% O2 tension culture is a promising step toward potentially solving the problem of poor follicle viability after IVC. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0064.22, CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F S Yu
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - M Barretta
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - C Hossay
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|