1
|
Lorv JSH, McConkey BJ. Kastor: a reference-based comparative approach for assessment and correction of gene-fragmenting errors in long-read assemblies of small genomes. BMC Genomics 2025; 26:388. [PMID: 40251490 PMCID: PMC12007338 DOI: 10.1186/s12864-025-11569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Long read sequencing technologies provide an efficient approach to generating highly contiguous and informative assemblies. However, higher relative error rates can introduce frameshifts and premature stop codons that pseudogenize genes, hindering downstream analyses. We developed a software tool that detects gene-fragmenting errors in draft assemblies of small genomes through comparison with a curated set of reference genome sequences and raw read information. In our presented example, detected errors represent less than 0.05% of the genome, but when corrected reduced the rate of pseudogenes from 23.3 to 5.6% in example long read assemblies, comparable to the rate of pseudogenes in short read assemblies. We demonstrate that this software can detect assembly errors in long read assemblies generated from small genomes and correct them to de-fragment genes.
Collapse
Affiliation(s)
- Janet S H Lorv
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
2
|
Paajanen P, Tomkins M, Hoerbst F, Veevers R, Heeney M, Thomas HR, Apelt F, Saplaoura E, Gupta S, Frank M, Walther D, Faulkner C, Kehr J, Kragler F, Morris RJ. Re-analysis of mobile mRNA datasets raises questions about the extent of long-distance mRNA communication. NATURE PLANTS 2025:10.1038/s41477-025-01979-x. [PMID: 40240650 DOI: 10.1038/s41477-025-01979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Short-read RNA-seq studies of grafted plants have led to the proposal that thousands of messenger RNAs (mRNAs) move over long distances between plant tissues1-7, potentially acting as signals8-12. Transport of mRNAs between cells and tissues has been shown to play a role in several physiological and developmental processes in plants, such as tuberization13, leaf development14 and meristem maintenance15; yet for most mobile mRNAs, the biological relevance of transport remains to be determined16-19. Here we perform a meta-analysis of existing mobile mRNA datasets and examine the associated bioinformatic pipelines. Taking technological noise, biological variation, potential contamination and incomplete genome assemblies into account, we find that a high percentage of currently annotated graft-mobile transcripts are left without statistical support from available RNA-seq data. This meta-analysis challenges the findings of previous studies and current views on mRNA communication.
Collapse
Affiliation(s)
- Pirita Paajanen
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| | - Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | | - Ruth Veevers
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Michelle Heeney
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Federico Apelt
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Eleftheria Saplaoura
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saurabh Gupta
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Margaret Frank
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Dirk Walther
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Julia Kehr
- Department of Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
3
|
Ma Y, Wang Y, Chen C, Feng L, Shan J, Zhang L, Ma X, Chu Y, Wu H, Zhou G. FEN1-Aided RPA (FARPA) Coupled with Autosampling Microfluidic Chip Enables Highly Multiplexed On-Site Pathogen Screening. Anal Chem 2025; 97:5762-5770. [PMID: 40047062 DOI: 10.1021/acs.analchem.4c07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A simple, rapid, low-cost, and multiplex detection platform is crucial for the diagnosis of infectious diseases, especially for on-site pathogen screening. However, current methods are difficult to satisfy the requirements for minimal instrument and multiplexed point-of-care testing (POCT). Herein, we propose a versatile and easy-to-use platform (FARPA-chip) by combining multiplex FARPA with an autosampling microfluidic chip. A pair of universal recombinase polymerase amplification (RPA) primers introduced during double-stranded cDNA (ds-cDNA) preparation are employed to amplify multiple targets, followed by amplicon-decoding with the chip, indicating no bias in amplifying different targets due to the universal RPA primers. FARPA-chip exhibits that as low as 10 copies of each target RNA in the starting sample can be sensitively detected by 12-plex detection of vector-borne viruses within 45 min and no cross-talk is observed between different targets. The feasibility of this platform is confirmed by designing a 9-plex FARPA-chip to detect 6 kinds of clinically common respiratory viruses from 16 clinical samples of nasopharyngeal swabs, and the results are completely consistent with RT-qPCR. Furthermore, by integrating quick extraction reagent, the turnaround time can be significantly decreased to <50 min, highlighting that our FARPA-chip enables a cost-effective on-site pathogen screening with a relatively high level of multiplexing. Depending on the number of chambers in the chip, the current design is theoretically capable of detecting up to 24 different pathogens, which should fulfill most clinical purposes. We believe that the proposed platform could provide an effective way for a series of healthcare-related applications in resource-limited settings.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Yuanmeng Wang
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Chen Chen
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210002, China
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Mukhatayev Z, Kovenskiy A, Ren Z, Rangel SM, Katkenov N, Khuanbai Y, Shivde R, Daniel M, Dellacecca ER, Cedercreutz K, Ostapchuk Y, Nurgozhina A, Chulenbayeva L, Nurgaziyev M, Jarmukhanov Z, Nurlankyzy M, Kozhdan K, Seidulla S, Mukhanbetzhanova Z, Sergazy S, Kozhakhmetov S, Ali Y, Daftary KM, Green SJ, Kundu RV, Kushugulova A, Le Poole IC. Escherichia Abundance and Metabolism Align with Vitiligo Disease Activity. J Invest Dermatol 2025:S0022-202X(25)00119-8. [PMID: 39983982 DOI: 10.1016/j.jid.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Vitiligo is a cutaneous autoimmune disorder characterized by progressive depigmentation due to melanocyte destruction by cytotoxic T cells. Genetic factors predispose patients to the disease and are supported by environmental factors that often initiate new disease episodes. We investigated whether disease outcomes were partially defined by pathogenic microbes that drive nutrient deficiency and inflammation. Our study presents the results of research on the diet and gut microbiome composition of patients with vitiligo and healthy controls from Kazakhstan and the United States. Dietary nutrient intake was assessed using the National Institutes of Health-generated Diet History Questionnaire. Patients with active vitiligo exhibit a limited intake of specific fatty acids, amino acids, fiber, and zinc. Disease activity was further characterized by the abundance of Odoribacter and Escherichia in the gut. Metabolic pathway analysis supported the role of the Escherichia genus in disease activity by limiting energy metabolism and amino acid biosynthetic pathways. Disease activity was also associated with elevated circulating proinflammatory cytokines. These findings suggest that nutritional limitations are not compensated by metabolites from the gut microbiome in active disease, potentially leaving room for inflammation and exacerbating vitiligo. The intricate relationship among diet, gut microbiome composition, and disease progression in vitiligo highlights potential avenues for targeted interventions to reduce autoimmune activity and improve patient outcomes.
Collapse
Affiliation(s)
| | - Artur Kovenskiy
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephanie M Rangel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nurlubek Katkenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Rohan Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Moriel Daniel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | - Kamilya Kozhdan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Symbat Seidulla
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Shynggyss Sergazy
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Yasmeen Ali
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karishma M Daftary
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Roopal V Kundu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Beyond Single Clones: High-Throughput Sequencing in Antibody Discovery. Cold Spring Harb Protoc 2025; 2025:pdb.top107772. [PMID: 39586681 DOI: 10.1101/pdb.top107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Antibody repertoire sequencing and display library screening are powerful approaches for antibody discovery and engineering that can connect DNA sequence with antibody function. Antibody display and screening studies have made a tremendous impact on immunology and biotechnology over the last decade, accelerated by technological advances in high-throughput DNA sequencing techniques. Indeed, bioinformatic analysis of antibody DNA library data has now taken a central role in modern antibody drug discovery, and is also critical for many ongoing studies of human immune development. Here, we describe current trends in antibody DNA library screening and analysis, and introduce a selection of protocols describing fundamental bioinformatic techniques to enable scientists to efficiently study antibody DNA libraries.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
7
|
Özen S, Gökşen D, Evin F, Işık E, Onay H, Akgün B, Ata A, Atik T, Düzcan F, Özkınay F, Darcan Ş, Çoğulu Ö. Molecular Genetic Diagnosis with Targeted Next Generation Sequencing in a Cohort of Turkish Osteogenesis Imperfecta Patients and their Genotype-phenotype Correlation. J Clin Res Pediatr Endocrinol 2024; 16:431-442. [PMID: 38828893 PMCID: PMC11629724 DOI: 10.4274/jcrpe.galenos.2024.2022-12-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Objective Osteogenesis imperfecta (OI) consists of a group of phenotypically and genetically heterogeneous connective tissue disorders that share similar skeletal anomalies causing bone fragility and deformation. The aim was to investigate the molecular genetic etiology and determine the relationship between genotype and phenotype in OI patients using targeted next-generation sequencing (NGS). Methods A targeted NGS analysis panel (Illumina TruSight One) containing genes involved in collagen/bone synthesis was performed on the Illumina Nextseq550 platform in patients with a confirmed diagnosis of OI. Results Fifty-six patients (female/male: 25/31) from 46 different families were included. Consanguinity was noted in 15 (32.6%) families. Based on Sillence classification 18 (33.1%) were type 1 OI, 1 (1.7%) type 2, 26 (46.4%) type 3 and 11 (19.6%) type 4. Median body weight was -1.1 (-6.8, - 2.5) standard deviation scores (SDS), and height was -2.3 (-7.6, - 1.2) SDS. Bone deformity affected 30 (53.5%), while 31 (55.4%) were evaluated as mobile. Thirty-six (60.7%) had blue sclera, 13 (23.2%) had scoliosis, 12 (21.4%) had dentinogenesis imperfecta (DI), and 2 (3.6%) had hearing loss. Disease-causing variants in COL1A1 and COL1A2 were found in 24 (52.1%) and 6 (13%) families, respectively. In 8 (17.3%) of the remaining 16 (34.7%) families, the NGS panel revealed disease-causing variants in three different genes (FKBP10, SERPINF1, and P3H1). Nine (23.6%) of the variants detected by NGS panel had not previously been reported and were also classified as pathogenic based on American College of Medical Genetics guidelines pathogenity scores. In ten (21.7%) families, a disease-related variant was not found in any of the 13 OI genes on the panel. Conclusion Genetic etiology was found in 38 (82.6%) of 46 families by targeted NGS analysis. Furthermore, nine new variants were identified in known OI genes which were classified as pathogenic by standard guidelines.
