1
|
Zhang MY, Liu YC, Liu XY, Chen DW, Han C, Shen X, Ding YX, Wang XP, Shi AP. Withaferin A ameliorates psoriasis-like skin lesions by suppressing oxidative stress in keratinocytes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-13. [PMID: 40279167 DOI: 10.1080/10286020.2025.2492825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 04/07/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Psoriasis is a chronic disease with elusive pathogenesis linked to genetic, and immune factors. Studies have shown most patients have experienced high levels of oxidative stress, which can lead to inflammation or damage. Withaferin A is a natural product with multiple pharmacological activities, including anti-tumor and anti-inflammatory effects. We investigated the effects of WA in treating Imiquimod (IMQ)-induced psoriasis mice. The epidermal pathology of mice was significantly improved after treatment. WA inhibited inflammation by decreasing the production of IL-1β, IL-6, and IFN-γ, which were induced by epidermal oxidative stress. Additionally, WA can shift the macrophage status from pro-inflammatory to anti-inflammatory.
Collapse
Affiliation(s)
- Ming-Yi Zhang
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yu-Chang Liu
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xing-Yu Liu
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Di-Wei Chen
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Han
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Shen
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - You-Xiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiao-Ping Wang
- Department of Basic Medicine, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ai-Ping Shi
- Department of Pharmacy, Taixing People's Hospital, Taixing 225400, China
| |
Collapse
|
2
|
Wu C, Yang X, Yang K, Yu Q, Huang C, Li F, Zhang L, Zhu D. Compensatory effect-based oxidative stress management microneedle for psoriasis treatment. Bioact Mater 2025; 46:229-241. [PMID: 39811463 PMCID: PMC11732109 DOI: 10.1016/j.bioactmat.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects. DNA nanostructures with the advantage of being more stable than linear nucleic acid molecules in physiological environments were exquisitely fabricated and incorporated into microneedles (MN). These nanostructures regulate ROS levels and facilitate the delivery of IL-17A siRNA to psoriatic lesions. Our findings demonstrate that this transdermal drug delivery system effectively manages ROS levels in the psoriatic microenvironment, inhibiting pyroptosis and abnormal immune activation. Moreover, modulating ROS levels enhances the therapeutic impact of IL-17A siRNA, offering a promising in situ treatment approach for psoriasis.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xinyu Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Kaiyue Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
3
|
Radić M, Belančić A, Đogaš H, Vučković M, Sener YZ, Sener S, Fajkić A, Radić J. Cardiometabolic Risk in Psoriatic Arthritis: A Hidden Burden of Inflammation and Metabolic Dysregulation. Metabolites 2025; 15:206. [PMID: 40137170 PMCID: PMC11943837 DOI: 10.3390/metabo15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease that extends beyond musculoskeletal and dermatologic involvement to elevate cardiometabolic risk. Emerging evidence highlights the critical role of systemic inflammation in metabolic dysregulation, accelerating insulin resistance, dyslipidemia, and oxidative stress, all of which contribute to the increased burden of cardiovascular disease in PsA. This review explores the intricate interplay between inflammatory mediators-such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-17 (IL-17),-adipokine imbalances, and lipid metabolism abnormalities, all of which foster endothelial dysfunction and atherosclerosis. The dysregulation of adipokines, including leptin, adiponectin, and resistin, further perpetuates inflammatory cascades, exacerbating cardiovascular risk. Additionally, the metabolic alterations seen in PsA, particularly insulin resistance and lipid dysfunction, not only contribute to cardiovascular comorbidities but also impact disease severity and therapeutic response. Understanding these mechanistic links is imperative for refining risk stratification strategies and tailoring interventions. By integrating targeted immunomodulatory therapies with metabolic and cardiovascular risk management, a more comprehensive approach to PsA treatment can be achieved. Future research must focus on elucidating shared inflammatory and metabolic pathways, enabling the development of innovative therapeutic strategies to mitigate both systemic inflammation and cardiometabolic complications in PsA.
Collapse
Affiliation(s)
- Mislav Radić
- Department of Internal Medicine, Division of Rheumatology, Allergology and Clinical Immunology, Center of Excellence for Systemic Sclerosis in Croatia, University Hospital of Split, 21000 Split, Croatia;
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology with Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Hana Đogaš
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | - Marijana Vučković
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
| | - Yusuf Ziya Sener
- Department of Pediatric Rheumatology, Sophia Children’s Hospital, Erasmus University Medical Center, 3000 CB Rotterdam, The Netherlands;
| | - Seher Sener
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, 3000 CB Rotterdam, The Netherlands;
| | - Almir Fajkić
- Department of Pathophysiology, Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Josipa Radić
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
| |
Collapse
|
4
|
Shiu PHT, Wang W, Rangsinth P, Zheng C, Li J, Leung GPH. Anti-Aging Effects of Polysaccharides Derived from Amauroderma rugosum (Agaricomycetes) Aqueous Extract on Keratinocytes. Int J Med Mushrooms 2025; 27:71-81. [PMID: 40094342 DOI: 10.1615/intjmedmushrooms.2025057696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
There is little documentation currently on the pharmacological activity and therapeutic value of Amauroderma rugosum (AR). However, the antioxidant and anti-inflammatory effects of AR aqueous extracts on keratinocytes have been reported. This study has aimed to investigate whether the antioxidant and anti-inflammatory properties of AR are related to its polysaccharides, and whether the polysaccharides of AR (ARP) have the potential to inhibit enzymes related to skin aging. The results showed that ARP was nontoxic. It displayed direct antioxidant capacity and inhibited the release of chemokine monocyte chemoattractant protein-1 in HaCaT cells stimulated by tumor necrosis factor (TN-F)-α- and interferon (IFN)-γ. ARP also exhibits anti-enzymatic activity against collagenase, elastase, hyaluronidase, and tyrosinase. These findings underscore the potential for integrating ARP into novel nature-based skin care formulations.
Collapse
Affiliation(s)
| | - Wen Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Xue Y, Wang T, Liu JP, Chen Q, Dai XL, Su M, Cheng YH, Chu CC, Ren YQ. Recent Trends in the Development and Application of Nano-Antioxidants for Skin-Related Disease. Antioxidants (Basel) 2024; 14:27. [PMID: 39857361 PMCID: PMC11762136 DOI: 10.3390/antiox14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Skin is a vital barrier for the human body, protecting against external environmental influences and maintaining internal homeostasis. In addition, an imbalance of oxidative stress and antioxidant mechanisms can lead to skin-related diseases. Thus, for treating skin-related diseases, antioxidant therapy may be an important strategy to alleviate these symptoms. However, traditional drug therapies have limitations in treating these conditions, such as lack of lasting effect and insufficient skin permeability. Recently, nano-antioxidants, with their good permeability, sustained-release ability, multifunctionality, and other beneficial characteristics, have showed their advances in the exploration of skin-related diseases from research on safe therapies to clinical practice. Hereby, we review the latest research and advancements in nano-antioxidants for skin-related diseases. We categorize skin-related diseases into four main groups: skin inflammatory diseases, skin damage caused by ultraviolet rays, skin wound healing, and other skin-related conditions. Additionally, we summarize the prospects and potential future directions for nano-antioxidant drugs in treating skin-related diseases.