Collapse
Affiliation(s)
- Samim Özen
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Damla Gökşen
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Ferda Evin
- Bakırçay University, Çiğli Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Esra Işık
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Hüseyin Onay
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Bilçağ Akgün
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Aysun Ata
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Tahir Atik
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Füsun Düzcan
- Tınaztepe University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Ferda Özkınay
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Şükran Darcan
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Özgür Çoğulu
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| |
Collapse
|
8
|
Crispino A, Varricchio S, Esposito A, Marfella A, Cerbone D, Perna A, Petronio Petronio G, Staibano S, Merolla F, Ilardi G. The oral microbiome and its role in oral squamous cell carcinoma: a systematic review of microbial alterations and potential biomarkers. Pathologica 2024; 116:338-357. [PMID: 39748720 DOI: 10.32074/1591-951x-n867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Despite advances in diagnosis and treatment, the incidence of OSCC is increasing, and the mortality rate remains high. This systematic review aims to examine the potential association between the composition of the oral microbiota and OSCC. Materials and methods This study's protocol was developed according to the PRISMA guidelines. Several search engines, including Medline-PubMed, Scopus (via Elsevier), and Google Scholar, were used to identify original studies that analyzed differences in the oral microbiome between OSCC patients and controls. Twenty-seven studies were identified that reported significant differences in microbial abundance between OSCC and controls. Results The systematic review highlights a complex relationship between the oral microbiome and the pathogenesis of OSCC. Significant changes in the microbial composition were identified, with a predominance of phyla such as Bacteroidetes and Fusobacteria, which are associated with inflammatory mechanisms facilitating tumor progression. A remarkable variability in microbial profiles emerged based on the different stages of the disease and the types of samples analyzed, demonstrating the complexity of the oral microbial ecosystem. Conclusion Although alterations in the oral cavity microbiome composition are evident in patients with OSCC, identifying a specific pattern remains challenging. However, the integration of advanced analytical techniques, such as artificial intelligence, could overcome this problem, allowing the identification of crucial biomarkers and improving the understanding of the role of the microbiome in carcinogenesis. This approach could transform microbiome analysis into a useful tool for screening and monitoring patients with OSCC.
Collapse
Affiliation(s)
- Angela Crispino
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Aurora Esposito
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandra Marfella
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Dora Cerbone
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Cheng C, Cheng Q, Zhou W, Chen Y, Xiao P. Highly accurate single-color fluorogenic DNA decoding sequencing for mutational genotyping. J Pharm Biomed Anal 2024; 249:116397. [PMID: 39111245 DOI: 10.1016/j.jpba.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
We proposed a single-color fluorogenic DNA decoding sequencing method designed to improve sequencing accuracy, increase read length and throughput, as well as decrease scanning time. This method involves the incorporation of a mixture of four types of 3'-O-modified nucleotide reversible terminators into each reaction. Among them, two nucleotides are labeled with the same fluorophore, while the remaining two are unlabeled. Only one nucleotide can be extended in each reaction, and an encoding that partially defines base composition can be obtained. Through cyclic interrogation of a template twice with different nucleotide combinations, two sets of encodings are sequentially obtained, enabling the determination of the sequence. We demonstrate the feasibility of this method using established sequencing chemistry, achieving a cycle efficiency of approximately 99.5 %. Notably, this strategy exhibits remarkable efficacy in the detection and correction of sequencing errors, achieving a theoretical error rate of 0.00016 % at a sequencing depth of ×2, which is lower than Sanger sequencing. This method is theoretically compatible with the existing sequencing-by-synthesis (SBS) platforms, and the instrument is simpler, which may facilitate further reductions in sequencing costs, thereby broadening its applications in biology and medicine. Moreover, we demonstrate the capability to detect known mutation sites using information from only a single sequencing run. We validate this approach by accurately identifying a mutation site in the human mitochondrial DNA.
Collapse
Affiliation(s)
- Chu Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China.
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Wei Zhou
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulong Chen
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Pengfeng Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Alagarswamy K, Shi W, Boini A, Messaoudi N, Grasso V, Cattabiani T, Turner B, Croner R, Kahlert UD, Gumbs A. Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review. BIOMEDINFORMATICS 2024; 4:1757-1772. [DOI: 10.3390/biomedinformatics4030096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this scoping review, we delve into the transformative potential of artificial intelligence (AI) in addressing challenges inherent in whole-genome sequencing (WGS) analysis, with a specific focus on its implications in oncology. Unveiling the limitations of existing sequencing technologies, the review illuminates how AI-powered methods emerge as innovative solutions to surmount these obstacles. The evolution of DNA sequencing technologies, progressing from Sanger sequencing to next-generation sequencing, sets the backdrop for AI’s emergence as a potent ally in processing and analyzing the voluminous genomic data generated. Particularly, deep learning methods play a pivotal role in extracting knowledge and discerning patterns from the vast landscape of genomic information. In the context of oncology, AI-powered methods exhibit considerable potential across diverse facets of WGS analysis, including variant calling, structural variation identification, and pharmacogenomic analysis. This review underscores the significance of multimodal approaches in diagnoses and therapies, highlighting the importance of ongoing research and development in AI-powered WGS techniques. Integrating AI into the analytical framework empowers scientists and clinicians to unravel the intricate interplay of genomics within the realm of multi-omics research, paving the way for more successful personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Wenjie Shi
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aishwarya Boini
- Davao Medical School Foundation, Davao City 8000, Philippines
| | - Nouredin Messaoudi
- Department of Hepatopancreatobiliary Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Europe Hospitals, 1090 Brussels, Belgium
| | - Vincent Grasso
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | - Roland Croner
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ulf D. Kahlert
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andrew Gumbs
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
- Talos Surgical, Inc., New Castle, DE 19720, USA
- Department of Surgery, American Hospital of Tbilisi, 0102 Tbilisi, Georgia
| |
Collapse
|
11
|
Hammarström K, Nunes L, Mathot L, Mezheyeuski A, Lundin E, Korsavidou Hult N, Imam I, Osterlund E, Sjöblom T, Glimelius B. Clinical and genetic factors associated with tumor response to neoadjuvant (chemo)radiotherapy, survival and recurrence risk in rectal cancer. Int J Cancer 2024; 155:40-53. [PMID: 38376070 DOI: 10.1002/ijc.34880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Rectal cancer poses challenges in preoperative treatment response, with up to 30% achieving a complete response (CR). Personalized treatment relies on accurate identification of responders at diagnosis. This study aimed to unravel CR determinants, overall survival (OS), and time to recurrence (TTR) using clinical and targeted sequencing data. Analyzing 402 patients undergoing preoperative treatment, tumor stage, size, and treatment emerged as robust response predictors. CR rates were higher in smaller, early-stage, and intensively treated tumors. Targeted sequencing analyzed 216 cases, while 120 patients provided hotspot mutation data. KRAS mutation dramatically reduced CR odds by over 50% (odds ratio [OR] = 0.3 in the targeted sequencing and OR = 0.4 hotspot cohorts, respectively). In contrast, SMAD4 and SYNE1 mutations were associated with higher CR rates (OR = 6.0 and 6.8, respectively). Favorable OS was linked to younger age, CR, and low baseline carcinoembryonic antigen levels. Notably, CR and an APC mutation increased TTR, while a BRAF mutation negatively affected TTR. Beyond tumor burden, SMAD4 and SYNE1 mutations significantly influenced CR. KRAS mutations independently correlated with radiotherapy resistance, and BRAF mutations heightened recurrence risk. Intriguingly, non-responding tumors with initially small sizes carried a higher risk of recurrence. The findings, even if limited in addition to the imperfect clinical factors, offer insights into rectal cancer treatment response, guiding personalized therapeutic strategies. By uncovering factors impacting CR, OS, and TTR, this study underscores the importance of tailored approaches for rectal cancer patients. These findings, based on extensive analysis and mutation data, pave the way for personalized interventions, optimizing outcomes in the challenges of rectal cancer preoperative treatment.