Collapse
Affiliation(s)
- Yi Xue
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Ji-Peng Liu
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Qi Chen
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiao-Long Dai
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yu-Hang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Cheng-Chao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Qing Ren
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| |
Collapse
|
6
|
Lebwohl MG, Armstrong AW, Alexis AF, Lain EL, Jacobson AA. Efficacy of Brodalumab in Patients with Psoriasis and Risk Factors for Treatment Failure: A Review of Post Hoc Analyses. Dermatol Ther (Heidelb) 2024; 14:2709-2726. [PMID: 39264399 PMCID: PMC11480272 DOI: 10.1007/s13555-024-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Factors such as obesity, alcohol consumption, and tobacco use are associated with both increased psoriasis severity and inadequate response to systemic and biologic therapies. Obesity is linked to chronic inflammation, which can contribute to psoriasis pathogenesis. Fixed-dose therapies may have reduced efficacy in patients with a higher body mass index, while weight-based dosing can increase the burden of drug-specific side effects. Alcohol and nicotine from tobacco have also been shown to stimulate keratinocyte and immune cell proliferation and production of proinflammatory cytokines. While these risk factors are prevalent among patients with moderate-to-severe psoriasis, their influence on treatment outcomes may be overlooked when evaluating therapeutic options. Brodalumab is a fully human interleukin-17 receptor A antagonist approved for the treatment of moderate-to-severe psoriasis. In this review, we describe the lifestyle-related risk factors associated with decreased response to treatment. We further summarize the post hoc analyses of brodalumab in participant subgroups with moderate-to-severe psoriasis and a history of prior biologic failure, obesity, and alcohol or tobacco use from two phase 3 clinical trials (AMAGINE-2 and AMAGINE-3; ClinicalTrials.gov identifiers: NCT01708603 and NCT01708629, respectively). Our review of clinical trial and real-world data suggests that brodalumab is an efficacious and safe treatment option for patients with lifestyle factors that increase the likelihood of treatment failure, allowing them to achieve skin clearance and improve quality of life.
Collapse
Affiliation(s)
- Mark G Lebwohl
- Icahn School of Medicine at Mount Sinai, 5 East 98 Street, 5 Floor, New York, NY, 10029, USA.
| | | | - Andrew F Alexis
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Edward L Lain
- Austin Institute for Clinical Research, Austin, TX, USA
| | | |
Collapse
|
7
|
Oh J, Han K, Doh JY, Gee HY, Lee JH. High level of gamma-glutamyltransferase is a possible risk factor for psoriasis: A nationwide population-based cohort study. Indian J Dermatol Venereol Leprol 2024; 0:1-8. [PMID: 39152877 DOI: 10.25259/ijdvl_42_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/03/2023] [Indexed: 08/19/2024]
Abstract
Background Gamma-glutamyl transferase (GGT) has been associated with coronary heart disease, diabetes mellitus, and hypertension, but its association with psoriasis has not yet been elucidated. Aims We conducted this study to determine the association between the risk of psoriasis and the serum GGT. Methods We conducted a nationwide population-based study. A total of 9,939,350 people met the enrolment criteria. The study population was classified into four groups based on GGT levels and the risk of psoriasis was calculated for each group. Results The incidence rates of psoriasis per 1,000 person-years were 2.96105 and 3.68577 in the lowest and highest GGT groups, respectively. After adjusting for age, sex, income, diabetes mellitus, hypertension, dyslipidemia, smoking, alcohol intake, exercise, and body mass index, the highest GGT group showed a significantly increased risk of developing psoriasis (hazard ratio: 1.057, 95% confidence interval: 1.044-1.07). This risk of psoriasis was significantly higher among the old age group (hazard ratio: 1.162, 95% confidence interval: 1.128-1.197) and women (hazard ratio: 1.14, 95% confidence interval: 1.117-1.164). Limitations The limitations of this study included the retrospective design, International Classification of Diseases code-based diagnosis, small hazard ratio, and non-availability of data on covariates. Conclusion The GGT level was found to be an independent risk factor for developing psoriasis.
Collapse
Affiliation(s)
- Jongwook Oh
- Department of Pharmacology, Yonsei University College of Medicine, Yeonsero, Seodaemoon-Gu, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Sangdoro, Dongjak-Gu, Republic of Korea
| | - Jee Yun Doh
- Department of Dermatology, Seoul St. Mary's Hospital, Banpo-daero, Seocho-gu, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Yeonsero, Seodaemoon-Gu, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, Banpo-daero, Seocho-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Xiang B, Zhang M, Li D. Is erectile dysfunction genetically associated with psoriasis? Transl Androl Urol 2024; 13:748-758. [PMID: 38855583 PMCID: PMC11157395 DOI: 10.21037/tau-24-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/17/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The association between psoriasis and erectile dysfunction (ED) is currently inconsistent in epidemiological and observational studies and the causal relationship between them has not been established. The aim of our study is to explore the potential genetic association between ED and psoriasis. METHODS We explored the putative causality between psoriasis and ED by bidirectional Mendelian randomization (MR). The single nucleotide polymorphisms (SNPs) associated with psoriasis were retrieved from a large-scale public genome-wide association study (GWAS). The summary statistics of ED were obtained from individuals of European ancestry with 6,175 cases vs. 217,630 controls. Inverse-variant weighted (IVW), weighted median (WM), MR-Egger, MR-Steiger, and MR pleiotropy residual sum and outlier (MR-PRESSO) test were employed in MR analyses to investigate the bidirectional causal relationship between psoriasis and ED. Several sensitivity analyses were employed to confirm the findings of the MR analysis. RESULTS Our MR analysis indicated that genetically predicted psoriasis showed no association with a higher risk of ED [odds ratio (OR) 2.878, 95% confidence interval (CI): 0.175-47.289, P=0.46]. As for the other direction, no causal association was disclosed between ED and psoriasis (OR 0.999, 95% CI: 0.997-1.002, P=0.62). These findings remained consistent in sensitivity analyses. CONCLUSIONS The study revealed a negative genetic association between psoriasis and ED. Certain acquired factors may contribute to a strong clinical connection between the two, highlighting the need for comprehensive management of these risk factors.
Collapse
Affiliation(s)
- Boyu Xiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Minghui Zhang
- Department of Cardiology, Capital Medical University affiliated Beijing Anzhen Hospital, Beijing, China
| | - Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Yao L, Tian F, Meng Q, Guo L, Ma Z, Hu T, Liang Q, Li Z. Reactive oxygen species-responsive supramolecular deucravacitinib self-assembly polymer micelles alleviate psoriatic skin inflammation by reducing mitochondrial oxidative stress. Front Immunol 2024; 15:1407782. [PMID: 38799436 PMCID: PMC11116664 DOI: 10.3389/fimmu.2024.1407782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.