Collapse
Affiliation(s)
- Klara Hammarström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Luís Nunes
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emma Lundin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Israa Imam
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Pepe F, Guerini-Rocco E, Fassan M, Fusco N, Vacirca D, Ranghiero A, Venetis K, Rappa A, Taormina SV, Russo G, Rebellato E, Munari G, Moreno-Manuel A, De Angelis C, Zamagni C, Valabrega G, Malapelle U, Troncone G, Barberis M, Iaccarino A. In-house homologous recombination deficiency testing in ovarian cancer: a multi-institutional Italian pilot study. J Clin Pathol 2024; 77:478-485. [PMID: 37072171 PMCID: PMC11228191 DOI: 10.1136/jcp-2023-208852] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
AIMS Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPIs) represent a standard of care for the clinical management of high-grade serous ovarian cancer (HGSOC). The recognition of homologous recombination deficiency (HRD) has emerged as a predictive biomarker of response for first-line PARPIs treatment in patients with HGOSC. On the other hand, this test is extremely complex and therefore it is often externalised. Regrettably, the reliability of outsourced HRD testing can be troubled by inconclusive results and high rejection rates. In this methodological study, we assessed the technical feasibility, interassay and interlaboratory reproducibility of in-house HRD testing using three different commercially available next-generation sequencing assays. METHODS A total of n=20 epithelial ovarian cancer samples previously analysed with MyChoice CDx were subjected to HRD retesting using three different platforms in three different major pathology laboratories, that is, SOPHiA DDM HRD Solution, HRD focus and Oncomine homologous recombination repair pathway predesigned panel. Concordance was calculated by Cohen's (dual) and Fleiss (triple) κ coefficients. RESULTS In-house BRCA1/2 molecular testing yielded a concordance rate >90.0% among all participating centres. HRD scores were successfully calculated by each institution with a concordance rate of 76.5%. Concerning the external gold standard test, the overall percentage of agreement ranged from 80.0% to 90.0% with a positive percentage agreement ranging from 75.0% to 80.0% and a negative percentage agreement ranging from 80.0% to 100%. CONCLUSIONS In-house testing for HRD can be reliably performed with commercially available next-generation sequencing assays.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padova, Italy
- Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Alberto Ranghiero
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Alessandra Rappa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Sergio Vincenzo Taormina
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Elena Rebellato
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padova, Italy
| | | | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Claudio Zamagni
- Unit of Oncology, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Bologna, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino at Ordine Mauriziano Hospital, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Antonino Iaccarino
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Torres-Fernandez D, Dalsuco J, Bramugy J, Bassat Q, Varo R. Innovative strategies for the surveillance, prevention, and management of pediatric infections applied to low-income settings. Expert Rev Anti Infect Ther 2024; 22:413-422. [PMID: 38739471 DOI: 10.1080/14787210.2024.2354839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Infectious diseases still cause a significant burden of morbidity and mortality among children in low- and middle-income countries (LMICs). There are ample opportunities for innovation in surveillance, prevention, and management, with the ultimate goal of improving survival. AREAS COVERED This review discusses the current status in the use and development of innovative strategies for pediatric infectious diseases in LMICs by focusing on surveillance, diagnosis, prevention, and management. Topics covered are: Minimally Invasive Tissue Sampling as a technique to accurately ascertain the cause of death; Genetic Surveillance to trace the pathogen genomic diversity and emergence of resistance; Artificial Intelligence as a multidisciplinary tool; Portable noninvasive imaging methods; and Prognostic Biomarkers to triage and risk stratify pediatric patients. EXPERT OPINION To overcome the specific hurdles in child health for LMICs, some innovative strategies appear at the forefront of research. If the development of these next-generation tools remains focused on accessibility, sustainability and capacity building, reshaping epidemiological surveillance, diagnosis, and treatment in LMICs, can become a reality and result in a significant public health impact. Their integration with existing healthcare infrastructures may revolutionize disease detection and surveillance, and improve child health and survival.
Collapse
Affiliation(s)
- David Torres-Fernandez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jessica Dalsuco
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Justina Bramugy
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
14
|
Ding Y, Peng YY, Li S, Tang C, Gao J, Wang HY, Long ZY, Lu XM, Wang YT. Single-Cell Sequencing Technology and Its Application in the Study of Central Nervous System Diseases. Cell Biochem Biophys 2024; 82:329-342. [PMID: 38133792 DOI: 10.1007/s12013-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
15
|
Li H, Hu X, Geng X, Xiao B, Miao W, Xu Z, Deng Y, Jiang B, Hou Y. Competition mode and soil nutrient status shape the role of soil microbes in the diversity-invasibility relationship. Ecol Evol 2024; 14:e11425. [PMID: 38746546 PMCID: PMC11091549 DOI: 10.1002/ece3.11425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Understanding the relationship between plant diversity and invasibility is essential in invasion ecology. Species-rich communities are hypothesized to be more resistant to invasions than species-poor communities. However, while soil microorganisms play a crucial role in regulating this diversity-invasibility relationship, the effects of plant competition mode and soil nutrient status on their role remain unclear. To address this, we conducted a two-stage greenhouse experiment. Soils were first conditioned by growing nine native species separately in them for 1 year, then mixed in various configurations with soils conditioned using one, three, or six species, respectively. Next, we inoculated the mixed soil into sterilized substrate soil and planted the alien species Rhus typhina and native species Ailanthus altissima as test plants. We set up two competition modes (intraspecific and interspecific) and two nutrient levels (fertilization using slow-release fertilizer and nonfertilization). Under intraspecific competition, regardless of fertilization, the biomass of the alien species was higher in soil conditioned by six native species. By contrast, under interspecific competition, the biomass increased without fertilization but remained stable with fertilization in soil conditioned by six native species. Analysis of soil microbes suggests that pathogens and symbiotic fungi in diverse plant communities influenced R. typhina growth, which varied with competition mode and nutrient status. Our findings suggest that the soil microbiome is pivotal in mediating the diversity-invasibility relationship, and this influence varies according to competition mode and nutrient status.
Collapse
Affiliation(s)
- Haokun Li
- College of Life SciencesLudong UniversityYantaiChina
| | - Xinyu Hu
- College of Life SciencesLudong UniversityYantaiChina
| | - Xinze Geng
- College of Life SciencesLudong UniversityYantaiChina
| | - Bo Xiao
- Analysis and Testing CenterLudong UniversityYantaiChina
| | | | - Zhiguang Xu
- College of Life SciencesLudong UniversityYantaiChina
| | - Yizhuo Deng
- College of Life SciencesLudong UniversityYantaiChina
| | - Bohan Jiang
- College of Life SciencesLudong UniversityYantaiChina
| | - Yuping Hou
- College of Life SciencesLudong UniversityYantaiChina
| |
Collapse
|
16
|
Qin L, Xiang Y, Wu Z, Zhang H, Wu X, Chen Q. Metagenomic next-generation sequencing for diagnosis of fatal Balamuthia amoebic encephalitis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105570. [PMID: 38382768 DOI: 10.1016/j.meegid.2024.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Balamuthia amoebic encephalitis (BAE), caused by Balamuthia mandrillaris, is a rare and life-threatening infectious disease with no specific and effective treatments available. The diagnosis of BAE at an early stage is difficult because of the non-specific clinical manifestations and neuroimaging. CASE DESCRIPTION A 52-year-old male patient, who had no previous history of skin lesions, presented to the emergency department with an acute headache, walking difficulties, and disturbance of consciousness. The patient underwent a series of examinations, including regular cerebrospinal fluid (CSF) studies and magnetic resonance imaging, and tuberculous meningoencephalitis was suspected. Despite being treated with anti-TB drugs, no clinical improvement was observed in the patient. Following corticosteroid therapy, the patient developed a rapid deterioration in consciousness with dilated pupils. Metagenomic next-generation sequencing (mNGS) revealed an unexpected central nervous system (CNS) amoebic infection, and the patient died soon after the confirmed diagnosis. CONCLUSION This study highlights the application of mNGS for the diagnosis of patients with suspected encephalitis or meningitis, especially those caused by rare opportunistic infections.
Collapse
Affiliation(s)
- Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qihua Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Bell AG, McMurtrie J, Bolaños LM, Cable J, Temperton B, Tyler CR. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome. FEMS Microbiol Ecol 2024; 100:fiae021. [PMID: 38366921 PMCID: PMC10903987 DOI: 10.1093/femsec/fiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The skin of fish contains a diverse microbiota that has symbiotic functions with the host, facilitating pathogen exclusion, immune system priming, and nutrient degradation. The composition of fish skin microbiomes varies across species and in response to a variety of stressors, however, there has been no systematic analysis across these studies to evaluate how these factors shape fish skin microbiomes. Here, we examined 1922 fish skin microbiomes from 36 studies that included 98 species and nine rearing conditions to investigate associations between fish skin microbiome, fish species, and water physiochemical factors. Proteobacteria, particularly the class Gammaproteobacteria, were present in all marine and freshwater fish skin microbiomes. Acinetobacter, Aeromonas, Ralstonia, Sphingomonas and Flavobacterium were the most abundant genera within freshwater fish skin microbiomes, and Alteromonas, Photobacterium, Pseudoalteromonas, Psychrobacter and Vibrio were the most abundant in saltwater fish. Our results show that different culturing (rearing) environments have a small but significant effect on the skin bacterial community compositions. Water temperature, pH, dissolved oxygen concentration, and salinity significantly correlated with differences in beta-diversity but not necessarily alpha-diversity. To improve study comparability on fish skin microbiomes, we provide recommendations for approaches to the analyses of sequencing data and improve study reproducibility.
Collapse
Affiliation(s)
- Ashley G Bell
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Luis M Bolaños
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Ben Temperton
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
18
|
Giovanelli Tacconi Gimenez E, Viana MVC, de Jesus Sousa T, Aburjaile F, Brenig B, Silva A, Azevedo V. Resequencing and characterization of the first Corynebacterium pseudotuberculosis genome isolated from camel. PeerJ 2024; 12:e16513. [PMID: 38313017 PMCID: PMC10836205 DOI: 10.7717/peerj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 02/06/2024] Open
Abstract
Background Corynebacterium pseudotuberculosis is a zoonotic Gram-positive bacterial pathogen known to cause different diseases in many mammals, including lymph node abscesses in camels. Strains from biovars equi and ovis of C. pseudotuberculosis can infect camels. Comparative genomics could help to identify features related to host adaptation, and currently strain Cp162 from biovar equi is the only one from camel with a sequenced genome. Methods In this work, we compared the quality of three genome assemblies of strain Cp162 that used data from the DNA sequencing platforms SOLiD v3 Plus, IonTorrent PGM, and Illumina HiSeq 2500 with an optical map and investigate the unique features of this strain. For this purpose, we applied comparative genomic analysis on the different Cp162 genome assembly versions and included other 129 genomes from the same species. Results Since the first version of the genome, there was an increase of 88 Kbp and 121 protein-coding sequences, a decrease of pseudogenes from 139 to 53, and two inversions and one rearrangement corrected. We identified 30 virulence genes, none associated to the camel host, and the genes rpob2 and rbpA predicted to confer resistance to rifampin. In comparison to 129 genomes of the same species, strain Cp162 has four genes exclusively present, two of them code transposases and two truncated proteins, and the three exclusively absent genes lysG, NUDIX domain protein, and Hypothetical protein. All 130 genomes had the rifampin resistance genes rpob2 and rbpA. Our results found no unique gene that could be associated with tropism to camel host, and further studies should include more genomes and genome-wide association studies testing for genes and SNPs.