Collapse
Affiliation(s)
- Leiqing Yao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinqin Meng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lu Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhimiao Ma
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiongwen Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
11
|
Wang TH, Shen YW, Chen HY, Chen CC, Lin NC, Shih YH, Hsia SM, Chiu KC, Shieh TM. Arecoline Induces ROS Accumulation, Transcription of Proinflammatory Factors, and Expression of KRT6 in Oral Epithelial Cells. Biomedicines 2024; 12:412. [PMID: 38398015 PMCID: PMC10887121 DOI: 10.3390/biomedicines12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Areca nut is a major contributor to the high prevalence of oral cancer in Asia. The precise mechanisms by which areca nut stimulates mucosal cells and contributes to the progression of oral cancer urgently require clarification. The current study aimed to assess the effects of arecoline on the normal human gingival epithelium cell line S-G. Cell viability, levels of reactive oxygen species (ROS), protein expression, cellular morphology, and gene expression were evaluated using the MTT test, flow cytometry, Western blot analysis, optical or confocal microscopy, and RT-qPCR. Keratin (KRT6) analysis involved matched normal and cancer tissues from clinical head and neck specimens. The results demonstrated that 12.5 µg/mL of arecoline induced ROS production, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNA expression in S-G cells. This activation of the MAPK/ERK pathway increased KRT6 expression while limiting cell migration. In head and neck cancer tissues, KRT6B gene expression exceeded that of normal tissues. This study confirms that arecoline induces ROS accumulation in normal cells, leading to the secretion of proinflammatory factors and KRT6 expression. This impedes oral mucosal healing, thereby promoting the progression of oral cancer.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Hsin-Ying Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung 404328, Taiwan
| | - Nan-Chin Lin
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 505029, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500011, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung 411228, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
12
|
Srivastava AK, Srivastava S, Kumar V, Ghosh S, Yadav S, Malik R, Roy P, Prasad R. Identification and mechanistic exploration of structural and conformational dynamics of NF-kB inhibitors: rationale insights from in silico and in vitro studies. J Biomol Struct Dyn 2024; 42:1485-1505. [PMID: 37054525 DOI: 10.1080/07391102.2023.2200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Increased expression of target genes that code for proinflammatory chemical mediators results from a series of intracellular cascades triggered by activation of dysregulated NF-κB signaling pathway. Dysfunctional NF-kB signaling amplifies and perpetuates autoimmune responses in inflammatory diseases, including psoriasis. This study aimed to identify therapeutically relevant NF-kB inhibitors and elucidate the mechanistic aspects behind NF-kB inhibition. After virtual screening and molecular docking, five hit NF-kB inhibitors opted, and their therapeutic efficacy was examined using cell-based assays in TNF-α stimulated human keratinocyte cells. To investigate the conformational changes of target protein and inhibitor-protein interaction mechanisms, molecular dynamics (MD) simulations, binding free energy calculations together with principal component (PC) analysis, dynamics cross-correlation matrix analysis (DCCM), free energy landscape (FEL) analysis and quantum mechanical calculations were carried out. Among identified NF-kB inhibitors, myricetin and hesperidin significantly scavenged intracellular ROS and inhibited NF-kB activation. Analysis of the MD simulation trajectories of ligand-protein complexes revealed that myricetin and hesperidin formed energetically stabilized complexes with the target protein and were able to lock NF-kB in a closed conformation. Myricetin and hesperidin binding to the target protein significantly impacted conformational changes and internal dynamics of amino acid residues in protein domains. Tyr57, Glu60, Lys144 and Asp239 residues majorly contributed to locking the NF-kB in a closed conformation. The combinatorial approach employing in silico tools integrated with cell-based approaches substantiated the binding mechanism and NF-kB active site inhibition by the lead molecule myricetin, which can be explored as a viable antipsoriatic drug candidate associated with dysregulated NF-kB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siddharth Yadav
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
13
|
Kim TY, Park NJ, Jo BG, Lee BS, Keem MJ, Kwon TH, Kim KH, Kim SN, Yang MH. Anti-Wrinkling Effect of 3,4,5-tri- O-caffeoylquinic Acid from the Roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 Signaling in UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2023; 12:1899. [PMID: 37891978 PMCID: PMC10604296 DOI: 10.3390/antiox12101899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nymphoides peltata has been widely used pharmacologically in traditional Chinese medicine to treat heat strangury and polyuria. The aim of this study was to isolate the bioactive components from N. peltata and evaluate their potential use as antioxidant and anti-wrinkle agents. Phytochemical investigation of the methanolic extract of N. peltata roots led to the isolation of 15 compounds (1-15), which were structurally determined as α-spinasterol (1), 3-O-β-D-glucopyranosyl-oleanolic acid 28-O-β-D-glucuronopyranoside (2), 4-hydroxybenzoic acid (3), protocatechuic acid (4), vanillic acid (5), p-coumaric acid (6), caffeic acid (7), ferulic acid (8), neochlorogenic acid (neo-CQA) (9), chlorogenic acid (CQA) (10), cryptochlorogenic acid (crypto-CQA) (11), isochlorogenic acid B (3,4-DCQA) (12), isochlorogenic acid A (3,5-DCQA) (13), isochlorogenic acid C (4,5-DCQA) (14), and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (15). Of these 15 compounds, compound 2 was a new oleanane saponin, the chemical structure of which was characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization mass spectrometry (HRESIMS), as well as chemical reaction. Biological evaluation of the isolated compounds revealed that 3,4,5-tri-O-caffeoylquinic acid (TCQA) significantly improved Nrf2 levels in an Nrf2-ARE reporter HaCaT cell screening assay. TCQA was found to potently inhibit the Nrf2/HO-1 pathway and to possess strong anti-wrinkle activity by modulating the MAPK/NF-κB/AP-1 signaling pathway and thus inhibiting MMP-1 synthesis in HaCaT cells exposed to UVB. Our results suggest that TCQA isolated from N. peltata might be useful for developing effective antioxidant and anti-wrinkle agents.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Taek-Hwan Kwon
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| |
Collapse
|
14
|
Mostafa A, Sabry D, Aboraia N, Fawzy A, Abou-Elalla AA. Dyslipidemia initiates keratinocytes proliferation through upregulation of lncRNA NEAT in psoriasis patients. Mol Biol Rep 2023; 50:7597-7604. [PMID: 37531036 PMCID: PMC10460715 DOI: 10.1007/s11033-023-08527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory immune-mediated and hyper proliferative skin disorder that has underlying genetic factors. Psoriasis can result from interaction of cytokines between keratinocytes and T-lymphocytes. NEAT is a lncRNA involved in immune modulation and has been previously studied in cancers. This study aims to clarify the unprecedented role of NEAT in psoriasis pathogenesis. METHODS The study was conducted on 50 healthy control subjects and 50 psoriasis patients. Blood samples from all participants were collected for analysis of their lipid profile. qRT-PCR was done for lncRNA NEAT, TNF-α, VEGF genes expression. The levels of ROS and caspase-3 were estimated by ELISA. ROC analysis was done to detect the diagnostic value of lncRNA NEAT gene expression. RESULTS Dyslipidemia is more prevalent among psoriasis patients. A significant up regulation in lncRNA NEAT, TNF-α, VEGF genes expression (p value˂0.001) in psoriasis patients in addition to significant increase in ROS and caspase-3 levels (p value˂0.001) in compare to controls. Additionally, a positive significant correlation between TNF-α, ROS, NEAT, caspase-3 and dyslipidemia. NEAT had an area under the curve (AUC) of 0.931 (95% CI 0.844-0.978, p < 0.001). CONCLUSION Dyslipidemia is an initiating signal in psoriasis pathogenesis that creates a state of chronic inflammation and oxidative stress. This state induces keratinocytes proliferation and release of NEAT with subsequent caspase-3 activation to counteract the proliferating cells. NEAT could be considered as a good diagnostic biomarker for psoriasis.