Collapse
Affiliation(s)
| | | | | | - Flávia Aburjaile
- Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Arslan S, Garcia FJ, Guo M, Kellinger MW, Kruglyak S, LeVieux JA, Mah AH, Wang H, Zhao J, Zhou C, Altomare A, Bailey J, Byrne MB, Chang C, Chen SX, Cho B, Dennler CN, Dien VT, Fuller D, Kelley R, Khandan O, Klein MG, Kim M, Lajoie BR, Lin B, Liu Y, Lopez T, Mains PT, Price AD, Robertson SR, Taylor-Weiner H, Tippana R, Tomaney AB, Zhang S, Abtahi M, Ambroso MR, Bajari R, Bellizzi AM, Benitez CB, Berard DR, Berti L, Blease KN, Blum AP, Boddicker AM, Bondar L, Brown C, Bui CA, Calleja-Aguirre J, Cappa K, Chan J, Chang VW, Charov K, Chen X, Constandse RM, Damron W, Dawood M, DeBuono N, Dimalanta JD, Edoli L, Elango K, Faustino N, Feng C, Ferrari M, Frankie K, Fries A, Galloway A, Gavrila V, Gemmen GJ, Ghadiali J, Ghorbani A, Goddard LA, Guetter AR, Hendricks GL, Hentschel J, Honigfort DJ, Hsieh YT, Hwang Fu YH, Im SK, Jin C, Kabu S, Kincade DE, Levy S, Li Y, Liang VK, Light WH, Lipsher JB, Liu TL, Long G, Ma R, Mailloux JM, Mandla KA, Martinez AR, Mass M, McKean DT, Meron M, Miller EA, Moh CS, Moore RK, Moreno J, Neysmith JM, et alArslan S, Garcia FJ, Guo M, Kellinger MW, Kruglyak S, LeVieux JA, Mah AH, Wang H, Zhao J, Zhou C, Altomare A, Bailey J, Byrne MB, Chang C, Chen SX, Cho B, Dennler CN, Dien VT, Fuller D, Kelley R, Khandan O, Klein MG, Kim M, Lajoie BR, Lin B, Liu Y, Lopez T, Mains PT, Price AD, Robertson SR, Taylor-Weiner H, Tippana R, Tomaney AB, Zhang S, Abtahi M, Ambroso MR, Bajari R, Bellizzi AM, Benitez CB, Berard DR, Berti L, Blease KN, Blum AP, Boddicker AM, Bondar L, Brown C, Bui CA, Calleja-Aguirre J, Cappa K, Chan J, Chang VW, Charov K, Chen X, Constandse RM, Damron W, Dawood M, DeBuono N, Dimalanta JD, Edoli L, Elango K, Faustino N, Feng C, Ferrari M, Frankie K, Fries A, Galloway A, Gavrila V, Gemmen GJ, Ghadiali J, Ghorbani A, Goddard LA, Guetter AR, Hendricks GL, Hentschel J, Honigfort DJ, Hsieh YT, Hwang Fu YH, Im SK, Jin C, Kabu S, Kincade DE, Levy S, Li Y, Liang VK, Light WH, Lipsher JB, Liu TL, Long G, Ma R, Mailloux JM, Mandla KA, Martinez AR, Mass M, McKean DT, Meron M, Miller EA, Moh CS, Moore RK, Moreno J, Neysmith JM, Niman CS, Nunez JM, Ojeda MT, Ortiz SE, Owens J, Piland G, Proctor DJ, Purba JB, Ray M, Rong D, Saade VM, Saha S, Tomas GS, Scheidler N, Sirajudeen LH, Snow S, Stengel G, Stinson R, Stone MJ, Sundseth KJ, Thai E, Thompson CJ, Tjioe M, Trejo CL, Trieger G, Truong DN, Tse B, Voiles B, Vuong H, Wong JC, Wu CT, Yu H, Yu Y, Yu M, Zhang X, Zhao D, Zheng G, He M, Previte M. Sequencing by avidity enables high accuracy with low reagent consumption. Nat Biotechnol 2024; 42:132-138. [PMID: 37231263 DOI: 10.1038/s41587-023-01750-7] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/15/2023] [Indexed: 05/27/2023]
Abstract
We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates. Avidity sequencing achieves high accuracy, with 96.2% and 85.4% of base calls having an average of one error per 1,000 and 10,000 base pairs, respectively. We show that the average error rate of avidity sequencing remained stable following a long homopolymer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bill Lin
- Element Biosciences, San Diego, CA, USA
| | - Yu Liu
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | | | | | - Su Zhang
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiyi Chen
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | - Chao Feng
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Li
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | - Rui Ma
- Element Biosciences, San Diego, CA, USA
| | | | | | | | - Max Mass
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ben Tse
- Element Biosciences, San Diego, CA, USA
| | | | | | | | | | - Hua Yu
- Element Biosciences, San Diego, CA, USA
| | | | - Ming Yu
- Element Biosciences, San Diego, CA, USA
| | - Xi Zhang
- Element Biosciences, San Diego, CA, USA
| | - Da Zhao
- Element Biosciences, San Diego, CA, USA
| | | | - Molly He
- Element Biosciences, San Diego, CA, USA
| | | |
Collapse
|
20
|
Sebastian A, Migalska M, Gaczorek T. AmpliSAS and AmpliHLA: Web Server and Local Tools for MHC Typing of Non-model Species and Human Using NGS Data. Methods Mol Biol 2024; 2809:37-66. [PMID: 38907889 DOI: 10.1007/978-1-0716-3874-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
AmpliSAS and AmpliHLA are tools for automatic genotyping of MHC genes from high-throughput sequencing data. AmpliSAS is designed specifically to analyze amplicon sequencing data from non-model species and it is able to perform de novo genotyping without any previous knowledge of the reference alleles. AmpliHLA is a human specific version; it performs HLA typing by comparing sequenced variants against human reference alleles from the IMGT/HLA database. Both tools are available in AmpliSAT web-server as well as scripts for local/server installation. Here we describe the installation and deployment of AmpliSAS and AmpliHLA Perl scripts and dependencies on a local or a server computer. We will show how to run them in the command line using as examples four genotyping protocols: the first two use amplicon sequencing data to genotype the MHC genes of a passerine bird and human respectively; the third and fourth present the HLA typing of a human cell line starting from RNA and exome sequencing data respectively.
Collapse
Affiliation(s)
| | - Magdalena Migalska
- Genomics and Experimental Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Tomasz Gaczorek
- Genomics and Experimental Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Vozza G, Bonetti E, Tini G, Favalli V, Frigè G, Bucci G, De Summa S, Zanfardino M, Zapelloni F, Mazzarella L. Benchmarking and improving the performance of variant-calling pipelines with RecallME. BIOINFORMATICS (OXFORD, ENGLAND) 2023; 39:btad722. [PMID: 38092052 DOI: 10.1093/bioinformatics/btad722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/03/2023] [Indexed: 12/25/2023]
Abstract
MOTIVATION The steady increment of Whole Genome/Exome sequencing and the development of novel Next Generation Sequencing-based gene panels requires continuous testing and validation of variant calling (VC) pipelines and the detection of sequencing-related issues to be maintained up-to-date and feasible for the clinical settings. State of the art tools are reliable when used to compute standard performance metrics. However, the need for an automated software to discriminate between bioinformatic and sequencing issues and to optimize VC parameters remains unmet. RESULTS The aim of the current work is to present RecallME, a bioinformatic suite that tracks down difficult-to-detect variants as insertions and deletions in highly repetitive regions, thus providing the maximum reachable recall for both single nucleotide variants and small insertion and deletions and to precisely guide the user in the pipeline optimization process. AVAILABILITY AND IMPLEMENTATION Source code is freely available under MIT license at https://github.com/mazzalab-ieo/recallme. RecallME web application is available at https://translational-oncology-lab.shinyapps.io/recallme/. To use RecallME, users must obtain a license for ANNOVAR by themselves.
Collapse
Affiliation(s)
- Gianluca Vozza
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giulia Tini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriele Bucci
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | | | | | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
22
|
Guo Y, Li Z, Li L, Li S, Sun L, Yang X, Dai Y, Gu J, Yang L, Liu X, Lu B, Han J, Chang K, Gu L, Yin Y, Sun S, Jing C, Chen H, Liu M, Xu H, Liu R, Ren Y, Guo H, Wang H. A dual-process of targeted and unbiased Nanopore sequencing enables accurate and rapid diagnosis of lower respiratory infections. EBioMedicine 2023; 98:104858. [PMID: 37925777 PMCID: PMC10652131 DOI: 10.1016/j.ebiom.2023.104858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Nanopore metagenomics has been used for infectious disease diagnosis for bacterial pathogens. However, this technology currently lacks comprehensive performance studies in clinical settings for simultaneous detection of bacteria, fungi, and viruses. METHODS We developed a dual-process of Nanopore sequencing for one sample, with unbiased metagenomics in Meta process and target enrichment in Panel process (Nanopore Meta-Panel process, NanoMP) and prospectively enrolled 450 respiratory specimens from multiple centers. The filter system of pathogen detection was established with machine learning and receiver operator characteristic (ROC) curve to optimize the detection accuracy based on orthogonal test of 21 species. Antimicrobial resistance (AMR) genes were identified based on the Comprehensive Antibiotic Resistance Database (CARD) and single-nucleotide polymorphism matrix. FINDINGS Our approach showed high sensitivity in Meta process, with 82.9%, 88.7%, and 75.0% for bacteria, fungi (except Aspergillus), and Mycobacterium tuberculosis groups, respectively. Moreover, target amplification improved the sensitivity of virus (>80.0% vs. 39.4%) and Aspergillus (81.8% vs. 42.3%) groups in Panel process compared with Meta process. Overall, NanoMP achieved 80.2% sensitivity and 98.8% specificity compared with the composite reference standard, and we were able to accurately detect AMR genes including blaKPC-2, blaOXA-23 and mecA and distinguish their parent organisms in patients with mixed infections. INTERPRETATION We combined metagenomic and enriched Nanopore sequencing for one sample in parallel. Our NanoMP approach simultaneously covered bacteria, viruses and fungi in respiratory specimens and demonstrated good diagnostic performance in real clinical settings. FUNDING National Key Research and Development Program of China and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Zhenzhong Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Lijuan Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, National Center for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shan Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Lingxiao Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xinfang Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Yan Dai
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Ju Gu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Lan Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xue Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, National Center for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Jiajing Han
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, National Center for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Kang Chang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, National Center for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chendi Jing
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Hui Xu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Ryon Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
23
|
Jaya FR, Brito BP, Darling AE. Evaluation of recombination detection methods for viral sequencing. Virus Evol 2023; 9:vead066. [PMID: 38131005 PMCID: PMC10734630 DOI: 10.1093/ve/vead066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing data.
Collapse
Affiliation(s)
- Frederick R Jaya
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- Ecology and Evolution, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory 2600, Australia
| | - Barbara P Brito
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, New South Wales 2568, Australia
| | - Aaron E Darling
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- Illumina Australia Pty Ltd, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
24
|
Cimadamore A, Rescigno P, Conteduca V, Caliò A, Allegritti M, Calò V, Montagnani I, Lucianò R, Patruno M, Bracarda S. SIUrO best practice recommendations to optimize BRCA 1/2 gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Arch 2023; 483:579-589. [PMID: 37794204 DOI: 10.1007/s00428-023-03660-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
The main guidelines and recommendations for the implementation of the BRCA1/2 somatic test do not focus on the clinical application of predictive testing on bone metastases, a frequent condition in metastatic prostate cancer, by analyzing the critical issues encountered by laboratory practice. Our goal is to produce a document (protocol) deriving from a multidisciplinary team approach to obtain high quality nucleic acids from biopsy of bone metastases. This document aims to compose an operational check-list of three phases: the pre-analytical phase concerns tumor cellularity, tissue processing, sample preservation (blood/FFPE), fixation and staining, but above all the decalcification process, the most critical phase because of its key role in allowing the extraction of somatic DNA with a good yield and high quality. The analytical phase involves the preparation of the libraries that can be analyzed in various NGS genetic sequencing platforms and with various bioinformatics software for the interpretation of sequence variants. Finally, the post-analytical phase that allows to report the variants of the BRCA1/2 genes in a clear and usable way to the clinician who will use these data to manage cancer therapy with PARP Inhibitors.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), University of Udine, Via Palladio 8, 33100, Udine, Italy.
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, 71122, Foggia, Italy
| | - Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Massimiliano Allegritti
- Interventional radiology Unit, Azienda ospedaliera Santa Maria Terni, Viale Tristano di Joannuccio, 05100, Terni, Italy
| | - Valentina Calò
- Central Laboratory of Advanced Diagnosis and Biomedical Research, (CLADIBIOR) Policlinico Paolo Giaccone Hospital, University of Palermo, 90127, Palermo, Italy
| | - Ilaria Montagnani
- Pathology Unit, USL Toscana Centro - Ospedale San Giuseppe, Empoli, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Patruno
- Center for Study of Heredo-Familial Tumors - IRCCS Istituto Tumori "Giovanni Paolo II,", Bari, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano di Joannuccio, 05100, Terni, Italy
| |
Collapse
|
25
|
Ding Y, Liu J. Quantitative Comparison of Capture-SELEX, GO-SELEX, and Gold-SELEX for Enrichment of Aptamers. Anal Chem 2023; 95:14651-14658. [PMID: 37721984 DOI: 10.1021/acs.analchem.3c02477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Since 1990, numerous methods for aptamer selection have been developed, although a quantitative comparison of their sequence enrichment is lacking. In this study, we compared the enrichment factors of three library-immobilization SELEX methods (capture-SELEX, GO-SELEX, and gold-SELEX). We used a spiked library that contained multiple DNA aptamers with different affinities for adenosine. The aptamer separation efficiency was measured using qPCR, and all of the three methods showed a very low DNA release (<1%) in the presence of 100 μM adenosine. Among these, barely any DNA was released from the gold nanoparticles. Deep sequencing was used to compare the enrichment of three aptamers: Ade1301, Ade1304, and the classical aptamer. Enrichment up to 30 to 50-fold was observed only for the capture-SELEX method, whereas the other two methods showed enrichment factors below 1. By blocking the primer-binding regions of the library, GO-SELEX reached up to 14% enrichment. Finally, the enrichment of aptamers based on nonspecific release and target-induced release was discussed, and the advantages of capture-SELEX were rationalized. Taken together, these results indicate that capture-SELEX is a much more efficient method for enriching aptamers.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Geng X, Zuo J, Meng Y, Zhuge Y, Zhu P, Wu N, Bai X, Ni G, Hou Y. Changes in nitrogen and phosphorus availability driven by secondary succession in temperate forests shape soil fungal communities and function. Ecol Evol 2023; 13:e10593. [PMID: 37818249 PMCID: PMC10560873 DOI: 10.1002/ece3.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The soil fungal community plays an important role in forest ecosystems and is crucially influenced by forest secondary succession. However, the driving factors of fungal community and function during temperate forest succession and their potential impact on succession processes remain poorly understood. In this study, we investigated the dynamics of the soil fungal community in three temperate forest secondary successional stages (shrublands, coniferous forests, and deciduous broad-leaved forests) using high-throughput DNA sequencing coupled with functional prediction via the FUNGuild database. We found that fungal community richness, α-diversity, and evenness decreased significantly during the succession process. Soil available phosphorus and nitrate nitrogen decreased significantly after initial succession occurred, and redundancy analysis showed that both were significant predictors of soil fungal community structure. Among functional groups, fungal saprotrophs and pathotrophs represented by plant pathogens were significantly enriched in the early-successional stage, while fungal symbiotrophs represented by ectomycorrhiza were significantly increased in the late-successional stage. The abundance of both saprotroph and pathotroph fungal guilds was positively correlated with soil nitrate nitrogen and available phosphorus content. Ectomycorrhizal fungi were negatively correlated with nitrate nitrogen and available phosphorus content and positively correlated with ammonium nitrogen content. These results indicate that the dynamics of fungal community and function reflected the changes in nitrogen and phosphorus availability caused by the secondary succession in temperate forests. The fungal plant pathogen accumulated in the early-successional stage and ectomycorrhizal fungi accumulated in the late-successional stage may have a potential role in promoting forest succession. These findings contribute to a better understanding of the response of soil fungal communities to secondary forest succession and highlight the importance of fungal communities during the successional process.
Collapse
Affiliation(s)
- Xinze Geng
- College of Life SciencesLudong UniversityYantaiChina
| | - Jincheng Zuo
- College of Life SciencesLudong UniversityYantaiChina
| | - Yunhao Meng
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Yanhui Zhuge
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Ping Zhu
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Nan Wu
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Xinfu Bai
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Yuping Hou
- College of Life SciencesLudong UniversityYantaiChina
| |
Collapse
|
27
|
Li R, Wang Q, Yang J, Zhu J, Liu J, Wu R, Sun H. Comparison of three massively parallel sequencing platforms for single nucleotide polymorphism (SNP) genotyping in forensic genetics. Int J Legal Med 2023; 137:1361-1372. [PMID: 37336821 DOI: 10.1007/s00414-023-03035-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Three MPS platforms are being used in forensic genetic analysis, i.e., MiSeq FGx, Ion S5 XL, and MGISEQ-2000. However, few studies compared their performance. In this study, we sequenced 83 common SNPs of 71 samples using the ForenSeq™ DNA Signature Prep Kit on MiSeq FGx, the Precision ID Identity Panel on Ion S5 XL, and the MGIEasy Signature Identification Library Prep Kit on MGISEQ-2000 and then the performance was compared. Results showed that the MiSeq FGx had the highest sequence quality but the lowest sequencing depth and allele balance. Discordant genotypes were observed at six SNPs, which may be caused by variants at primer binding regions, indel errors, or misalignments. Besides, two kinds of background noises, allele-specific miscalled reads (ASMR) and allele-nonspecific miscalled reads (ANMR), were characterized. MGISEQ-2000 showed the highest level of ASMR while Ion S5 XL had the highest level of ANMR. Site- and genotype-dependent miscalled patterns were observed at several SNPs on Ion S5 XL and MGISEQ-2000, but few on MiSeq FGx. In conclusion, the three MPS platforms perform differently with respect to sequencing quality, sequencing depth, allele balance, concordance, and background noise. These findings may be useful for data comparison, mixture deconvolution, and heteroplasmy analysis in forensic genetics.