Collapse
Affiliation(s)
- Abeer Mostafa
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
| | - Nesreen Aboraia
- Dermatology department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ahmed Fawzy
- Physiology department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany A. Abou-Elalla
- Medical Laboratory Technology department, Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
15
|
Tharmatt A, Sahel DK, Raza K, Pandey MM, Mittal A, Chitkara D. Topical delivery of Anti-VEGF nanomedicines for treating psoriasis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Wijaya LK, Morici MV, Stumbles PA, Finch PM, Drummond PD. Stimulation of alpha-1 adrenoceptors may intensify cutaneous inflammation in complex regional pain syndrome. Pain 2023; 164:771-781. [PMID: 35994594 DOI: 10.1097/j.pain.0000000000002764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Alpha-1 adrenoceptors are overexpressed in the epidermis of a subgroup of patients with complex regional pain syndrome (CRPS). Activating α 1 -adrenoceptors in epidermal cells increases production of the proinflammatory cytokine interleukin-6 (IL-6), a mediator of inflammation. To investigate whether this might exacerbate inflammation in CRPS, primary keratinocytes or dermal fibroblasts were cultured from skin biopsies obtained from the affected limb of 25 patients and a similar site in 28 controls. The fundamental proinflammatory cytokine, tumor necrosis factor alpha, was administered for 24 hours to initiate inflammation. After this, cells were incubated for 6 hours with the α 1 -adrenoceptor agonist phenylephrine. Exposure to tumor necrosis factor alpha induced proinflammatory cytokine mRNA production and protein secretion in keratinocytes and fibroblasts and enhanced α 1B -adrenoceptor mRNA expression in keratinocytes. Additional stimulation of α 1 adrenoceptors with phenylephrine increased the production of IL-6 mRNA and protein secretion in both cell types. Under all conditions, gene and protein α 1 -adrenoceptor levels and cytokine gene expression and protein secretion were similar, overall, in patients and controls, except for abnormally high α 1 -adrenoceptor protein levels in the keratinocytes of 3 of 17 patients. These findings suggest that persistent inflammation in CRPS is not due to dysfunction of skin cells but is a normal response to extrinsic signals. After α 1 -adrenoceptor stimulation of keratinocytes, increases in IL-6 mRNA but not protein were proportional to basal α 1 -adrenoceptor protein levels. Skin cells play an important role in persistent inflammation in CRPS. Potentially, a positive feedback loop between α 1 -adrenoceptors and IL-6 production in skin cells contributes to this inflammatory state.
Collapse
Affiliation(s)
- Linda K Wijaya
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Michael V Morici
- Telethon Kids Institute, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Philip A Stumbles
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Philip M Finch
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
17
|
Hua Y, Chang T, Jiang K, Wang J, Cui X, Cheng M, Yan F, Song B, Wang Y. ROS-sensitive calcipotriol nano-micelles prepared by methoxypolyethylene glycol (mPEG) - modified polymer for the treatment of psoriasis. Drug Deliv 2022; 29:1903-1913. [PMID: 35748409 PMCID: PMC9246247 DOI: 10.1080/10717544.2022.2086944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress due to excessive reactive oxygen species (ROS) production in the skin microenvironment is one of the main mechanisms in psoriasis pathogenesis. A nano drug delivery system based on ROS-responsive release can enhance drug release at the target site. In this study, a ROS-sensitive material methoxypolyethylene glycol-thioether-thiol (mPEG-SS) was synthesized using mPEG as the parent structure with sulfide structural modification. An mPEG-SS-calcipotriol (mPEG-SS-CPT, PSC) nano-micelle percutaneous delivery system was prepared by encapsulating CPT. A small animal imaging system was used to study PSC’s the ROS-sensitive drug release process. It is shown that endogenous ROS mainly affects PSC and releases drugs. Finally, the therapeutic effect of PSC on psoriasis was explored by animal experiments. Ultimately, it ameliorates imiquimod-induced psoriasis-like inflammation. Overall, PSC is an effective ROS-sensitive transdermal drug delivery system that is expected to provide a new strategy for treating psoriasis.
Collapse
Affiliation(s)
- Yulin Hua
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tiantian Chang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kun Jiang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaodong Cui
- Basic Medical School, Weifang Medical University, Weifang, China
| | - Min Cheng
- Basic Medical School, Weifang Medical University, Weifang, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Bo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuzhen Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
18
|
Cury BJ, Boeing T, Somensi LB, Campos A, Cechinel-Filho V, de Souza P, da Silva LM. Dimethyl Cardamonin from Fruits of Campomanesia reitziana D. Legrand Promotes Gastroprotection and Gastric Healing Effects in Rodents. Chem Biodivers 2022; 19:e202200727. [PMID: 36251014 DOI: 10.1002/cbdv.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
Campomanesia reitziana D. Legrand (Myrtaceae) displays antiulcer properties when given to rodents. The major active chemical components of C. reitziana are chalcones, including 4',6'-dihydroxy-2'-methoxy-3',5'-dimethylchalcone or dimethyl cardamonin (DMC); therefore, we hypothesized that this compound could have antiulcer effects and the present study aimed to evaluate its gastroprotective and gastric healing properties. DMC was isolated from the fruits of C. reitziana, and its gastroprotective effect was evaluated by ethanol and indomethacin-induced gastric ulcer models in mice (0.1 mg/kg, i.p. and 1 and 3 mg/kg, p.o.). Oxidative stress and inflammatory parameters were analyzed in the gastric tissue. Moreover, its gastric healing effect was evaluated in rats. In addition, the compound's mode of action was evaluated in vivo and in vitro by measuring H+ -K+ -ATPase activity. Finally, the cytotoxic potential of DMC was tested in fibroblasts and human gastric adenocarcinoma cells. The DMC reduced the ethanol-induced gastric ulcer in mice by 77 %, increased the adhered mucus, and reduced lipoperoxides levels. The block of nonprotein sulfhydryls (NP-SH) compounds by pretreatment with N-ethylmaleimide (NEM), the inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), or the antagonism of α2 receptor using yohimbine reversed the gastroprotective effects of DMC. Furthermore, DMC reduced the acidity of gastric content in pylorus-ligated rats but did not change H+ , K+ -ATPase (isolated from rabbit) activity in vitro. DMC reduced the lesion area in acetic acid-induced ulcers and decreased myeloperoxidase activity. DMC did not change the viability of fibroblast cells (L929) but reduced the viability of human gastric adenocarcinoma cells (AGS). The results confirmed that DMC could significantly enhance the gastric healing process and prevent ulcers due to improving protective factors on the gastric mucosa and reducing gastric acid secretion.