Collapse
Affiliation(s)
- Ran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- School of Medicine, Jiaying University, Meizhou, 514015, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510080, People's Republic of China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
28
|
Shah AP, Travadi T, Sharma S, Pandit R, Joshi C, Joshi M. Comprehensive analysis using DNA metabarcoding, SCAR marker based PCR assay, and HPLC unveils the adulteration in Brahmi herbal products. Mol Biol Rep 2023; 50:7605-7618. [PMID: 37532919 DOI: 10.1007/s11033-023-08653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Brahmi is one of the important nootropic botanicals, widely sold in the market, with the name "Brahmi'' being used to describe both Bacopa monnieri and Centella asiatica species. The Brahmi herbal products market is expanding; hence, economically motivated adulteration is highly prevalent. METHODS AND RESULTS This study aimed to develop DNA-based methods, including SCAR marker-based PCR and metabarcoding, to authenticate Brahmi herbal products and compare these methods with HPLC. These methods have been validated using mock controls (in-house blended formulations). All targeted plant species in mock controls were detected successfully with all three methods, whereas, in market samples, only 22.2%, 55.6%, and 50.0% were found positive for Brahmi by PCR assay, DNA metabarcoding, and HPLC, respectively. Metabarcoding can detect the presence of non-labeled plants together with targeted species, which is an advantage over PCR assay or HPLC. CONCLUSION SCAR marker-based PCR is a rapid and cost-effective method for detecting the presence of B. monnieri and C. asiatica. However, in this study, the success rate of PCR amplification was relatively low because the primers targeted either RAPD or ITS-based SCAR markers. HPLC assay, although an alternative, was unable to detect the presence of other botanicals, just like the SCAR marker-based PCR assay. On the other hand, metabarcoding can be utilized to identify the target plants, even in very small quantities, while also providing simulated identification of other botanicals. This study successfully addressed the need for quality control of Brahmi herbal products and provided the first-time report of DNA metabarcoding for such products.
Collapse
Affiliation(s)
- Abhi P Shah
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Tasnim Travadi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India.
| |
Collapse
|
29
|
Zhang M, Zou Y, Xiao S, Hou J. Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. MARINE POLLUTION BULLETIN 2023; 194:115430. [PMID: 37647798 DOI: 10.1016/j.marpolbul.2023.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Marine and freshwater biodiversity is under threat from both natural and manmade causes. Biological monitoring is currently a top priority for biodiversity protection. Given present limitations, traditional biological monitoring methods may not achieve the proposed monitoring aims. Environmental DNA metabarcoding technology reflects species information by capturing and extracting DNA from environmental samples, using molecular biology techniques to sequence and analyze the DNA, and comparing the obtained information with existing reference libraries to obtain species identification. However, its practical application has highlighted several limitations. This paper summarizes the main steps in the environmental application of eDNA metabarcoding technology in aquatic ecosystems, including the discovery of unknown species, the detection of invasive species, and evaluations of biodiversity. At present, with the rapid development of big data and artificial intelligence, certain advanced technologies and devices can be combined with environmental DNA metabarcoding technology to promote further development of aquatic species monitoring and management.
Collapse
Affiliation(s)
- Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingtong Zou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Xiao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
30
|
Ranzau BL, Rallapalli KL, Evanoff M, Paesani F, Komor AC. The Wild-Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequence-Specific DNA Base Editing. Chembiochem 2023; 24:e202200788. [PMID: 36947856 PMCID: PMC10514239 DOI: 10.1002/cbic.202200788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/24/2023]
Abstract
Base editors are genome editing tools that enable site-specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA-deaminating enzyme, TadA. Previous experiments with an ABE comprising a wild-type (wt) TadA showed no detectable activity on DNA, and directed evolution was therefore required to enable this enzyme to accept DNA as a substrate. Here we show that wtTadA can perform base editing in DNA in both bacterial and mammalian cells, with a strict sequence motif requirement of TAC. We leveraged this discovery to optimize a reporter assay to detect base editing levels as low as 0.01 %. Finally, we used this assay along with molecular dynamics simulations of full ABE:DNA complexes to better understand how the sequence recognition of mutant TadA variants change as they accumulate mutations to better edit DNA substrates.
Collapse
Affiliation(s)
- Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kartik L. Rallapalli
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Mallory Evanoff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Han YJ, Liu LY, Rong Z, Zhang QZ, Cheng P, Xu GJ, Wang DF, Zhou Z, Wang SQ. Rapid genotyping of 32 insertion/deletion panel for human identification using fluorogenic probes-based multiplex real-time PCR. Anal Biochem 2023; 674:115208. [PMID: 37315679 DOI: 10.1016/j.ab.2023.115208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insertion and deletion polymorphisms (InDels) have considerable potential in the field of forensic genetics because of their low mutation rate and small amplicons. At present, InDel polymorphisms detection based on the technique of capillary electrophoresis is the main technique used in forensic DNA laboratory. However, this method is complicated and time-consuming, and is not suitable for rapid on-site paternity and personal identification. Next-generation sequencing analysis of InDels polymorphisms requires expensive instruments, large upfront reagent and supply costs, computational requirements and complex bioinformatics, increased the time to obtain results. Thus, there is an urgent need to establish a method to provide reliable, rapid, sensitive and economical genotyping for InDels. METHOD A rapid InDels (32 InDels) panel was established using fluorogenic probes-based multiplex real-time PCR with microfluidic test cartridge and portable real-time PCR instrument. Then, we performed several validation studies including concordance, accuracy, sensitivity, stability, species specificity. RESULTS It showed that the complete genotypes could be obtained from ≥100 pg of input DNA and from a series of challenging samples with high accuracy and specificity within 90 min. CONCLUSION This method provides a rapid and cost-effective solution for InDels genotyping and personal identification in portable format.
Collapse
Affiliation(s)
- Yong-Jun Han
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Li-Yan Liu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, China
| | | | - Peng Cheng
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Guo-Juan Xu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | | | - Zhe Zhou
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Sheng-Qi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China.
| |
Collapse
|
32
|
Wei C, Ye Z, Zhang J, Li A. CPPVec: an accurate coding potential predictor based on a distributed representation of protein sequence. BMC Genomics 2023; 24:264. [PMID: 37198531 DOI: 10.1186/s12864-023-09365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in numbers of biological processes and have received wide attention during the past years. Since the rapid development of high-throughput transcriptome sequencing technologies (RNA-seq) lead to a large amount of RNA data, it is urgent to develop a fast and accurate coding potential predictor. Many computational methods have been proposed to address this issue, they usually exploit information on open reading frame (ORF), protein sequence, k-mer, evolutionary signatures, or homology. Despite the effectiveness of these approaches, there is still much room to improve. Indeed, none of these methods exploit the contextual information of RNA sequence, for example, k-mer features that counts the occurrence frequencies of continuous nucleotides (k-mer) in the whole RNA sequence cannot reflect local contextual information of each k-mer. In view of this shortcoming, here, we present a novel alignment-free method, CPPVec, which exploits the contextual information of RNA sequence for coding potential prediction for the first time, it can be easily implemented by distributed representation (e.g., doc2vec) of protein sequence translated from the longest ORF. The experimental findings demonstrate that CPPVec is an accurate coding potential predictor and significantly outperforms existing state-of-the-art methods.
Collapse
Affiliation(s)
- Chao Wei
- School of Computer Science, Hubei University of Technology, Wuhan, China.
| | - Zhiwei Ye
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Aimin Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
33
|
Azzollini J, Agnelli L, Conca E, Torelli T, Busico A, Capone I, Angelini M, Tamborini E, Perrone F, Vingiani A, Lorenzini D, Peissel B, Pruneri G, Manoukian S. Prevalence of BRCA homopolymeric indels in an ION Torrent-based tumour-to-germline testing workflow in high-grade ovarian carcinoma. Sci Rep 2023; 13:7781. [PMID: 37179432 PMCID: PMC10182972 DOI: 10.1038/s41598-023-33857-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Tumour DNA sequencing is essential for precision medicine since it guides therapeutic decisions but also fosters the identification of patients who may benefit from germline testing. Notwithstanding, the tumour-to-germline testing workflow presents a few caveats. The low sensitivity for indels at loci with sequences of identical bases (homopolymers) of ion semiconductor-based sequencing techniques represents a well-known limitation, but the prevalence of indels overlooked by these techniques in high-risk populations has not been investigated. In our study, we addressed this issue at the homopolymeric regions of BRCA1/2 in a retrospectively selected cohort of 157 patients affected with high-grade ovarian cancer and negative at tumour testing by ION Torrent sequencing. Variant allele frequency (VAF) of indels at each of the 29 investigated homopolymers was systematically revised with the IGV software. Thresholds to discriminate putative germline variants were defined by scaling the VAF to a normal distribution and calculating the outliers that exceeded the mean + 3 median-adjusted deviations of a control population. Sanger sequencing of the outliers confirmed the occurrence of only one of the five putative indels in both tumour and blood from a patient with a family history of breast cancer. Our results indicated that the prevalence of homopolymeric indels overlooked by ion semiconductor techniques is seemingly low. A careful evaluation of clinical and family history data would further help minimise this technique-bound limitation, highlighting cases in which a deeper look at these regions would be recommended.
Collapse
Affiliation(s)
- Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Luca Agnelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
- Medical Oncology 1 Department, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Elena Conca
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Tommaso Torelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
- Medical Oncology 1 Department, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Adele Busico
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Iolanda Capone
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Marta Angelini
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Elena Tamborini
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Federica Perrone
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Andrea Vingiani
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Daniele Lorenzini
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Giancarlo Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
34
|
Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based Nanomaterials for Bacterial Imaging and Antimicrobial Applications: Recent Advances and Perspectives. Molecules 2023; 28:2863. [PMID: 36985835 PMCID: PMC10057855 DOI: 10.3390/molecules28062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacterial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms. The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides, and other materials retain the excellent antimicrobial properties of AIEgens while giving other materials excellent properties, further enhancing the antimicrobial effect of the material. This paper reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity, focusing on the materials' preparation and their related antimicrobial strategies. Finally, it concludes with an outlook on some of the problems and challenges still facing the field.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
35
|
Gall-David SL, Boudry G, Buffet-Bataillon S. Comparison of four DNA extraction kits efficiency for 16SrDNA microbiota profiling of diverse human samples. Future Sci OA 2023; 9:FSO837. [PMID: 37006230 PMCID: PMC10051199 DOI: 10.2144/fsoa-2022-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Aim: The current study investigated the performance of 4 widely used DNA extraction kits using different types of high (stool) and low biomass samples (chyme, broncho alveolar lavage and sputum). Methods: Qiagen Powerfecal Pro DNA kit, Macherey Nucleospin Soil kit, Macherey Nucleospin Tissue Kit and MagnaPure LC DNA isolation kit III were evaluated in terms of DNA quantity, quality, diversity and composition profiles. Results: The quantity and quality of DNA varied among the four kits. The microbiota of the stool samples showed similar diversity and compositional profiles for the 4 kits. Conclusion: Despite differences in DNA quality and quantity, the 4 kits yielded similar results for stool samples, while all kits were not sensitive enough for low biomass samples.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | - Sylvie Buffet-Bataillon
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
- Bacteriology, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
36
|
Yang M, Wen G, Cao S, Li K, Huang T, Ji G, Wang S, Xue R, Cao R. The formation of double metalimnetic oxygen minima in a drinking water reservoir and its influence on bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160540. [PMID: 36574553 DOI: 10.1016/j.scitotenv.2022.160540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Metalimnetic oxygen minima has been reported in many lakes and reservoirs, but the double metalimnetic oxygen minima (DMOM) is so far poorly understood. In this work, we first reported DMOM in the Sanhekou Reservoir, and investigated its formation reason and influence on the bacterial community composition (BCC). The results showed that the two anaerobic layers were formed in DMOM, located at 10 m and 45 m approximately. The rapid water storage process and thermal stratification resulted in the double metalimnions. Algal accumulation, decomposition and oxygen consumption in these regions during the sedimentation process eventually leaded to the formation of DMOM. Water temperature and DO gradients made outstanding contributions to the spatiotemporal environmental heterogeneity and significantly affected the BCC. Depending on the distribution of dissolved oxygen (DO), the storage process could be divided into three periods: DMOM, single MOM period and mixed period. Exiguobacterium and Ralstonia were dominated in DMOM due to the soil discharge and plant decomposition. Besides, BCC presented the largest vertical difference in DMOM and existed the interlayer-similar phenomenon (BCC in the two anaerobic layers were more similar). This study explained the formation of DMOM and its influence on BCC, which was helpful to understand the response of BCC to the storage process and unique DO structure in a moderate eutrophication reservoir.
Collapse
Affiliation(s)
- Meng Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| | - Shuangli Cao
- Hanjiang to Weihe River Valley Water Diversion Project Construction Co. Ltd., Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gang Ji
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Sihan Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Ruikang Xue
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|
37
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
38
|
Full-Length 16S rRNA Gene Analysis Using Long-Read Nanopore Sequencing for Rapid Identification of Bacteria from Clinical Specimens. Methods Mol Biol 2023; 2632:193-213. [PMID: 36781730 DOI: 10.1007/978-1-0716-2996-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene is a practical and reliable measure for taxonomic profiling of bacterial communities. This chapter describes the detailed workflow for full-length 16S rRNA gene amplicon analysis using nanopore sequencing and bioinformatics pipelines to analyze nanopore sequencing data for taxonomic assignment. This approach offers a higher taxonomic resolution for bacterial identification from clinical specimens with a markedly reduced timeframe and improved versatility.
Collapse
|
39
|
Xiang N, Lu B, Yuan T, Yang T, Guo J, Wu Z, Liu H, Liu X, Qin R. De Novo Transcriptome Assembly and EST-SSR Marker Development and Application in Chrysosplenium macrophyllum. Genes (Basel) 2023; 14:genes14020279. [PMID: 36833206 PMCID: PMC9956384 DOI: 10.3390/genes14020279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Chrysosplenium macrophyllum Oliv., belonging to the family Saxifragaceae, is a traditional and unique Chinese herbal medicine. However, the lack of adequate molecular markers has hampered the progress regarding population genetics and evolution within this species. In this research, we used the DNBSEQ-T7 Sequencer (MGI) sequencing assay to analyze the transcriptome profiles of C. macrophyllum. SSR markers were developed on the basis of transcriptomic sequences and further validated on C. macrophyllum and other Chrysosplenium species. The genetic diversity and structure of the 12 populations were analyzed by using polymorphic expressed sequence tag simple sequence repeat (EST-SSR) markers. A potential pool of 3127 non-redundant EST-SSR markers were identified for C. macrophyllum in this study. The developed EST-SSR markers had high amplification rates and cross-species transferability in Chrysosplenium. Our results also showed that the natural populations of C. macrophyllum had a high level of genetic diversity. Genetic distance, principal component analysis, and popular structure analysis revealed that all 60 samples clustered into two major groups that were consistent with their geographical origins. This study provided a batch of highly polymorphic EST-SSR molecular markers that were developed via transcriptome sequencing. These markers will be of great significance for the study of the genetic diversity and evolutionary history of C. macrophyllum and other Chrysosplenium species.
Collapse
Affiliation(s)
- Niyan Xiang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa 850000, China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bojie Lu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Yuan
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa 850000, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiani Guo
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa 850000, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xing Liu
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa 850000, China
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (X.L.); (R.Q.)
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (X.L.); (R.Q.)
| |
Collapse
|
40
|
Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of next-generation sequencing. Front Bioeng Biotechnol 2023; 11:982111. [PMID: 36741756 PMCID: PMC9895957 DOI: 10.3389/fbioe.2023.982111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Next-generation sequencing (NGS) is present in all fields of life science, which has greatly promoted the development of basic research while being gradually applied in clinical diagnosis. However, the cost and throughput advantages of next-generation sequencing are offset by large tradeoffs with respect to read length and accuracy. Specifically, its high error rate makes it extremely difficult to detect SNPs or low-abundance mutations, limiting its clinical applications, such as pharmacogenomics studies primarily based on SNP and early clinical diagnosis primarily based on low abundance mutations. Currently, Sanger sequencing is still considered to be the gold standard due to its high accuracy, so the results of next-generation sequencing require verification by Sanger sequencing in clinical practice. In order to maintain high quality next-generation sequencing data, a variety of improvements at the levels of template preparation, sequencing strategy and data processing have been developed. This study summarized the general procedures of next-generation sequencing platforms, highlighting the improvements involved in eliminating errors at each step. Furthermore, the challenges and future development of next-generation sequencing in clinical application was discussed.
Collapse
|
41
|
Fahad AS, Madan B, DeKosky BJ. Bioinformatic Analysis of Natively Paired VH:VL Antibody Repertoires for Antibody Discovery. Methods Mol Biol 2023; 2552:447-463. [PMID: 36346608 DOI: 10.1007/978-1-0716-2609-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation DNA sequencing (NGS) of human antibody repertoires has been extensively implemented to discover novel antibody drugs, to analyze B-cell developmental features, and to investigate antibody responses to infectious diseases and vaccination. Because the antibody repertoire encoded by human B cells is highly diverse, NGS analyses of antibody genes have provided a new window into understanding antibody responses for basic immunology, biopharmaceutical drug discovery, and immunotherapy. However, many antibody discovery protocols analyze the heavy and light chains separately due to the short-read nature of most NGS technologies, whereas paired heavy and light chain data are required for complete antibody characterization. Here, we describe a computational workflow to process millions of paired antibody heavy and light chain DNA sequence reads using the Illumina MiSeq 2x300 NGS platform. In this workflow, we describe raw NGS read processing and initial quality filtering, the annotation and assembly of antibody clonotypes relating to paired heavy and light chain antibody lineages, and the generation of complete heavy+light consensus sequences for the downstream cloning and expression of human antibody proteins.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
42
|
Gurung AB. Human transcriptome profiling: applications in health and disease. TRANSCRIPTOME PROFILING 2023:373-395. [DOI: 10.1016/b978-0-323-91810-7.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Robert C, Cascella F, Mellai M, Barizzone N, Mignone F, Massa N, Nobile V, Bona E. Influence of Sex on the Microbiota of the Human Face. Microorganisms 2022; 10:microorganisms10122470. [PMID: 36557723 PMCID: PMC9786802 DOI: 10.3390/microorganisms10122470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The role of the microbiota in health and disease has long been recognized and, so far, the cutaneous microbiota in humans has been widely investigated. The research regarded mainly the microbiota variations between body districts and disease skin states (i.e., atopic dermatitis, psoriasis, acne). In fact, relatively little information is available about the composition of the healthy skin microbiota. The cosmetic industry is especially interested in developing products that maintain and/or improve a healthy skin microbiota. Therefore, in the present work, the authors chose to investigate in detail the structure and composition of the basal bacterial community of the face. Ninety-six cheek samples (48 women and 48 men) were collected in the same season and the same location in central northern Italy. Bacterial DNA was extracted, the 16S rDNA gene was amplified by PCR, the obtained amplicons were subjected to next generation sequencing. The principal members of the community were identified at the genus level, and statistical analyses showed significant variations between the two sexes. This study identified abundant members of the facial skin microbiota that were rarely reported before in the literature and demonstrated the differences between male and female microbiota in terms of both community structure and composition.