Collapse
Affiliation(s)
- Benhur Judah Cury
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Lincon Bordignon Somensi
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Adriana Campos
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
19
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Kim JH. Hyaluronic acid suppresses the effect of di-(2-ethylhexyl) phthalate in HaCaT keratinocytes. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Kim K, Yoon H, Choi JS, Jung YJ, Park JW. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113962. [PMID: 35988379 DOI: 10.1016/j.ecoenv.2022.113962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to examine the impact of chronic (30 days) exposure to polystyrene microplastics (PS-MPs) of different sizes (50 nm and 2 µm) and at different concentrations (0.5 μg/L and 100 mg/L) to marine copepod Tigriopus japonicus. Polystyrene microplastics affected survival rates in size- and concentration-dependent manners. The LC50s values of 50 nm and 2 µm PS-MPs were 0.10 mg/L and 3.92 mg/L, respectively. The developmental time was delayed by 50 nm PS-MPs, and Usp expression was downregulated. Reproduction was negatively affected by 2 µm PS-MPs even at environmentally relevant concentrations; however, the expression of Vtg was not altered. The production rates of reactive oxygen species and nitric oxide also increased after exposure to PS-MPs; but this effect was independent of particle size. The expression levels of Cat and Tnf, genes related to oxidative stress and inflammation, respectively, were upregulated by exposure to PS-MPs, independently of particle size. Meanwhile, the level of oxidative stress in T. japonicus was not significantly affected by PS-MPs at environmentally relevant concentrations. This study suggests that nano-sized PS-MPs are not always more toxic than micro-sized PS-MPs, and that oxidative stress is a key factor in determining the toxic effect on T. japonicus at high concentrations.
Collapse
Affiliation(s)
- Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Hakwon Yoon
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Youn-Joo Jung
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Kwon MJ, Lee JW, Kim KS, Chen H, Cui CB, Lee GW, Cho YH. The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice. Molecules 2022; 27:molecules27144455. [PMID: 35889329 PMCID: PMC9324053 DOI: 10.3390/molecules27144455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice’s performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1–42 (Aβ1–42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.
Collapse
Affiliation(s)
- Mi-Jin Kwon
- Division of Efficiency Evaluation of Biomolecules, PSA Co., Ltd., Pusan 48513, Korea; (M.-J.K.); (J.-W.L.)
| | - Ju-Woon Lee
- Division of Efficiency Evaluation of Biomolecules, PSA Co., Ltd., Pusan 48513, Korea; (M.-J.K.); (J.-W.L.)
| | - Kwan-Soo Kim
- Greenpia Technology Inc., Yeoju-si 12619, Korea;
| | - Hao Chen
- Suite 18B Sea View Plaza, 18 Tai Zi Road Shekou, Shenzhen 518067, China;
| | - Cheng-Bi Cui
- Key Laboratory of Changbai Mountain Biological Resources and Functional Molecular Education, Yanbian University, Yanji 133002, China;
| | - Gye Won Lee
- Department of Pharmaceutics and Biotechnology, Konyang University, Daejeon 35365, Korea;
| | - Young Ho Cho
- Department of Pharmaceutics and Biotechnology, Konyang University, Daejeon 35365, Korea;
- Correspondence: ; Tel.: +82-42-600-8503
| |
Collapse
|
23
|
Krajina I, Stupin A, Šola M, Mihalj M. Oxidative Stress Induced by High Salt Diet—Possible Implications for Development and Clinical Manifestation of Cutaneous Inflammation and Endothelial Dysfunction in Psoriasis vulgaris. Antioxidants (Basel) 2022; 11:antiox11071269. [PMID: 35883760 PMCID: PMC9311978 DOI: 10.3390/antiox11071269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Although oxidative stress is recognized as an important effector mechanism of the immune system, uncontrolled formation of reactive oxygen and nitrogen species promotes excessive tissue damage and leads to disease development. In view of this, increased dietary salt intake has been found to damage redox systems in the vessel wall, resulting in endothelial dysfunction associated with NO uncoupling, inflammation, vascular wall remodeling and, eventually, atherosclerosis. Several studies have reported increased systemic oxidative stress accompanied by reduced antioxidant capacity following a high salt diet. In addition, vigorous ionic effects on the immune mechanisms, such as (trans)differentiation of T lymphocytes are emerging, which together with the evidence of NaCl accumulation in certain tissues warrants a re-examination of the data derived from in vitro research, in which the ionic influence was excluded. Psoriasis vulgaris (PV), as a primarily Th17-driven inflammatory skin disease with proven inflammation-induced accumulation of sodium chloride in the skin, merits our interest in the role of oxidative stress in the pathogenesis of PV, as well as in the possible beneficial effects that could be achieved through modulation of dietary salt intake and antioxidant supplementation.
Collapse
Affiliation(s)
- Ivana Krajina
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| | - Martina Mihalj
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| |
Collapse
|
24
|
Hsiao PF, Huang YT, Lu PH, Chiu LY, Weng TH, Hung CF, Wu NL. Thioredoxin-interacting protein regulates keratinocyte differentiation: Implication of its role in psoriasis. FASEB J 2022; 36:e22313. [PMID: 35471587 DOI: 10.1096/fj.202101772r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), also known as Vitamin-D upregulated protein-1 (VDUP-1), interacts with thioredoxin to regulate redox responses and participates in diverse disorders including metabolic, cardiovascular, inflammatory and malignant diseases. Psoriasis is characterized by chronic skin inflammation and an aberrant pattern of keratinocyte differentiation. Clinically, psoriasis is associated with various cardiometabolic comorbidities but studies on TXNIP's biological role in skin disorders are limited. In this study, we investigated TXNIP expression in psoriasis and its regulation in normal human epidermal keratinocytes (NHEKs), and then explored how TXNIP regulated skin keratinocyte differentiation to determine its role in psoriasis pathogenesis. Our immunohistochemical study demonstrated extensive TXNIP expression in the upper and lower epidermis of psoriasis compared to predominant TXNIP expression in the basal layer of normal skin. 1, 25-dihydroxyvitamin D3 suppressed but TGF-α and EGF enhanced TXNIP expression in NHEKs. An inducer of keratinocyte differentiation, phorbol 12-myristate 13-acetate (PMA), also diminished TXNIP expression, which was reversed by PKC-δ knockdown. TXNIP knockdown reduced PMA-induced involucrin and transglutaminse-1 expression, and increased p63 expression in NHEKs but did not significantly affect cell proliferation. H2 O2 -induced ROS production and EGFR phosphorylation decreased in NHEKs with TXNIP knockdown. Furthermore, PMA-induced PKC-δ phosphorylation, TGF-α, and EGF-triggered EGFR phosphorylation were attenuated by TXNIP knockdown. Our results unraveled the regulation and function of TXNIP expression in skin keratinocytes and the cross-regulation between TXNIP and EGFR signaling. These findings imply a role of TXNIP in psoriasis and provide insight into the possible impact of TXNIP regulators on the skin or psoriasis.