Collapse
Affiliation(s)
- Clémence Robert
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Correspondence: (C.R.); (E.B.)
| | - Federica Cascella
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
| | - Marta Mellai
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Nadia Barizzone
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Flavio Mignone
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
- SmartSeq s.r.l., 28100 Novara, Italy
| | - Nadia Massa
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
| | - Elisa Bona
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, 13100 Vercelli, Italy
- Correspondence: (C.R.); (E.B.)
| |
Collapse
|
44
|
Performance Comparison of Different Approaches in Genotyping MHC-DRB: The Contrast between Single-Locus and Multi-Locus Species. Animals (Basel) 2022; 12:ani12182452. [PMID: 36139311 PMCID: PMC9495155 DOI: 10.3390/ani12182452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences. In this study, we compared the performance of molecular cloning with Illumina and Ion Torrent NGS sequencing in MHC-DRB genotyping of single-locus species (roe deer) and species with multiple DRB loci (red deer) in an attempt to adopt a reliable and straightforward method that does not require complex bioinformatic analyses. Our results show that all methods work similarly well in roe deer, but we demonstrate non-consistency in results across methods in red deer. With Illumina sequencing, we detected a maximum number of alleles in 10 red deer individuals (42), while other methods were somewhat less accurate as they scored 69–81% of alleles detected with Illumina sequencing.
Collapse
|
45
|
Steiert TA, Fuß J, Juzenas S, Wittig M, Hoeppner M, Vollstedt M, Varkalaite G, ElAbd H, Brockmann C, Görg S, Gassner C, Forster M, Franke A. High-throughput method for the hybridisation-based targeted enrichment of long genomic fragments for PacBio third-generation sequencing. NAR Genom Bioinform 2022; 4:lqac051. [PMID: 35855323 PMCID: PMC9278042 DOI: 10.1093/nargab/lqac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Hybridisation-based targeted enrichment is a widely used and well-established technique in high-throughput second-generation short-read sequencing. Despite the high potential to genetically resolve highly repetitive and variable genomic sequences by, for example PacBio third-generation sequencing, targeted enrichment for long fragments has not yet established the same high-throughput due to currently existing complex workflows and technological dependencies. We here describe a scalable targeted enrichment protocol for fragment sizes of >7 kb. For demonstration purposes we developed a custom blood group panel of challenging loci. Test results achieved > 65% on-target rate, good coverage (142.7×) and sufficient coverage evenness for both non-paralogous and paralogous targets, and sufficient non-duplicate read counts (83.5%) per sample for a highly multiplexed enrichment pool of 16 samples. We genotyped the blood groups of nine patients employing highly accurate phased assemblies at an allelic resolution that match reference blood group allele calls determined by SNP array and NGS genotyping. Seven Genome-in-a-Bottle reference samples achieved high recall (96%) and precision (99%) rates. Mendelian error rates were 0.04% and 0.13% for the included Ashkenazim and Han Chinese trios, respectively. In summary, we provide a protocol and first example for accurate targeted long-read sequencing that can be used in a high-throughput fashion.
Collapse
Affiliation(s)
- Tim Alexander Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius 02241, Lithuania
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Marc Patrick Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Melanie Vollstedt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Greta Varkalaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Christian Brockmann
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel 24105, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel 24105, Germany
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen 9495, Liechtenstein
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| |
Collapse
|
46
|
Hilt EE, Ferrieri P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel) 2022; 13:genes13091566. [PMID: 36140733 PMCID: PMC9498426 DOI: 10.3390/genes13091566] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms and for epidemiologic tracking of organisms within and outside hospital systems. In this review, we analyze these three applications and provide a comprehensive summary of how these applications are currently being used in public health, basic research, and clinical microbiology laboratory environments. In the public health arena, WGS is being used to identify and epidemiologically track food borne outbreaks and disease surveillance. In clinical hospital systems, WGS is used to identify multi-drug-resistant nosocomial infections and track the transmission of these organisms. In addition, we examine how metagenomics sequencing approaches (targeted and shotgun) are being used to circumvent the traditional and biased microbiology culture methods to identify potential pathogens directly from specimens. We also expand on the important factors to consider when implementing these technologies, and what is possible for these technologies in infectious disease diagnosis in the next 5 years.
Collapse
|
47
|
SHIMODA Y, NAGASHIMA T, URAKAMI K, KAMADA F, NAKATANI S, MIZUGUCHI M, SERIZAWA M, HATAKEYAMA K, OHSHIMA K, MOCHIZUKI T, OHNAMI S, OHNAMI S, KAWAKAMI T, YAMAZAKI K, MURAKAMI H, KENMOTSU H, SHIOMI A, AKIYAMA Y, YAMAGUCHI K. Development of two 410-cancer-gene panel tests for solid tumors and liquid biopsy based on genome data of 5,143 Japanese cancer patients. Biomed Res 2022; 43:115-126. [DOI: 10.2220/biomedres.43.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuji SHIMODA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Takeshi NAGASHIMA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Kenichi URAKAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Fukumi KAMADA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Sou NAKATANI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Maki MIZUGUCHI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Masakuni SERIZAWA
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute
| | | | - Keiichi OHSHIMA
- Medical Genetics Division, Shizuoka Cancer Center Research Institute
| | - Tohru MOCHIZUKI
- Medical Genetics Division, Shizuoka Cancer Center Research Institute
| | - Sumiko OHNAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Shumpei OHNAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | | | | | | | | | - Akio SHIOMI
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center
| | - Yasuto AKIYAMA
- Immunotherapy Division, Shizuoka Cancer Center Research Institute
| | | |
Collapse
|
48
|
Tian C, Zheng S, Liu X, Kamei KI. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology 2022; 20:338. [PMID: 35858898 PMCID: PMC9301849 DOI: 10.1186/s12951-022-01552-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
Despite explosive growth in the development of nano-drug delivery systems (NDDS) targeting tumors in the last few decades, clinical translation rates are low owing to the lack of efficient models for evaluating and predicting responses. Microfluidics-based tumor-on-a-chip (TOC) systems provide a promising approach to address these challenges. The integrated engineered platforms can recapitulate complex in vivo tumor features at a microscale level, such as the tumor microenvironment, three-dimensional tissue structure, and dynamic culture conditions, thus improving the correlation between results derived from preclinical and clinical trials in evaluating anticancer nanomedicines. The specific focus of this review is to describe recent advances in TOCs for the evaluation of nanomedicine, categorized into six sections based on the drug delivery process: circulation behavior after infusion, endothelial and matrix barriers, tumor uptake, therapeutic efficacy, safety, and resistance. We also discuss current issues and future directions for an end-use perspective of TOCs.
Collapse
Affiliation(s)
- Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.,Chinese People's Liberation Army 210 Hospital, 116021, Dalian, People's Republic of China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| |
Collapse
|
49
|
Zeng J, Wang Y, Wu Z, Zhou Y. FRAGTE2: An Enhanced Algorithm to Pre-Select Closely Related Genomes for Bacterial Species Demarcation. Front Microbiol 2022; 13:847439. [PMID: 35663897 PMCID: PMC9158502 DOI: 10.3389/fmicb.2022.847439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
We previously reported on FRAGTE (hereafter termed FRAGTE1), a promising algorithm for sieving (pre-selecting genome pairs for whole-genome species demarcation). However, the overall amount of pairs sieved by FRAGTE1 is still large, requiring seriously unaffordable computing cost, especially for large datasets. Here, we present FRAGTE2. Tests on simulated genomes, real genomes, and metagenome-assembled genomes revealed that (i) FRAGTE2 outstandingly reduces ~50–60.10% of the overall amount of pairs sieved by FRAGTE1, dramatically decreasing the computing cost required for whole-genome species demarcation afterward; (ii) FRAGTE2 shows superior sensitivity than FRAGTE1; (iii) FRAGTE2 shows higher specificity than FRAGTE1; and (iv) FRAGTE2 is faster than or comparable with FRAGTE1. Besides, FRAGTE2 is independent of genome completeness, the same as FRAGTE1. We therefore recommend FRAGTE2 tailored for sieving to facilitate species demarcation in prokaryotes.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Institute of Pathogeny Biology, School of Basic Medicine, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Yuxiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Ziyao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Yizhuang Zhou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
50
|
A Review of Next Generation Sequencing Methods and its Applications in Laboratory Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) is a new technology used to detect the sequence of DNA and RNA and to detect mutations or variations of significance. NGS generates large quantities of sequence data within a short time duration. The various types of sequencing includes Sanger Sequencing, Pyrosequencing, Sequencing by Synthesis (Illumina), Ligation (SoLID), Single molecule Fluorescent Sequencing (Helicos), Single molecule Real time Sequencing (Pacbio), Semiconductor sequencing (Ion torrent technology), Nanopore sequencing and fourth generation sequencing. These methods of sequencing have been modified and improved over the years such that it has become cost effective and accessible to diagnostic laboratories. Management of Outbreaks, rapid identification of bacteria, molecular case finding, taxonomy, detection of the zoonotic agents and guiding prevention strategies in HIV outbreaks are just a few of the many applications of Next Generation sequencing in clinical microbiology.
Collapse
|