Collapse
Affiliation(s)
- Pa-Fan Hsiao
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yi-Ting Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Hsuan Lu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ling-Ya Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Han Weng
- Department of Medical Education, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
25
|
Xu J, Chen H, Chu Z, Li Z, Chen B, Sun J, Lai W, Ma Y, He Y, Qian H, Wang F, Xu Y. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J Nanobiotechnology 2022; 20:155. [PMID: 35331238 PMCID: PMC8943972 DOI: 10.1186/s12951-022-01368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Background Psoriasis is a chronic relapsing immunological skin disease characterized by multiple cross-talk inflammatory circuits which are relevantly associated with abnormal cross-reactivity between immune cells and keratinocytes (KCs). It may be inadequate to eradicate complicated pathogenesis only via single-mode therapy. To provide optimal combinatory therapeutics, a nanocomposite-based hydrogel was constructed by loading methotrexate (MTX) into ZnO/Ag to realize combined multiple target therapy of psoriasis. Results In this composite hydrogel, ZnO hybrid mesoporous microspheres were utilized both as drug carriers and reactive oxygen species (ROS)-scavenging nanoparticles. A proper amount of Ag nanoparticle-anchored ZnO nanoparticles (ZnO/Ag) was functionalized with inherent immunoregulatory property. The experiments showed that ZnO/Ag nanoparticles could exhibit a self-therapeutic effect that was attributed to reducing innate cytokine profiles by inactivating p65 in proinflammatory macrophages and abrogating secretion of adaptive cytokines in KCs by downregulating ROS-mediated STAT3-cyclin D1 signaling. A preferable antipsoriatic efficacy was achieved via topical administration of this hydrogel on the imiquimod (IMQ)-induced psoriasis mice model, demonstrating the superior transdermal delivery and combined enhancement of therapeutic efficacy caused by intrinsic nanoparticles and extrinsic MTX. Conclusion This composite hydrogel could serve as a multifunctional, nonirritating, noninvasive and effective transcutaneous nanoagent against psoriasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01368-y.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hao Chen
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Zhaoyou Chu
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Zhu Li
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Benjin Chen
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Jianan Sun
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Wei Lai
- Department of Dermatovenerology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Ma
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Yulong He
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Haisheng Qian
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Babity S, Couture F, Campos EVR, Hedtrich S, Hagen R, Fehr D, Bonmarin M, Brambilla D. A Naked Eye-Invisible Ratiometric Fluorescent Microneedle Tattoo for Real-Time Monitoring of Inflammatory Skin Conditions. Adv Healthc Mater 2022; 11:e2102070. [PMID: 34921529 DOI: 10.1002/adhm.202102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Indexed: 01/05/2023]
Abstract
The field of portable healthcare monitoring devices has an urgent need for the development of real-time, noninvasive sensing and detection methods for various physiological analytes. Currently, transdermal sensing techniques are severely limited in scope (i.e., measurement of heart rate or sweat composition), or else tend to be invasive, often needing to be performed in a clinical setting. This study proposes a minimally invasive alternative strategy, consisting of using dissolving polymeric microneedles to deliver naked eye-invisible functional fluorescent ratiometric microneedle tattoos directly to the skin for real-time monitoring and quantification of physiological and pathological parameters. Reactive oxygen species are overexpressed in the skin in association with various pathological conditions. Here, one demonstrates for the first time the microneedle-based delivery to the skin of active fluorescent sensors in the form of an invisible, ratiometric microneedle tattoo capable of sensing reactive oxygen species in a reconstructed human-based skin disease model, as well as an in vivo model of UV-induced dermal inflammation. One also elaborates a universal ratiometric quantification concept coupled with a custom-built, multiwavelength portable fluorescence detection system. Fully realized, this approach presents an opportunity for the minimally invasive monitoring of a broad range of physiological parameters through the skin.
Collapse
Affiliation(s)
- Samuel Babity
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| | - Frédéric Couture
- TransBIOTech 201 Monseigneur‐Bourget Lévis Québec G6V 6Z9 Canada
- Nutraceuticals and Functional Foods Institute (INAF) Université Laval, Québec Québec G1K 7P4 Canada
- Centre intégré de santé et de services sociaux de Chaudière‐Appalaches Lévis Québec G6E 3E2 Canada
| | - Estefânia V. R. Campos
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
- Human and Natural Sciences Center Federal University of ABC Santo Andre SP 09210‐580 Brazil
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
| | - Raphael Hagen
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Daniel Fehr
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Mathias Bonmarin
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Davide Brambilla
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| |
Collapse
|
27
|
MacKenzie JL, Ivanova N, Nell HJ, Giordano CR, Terlecky SR, Agca C, Agca Y, Walton PA, Whitehead SN, Cechetto DF. Microglial inflammation and cognitive dysfunction in comorbid rat models of striatal ischemic stroke and alzheimer’s disease: effects of antioxidant catalase-SKL on behavioral and cellular pathology. Neuroscience 2022; 487:47-65. [DOI: 10.1016/j.neuroscience.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/25/2022]
|
28
|
Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022; 27:molecules27030591. [PMID: 35163855 PMCID: PMC8839811 DOI: 10.3390/molecules27030591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a common, chronic systemic inflammatory disease affecting 125 million people worldwide. It is associated with several important conditions, including psoriatic arthritis, cardiometabolic syndrome, and depression, leading to a significant reduction in patients’ quality of life. Current treatments only reduce symptoms, not cure. This review discusses the mechanisms involved in the initiation and development of the disease, the role of oxidative stress in this autoimmune disease, as well as potential therapeutic options with substances of natural origin. The main aim of the study is intended to offer a review of the literature to present plants and phytochemicals that can represent potential remedies in the fight against psoriasis. We identified many in vitro, in vivo, and clinical trials studies that evaluated the relationship between chosen natural substances and immune system response in the course of psoriasis. We sought to find articles about the efficacy of potential natural-derived drugs in controlling symptoms and their ability to maintain long-term disease inactivity without side effects, and the result of our work is a review, which highlights the effectiveness of plant-derived drugs in controlling the inflammatory burden on psoriatic patients by decreasing the oxidative stress conditions.
Collapse
|
29
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
30
|
Rancan F, Guo X, Rajes K, Sidiropoulou P, Zabihi F, Hoffmann L, Hadam S, Blume-Peytavi U, Rühl E, Haag R, Vogt A. Topical Delivery of Rapamycin by Means of Microenvironment-Sensitive Core-Multi-Shell Nanocarriers: Assessment of Anti-Inflammatory Activity in an ex vivo Skin/T Cell Co-Culture Model. Int J Nanomedicine 2021; 16:7137-7151. [PMID: 34712046 PMCID: PMC8548260 DOI: 10.2147/ijn.s330716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction Rapamycin (Rapa) is an immunosuppressive macrolide that inhibits the mechanistic target of rapamycin (mTOR) activity. Thanks to its anti-proliferative effects towards different cell types, including keratinocytes and T cells, Rapa shows promise in the treatment of skin diseases characterized by cell hyperproliferation. However, Rapa skin penetration is limited due to its lipophilic nature (log P = 4.3) and high molecular weight (MW = 914 g/mol). In previous studies, new microenvironment-sensitive core multishell (CMS) nanocarriers capable of sensing the redox state of inflamed skin were developed as more efficient and selective vehicles for macrolide delivery to inflamed skin. Methods In this study, we tested such redox-sensitive CMS nanocarriers using an inflammatory skin model based on human skin explants co-cultured with Jurkat T cells. Serine protease (SP) was applied on skin surface to induce skin barrier impairment and oxidative stress, whereas phytohaemagglutinin (PHA), IL-17A, and IL-22 were used to activate Jurkat cells. Activation markers, such as CD45 and CD69, phosphorylated ribosomal protein S6 (pRP-S6), and IL-2 release were monitored in activated T cells, whereas pro-inflammatory cytokines were measured in skin extracts and culture medium. Results We found that alteration of skin barrier proteins corneodesmosin (CDSN), occludin (Occl), and zonula occludens-1 (ZO-1) as well as oxidation-induced decrease of free thiol groups occurred upon SP-treatment. All Rapa formulations exerted inhibitory effects on T cells after penetration across ex vivo skin. No effects on skin inflammatory markers were detected. The superiority of the oxidative-sensitive CMS nanocarriers over the other formulations was observed with regard to drug delivery as well as downregulation of IL-2 release. Conclusion Overall, our results demonstrate that nanocarriers addressing features of diseased skin are promising approaches to improve the topical delivery of macrolide drugs.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Polytimi Sidiropoulou
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Luisa Hoffmann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
31
|
Yeom JH, Kim HY, Lim JH, Yoon KW, Kim HM, Jeong HJ. A calcium channel blocker, manoalide exerts an anti-allergic inflammatory effect through attenuating NF-κB activity. Immunopharmacol Immunotoxicol 2021; 43:799-805. [PMID: 34708672 DOI: 10.1080/08923973.2021.1988101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many people are troubled by allergic inflammation including ocular allergic diseases, anaphylaxis, allergic rhinitis, atopic dermatitis, and eczema. Consequently, finding medications for use in allergic inflammation therapy is crucial in human health. Manoalide, a marine natural product isolated as an anti-bacterial metabolite from Luffariella variabilis, is a calcium channel blocker. However, its latent ability as an anti-allergic inflammatory agent has not yet been reported. Our research aimed to elucidate whether manoalide exerts an anti-allergic inflammatory effect in the human mast cell line, HMC-1. METHODS Herein, we investigated the immunoregulatory effects and molecular mechanisms of manoalide in HMC-1 cells. RESULTS Manoalide significantly alleviated secretion of the inflammatory cytokines interleukin (IL)-1β, thymic stromal lymphopoietin, tumor necrosis factor-α, IL-6, and IL-8 via blockage of caspase-1 without cytotoxicity in activated HMC-1 cells. Activation of nuclear factor-κB increased by mast cell stimulation was attenuated by treatment with manoalide. In addition, we demonstrated that manoalide treatment remarkably attenuated the activation of mitogen-activated protein kinases in activated-HMC-1 cells. CONCLUSIONS Taken together, our findings indicate manoalide has an anti-allergic inflammatory role, and we propose that manoalide might have potential as a novel anti-allergic inflammatory agent.
Collapse
Affiliation(s)
- Jun-Ho Yeom
- Department of Biotechnology, Hoseo University, Asan, Republic of Korea
| | - Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Republic of Korea
| | - Jin-Ho Lim
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| | - Kyoung Wan Yoon
- Department of Biotechnology, Hoseo University, Asan, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Republic of Korea.,Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
32
|
Cannabidiol Decreases Metalloproteinase Activity and Normalizes Angiogenesis Factor Expression in UVB-Irradiated Keratinocytes from Psoriatic Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7624389. [PMID: 34691360 PMCID: PMC8528591 DOI: 10.1155/2021/7624389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The development of psoriasis is associated with the consequences of oxidative stress and inflammation leading to metabolic changes locally, in the skin cells, and systemically, in the blood. Therefore, the aim of this study was to analyze the effect of psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) on the basal plasma/keratinocyte levels of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and angiogenesis factors, as well as to evaluate the effect of CBD on these parameters in keratinocytes isolated from psoriatic/healthy individuals with and without in vitro irradiation by UVB. A quantitative chemiluminescent method of detection based on an ELISA protocol and zymography technique was used during analysis. It was shown that activity levels of MMP-9 and TIMP-2 in PsA plasma were higher than in PsV. Changes in the proteolytic activity were accompanied by an increase in markers of angiogenesis (angiopoietin-2, HGF, VEGF, TNFα, PDGF, FGF), where in the specific case of angiopoietin-2 and TNFα, the overexpression in PsV was significantly stronger than in PsA. CBD application to keratinocytes partially restored levels of MMP-1/2/3/7 and TIMP-1/2 (in an effect which was particularly enhanced by UVB irradiation), as well as levels of the examined angiogenic factors except TNFα (levels of which were increased in psoriatic keratinocytes and decreased in healthy keratinocytes). Presented results indicate that CBD may be suggested as an antiangiogenic factor that reduces the proinflammatory action of UVB in psoriatic keratinocytes and partially has a protective effect for healthy keratinocytes.
Collapse
|
33
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Analytical approaches to assess metabolic changes in psoriasis. J Pharm Biomed Anal 2021; 205:114359. [PMID: 34509137 DOI: 10.1016/j.jpba.2021.114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Psoriasis is one of the most common human skin diseases, although its development is not limited to one tissue, but is associated with autoimmune reactions throughout the body. Overproduction of pro-inflammatory cytokines and growth factors systemically stimulates the proliferation of skin cells, which manifests as excessive exfoliation of the epidermis, and/or arthritis, as well as other comorbidities such as insulin resistance, metabolic syndrome, hypertension, and depression. Thus, there is a great need for a thorough analysis of the pathophysiology of psoriatic patients, including classical methods, such as spectrophotometry, chromatography, or Western blot, and also novel omics approaches such as lipidomics and proteomics. Moreover, the extensive pathophysiology forces increased research examining biological changes in both skin cells, and systemically. A wide range of techniques involved in lipidomic research based on a combination of mass spectrometry and different types of chromatography (RP-LC-QTOF-MS/MS, HILIC-QTOF-MS/MS or RP-LC-QTRAP-MS/MS), have allowed comprehensive assessment of lipid modification in psoriatic skin and provided new insight into the role of lipids and their mechanism of action in psoriasis. Moreover, proteomic analysis using gel-nanoLC-OrbiTrap-MS/MS, as well as MALDI-TOF/TOF techniques facilitates the description of panels of enzymes involved in lipidome modifications, and the response of the endocannabinoid system to metabolic changes. Psoriasis is known to alter the expression of proteins that are involved in the inflammatory and antioxidant response, as well as protein biosynthesis, degradation, as well as cell proliferation and apoptosis. Knowledge of changes in the lipidomic and proteomic profile will not only allow the understanding of psoriasis pathophysiology, but also facilitate proper and early diagnosis and effective pharmacotherapy.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| |
Collapse
|
34
|
Yu Y, Xue X, Tang W, Su L, Zhang L, Zhang Y. Cytosolic DNA‒Mediated STING-Dependent Inflammation Contributes to the Progression of Psoriasis. J Invest Dermatol 2021; 142:898-906.e4. [PMID: 34537189 DOI: 10.1016/j.jid.2021.08.430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by an active dynamic interplay between immune cells and keratinocytes (KCs). STING is a universal receptor that recognizes cytosolic DNA and triggers innate immune activation. This study aims to elucidate the role of STING in the inflammation in psoriasis. STING deficiency alleviated psoriatic symptoms and inflammation in mouse models of psoriasis. Stimulation of macrophages with double-stranded DNA induced STING-dependent release of TNF-α and hydrogen peroxide in vitro. Furthermore, incubation of KCs with TNF-α or hydrogen peroxide increased oxidative DNA damage, induced nuclear DNA release into the cytosol, and inhibited double-stranded DNA‒induced degradation of STING protein. More importantly, transfection of KCs with double-stranded DNA synergized with TNF-α or hydrogen peroxide to induce STING-dependent activation of NF-κB and subsequent expression of Il1b, Ccl20, and Cxcl10. Finally, exposure to 5,6-dimethylxanthenone-4-acetic acid (a STING agonist) aggravated psoriatic symptoms and inflammation in wild-type mice but not in STING-deficient mice. Collectively, STING functioned as a self-DNA sensor in macrophages and KCs of psoriatic skin. Cytosolic DNA-induced activation of STING in immune cells and KCs acted synergistically and contributed to the inflammation in psoriasis.
Collapse
Affiliation(s)
- Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People's Liberation Army Navy, Shanghai, China
| | - Wendong Tang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Lei Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
35
|
Nanostructured Lipid Carriers for the Formulation of Topical Anti-Inflammatory Nanomedicines Based on Natural Substances. Pharmaceutics 2021; 13:pharmaceutics13091454. [PMID: 34575531 PMCID: PMC8472073 DOI: 10.3390/pharmaceutics13091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The main function of the skin is to protect the body from the external environment. However, the skin can undergo inflammatory processes, due to genetic, hormonal, or environmental factors. When the defense system is overloaded, there is an increase in pro-inflammatory mediators and reactive oxygen species (ROS), which results in skin disorders. Among the substances used to treat these inflammatory processes, many natural substances with anti-inflammatory and antioxidant properties are being studied: nature is yet an abundant source to obtain diverse pharmacological actives. The treatment of skin diseases is usually focused on topical application, as it reduces the risk of systemic side effects and prevents drug degradation by first-pass metabolism. Thus, the properties of drug delivery vehicles can facilitate or inhibit its permeation. Due to the hydrophobic nature of the skin, a promising strategy to improve dermal drug penetration is the use of lipid-based nanoparticles, such as nanostructured lipid carriers (NLC). Therefore, in this review, we present NLC as a tool to improve dermal administration of natural substances with anti-inflammatory properties.
Collapse
|
36
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
37
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Brain Targeting and Toxicological Assessment of the Extracellular Vesicle-Packaged Antioxidant Catalase-SKL Following Intranasal Administration in Mice. Neurotox Res 2021; 39:1418-1429. [PMID: 34196954 DOI: 10.1007/s12640-021-00390-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
The antioxidant enzyme catalase represents an important therapeutic target due to its role in mitigating cellular reactive oxygen species that contribute to the pathogenesis of many disease states. Catalase-SKL (CAT-SKL), a genetically engineered, peroxisome-targeted, catalase derivative, was developed in order to increase the therapeutic potential of the enzyme, and has previously been shown to be effective in combating oxidative stress in a variety of in vitro and in vivo models, thereby mitigating cellular degeneration and death. In the present study we addressed important considerations for the development of an extracellular vesicle-packaged version of CAT-SKL (evCAT-SKL) as a therapeutic for neurodegenerative diseases by investigating its delivery potential to the brain when administered intranasally, and safety by assessing off-target toxicity in a mouse model. Mice received weekly intranasal administrations of evCAT-SKL or empty extracellular vesicles for 4 weeks. Fluorescent labeling for CAT-SKL was observed throughout all sections of the brain in evCAT-SKL-treated mice, but not in empty extracellular vesicle-treated mice. Furthermore, we found no evidence of gross or histological abnormalities following evCAT-SKL or empty extracellular vesicle treatment in a full-body toxicological analysis. Combined, the successful brain targeting and the lack of off-target toxicity demonstrates that intranasal delivery of extracellular vesicle-packaged CAT-SKL holds promise as a therapeutic for addressing neurological disorders.
Collapse
|
39
|
Szentkereszty-Kovács Z, Gáspár K, Szegedi A, Kemény L, Kovács D, Törőcsik D. Alcohol in Psoriasis-From Bench to Bedside. Int J Mol Sci 2021; 22:ijms22094987. [PMID: 34067223 PMCID: PMC8125812 DOI: 10.3390/ijms22094987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Alcohol affects the symptoms, compliance and comorbidities as well as the safety and efficacy of treatments in psoriatic patients. In this review, we aim to summarize and link clinical observations with a molecular background, such as signaling pathways at the cellular level and genetic variations, and to provide an overview of how this knowledge could influence our treatment selection and patient management.
Collapse
Affiliation(s)
- Zita Szentkereszty-Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
| | - Krisztián Gáspár
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, 6720 Szeged, Hungary;
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network (ELKH), Korányi fasor 6, 6720 Szeged, Hungary
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Correspondence: ; Tel.: +36-52-255-602
| |
Collapse
|
40
|
MTH1 Inhibitors for the Treatment of Psoriasis. J Invest Dermatol 2021; 141:2037-2048.e4. [PMID: 33676948 DOI: 10.1016/j.jid.2021.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory diseases, including psoriasis, are characterized by changes in redox regulation. The MTH1 prevents the incorporation of oxidized nucleotides during DNA replication. Using MTH1 small-molecule inhibitors, we found induced apoptosis through 8-oxodeoxyguanosine triphosphate accumulation and DNA double-strand breaks after oxidative stress in normal and malignant keratinocytes. In psoriasis, we detected increased MTH1 expression in lesional skin and PBMCs compared with that in the controls. Using the imiquimod psoriasis mouse model, we found that MTH1 inhibition diminished psoriatic histological characteristics and normalized the levels of neutrophils and T cells in the skin and skin-draining lymph nodes. The inhibition abolished the expression of T helper type 17‒associated cytokines in the skin, which was in line with decreased levels of IL-17-producing γδ T cells in lymph nodes. In human keratinocytes, MTH1 inhibition prevented the upregulation of IL-17‒downstream genes, which was independent of ROS-induced apoptosis. In conclusion, our data support MTH1 inhibition using small molecules suitable for topical application as a promising therapeutic approach to psoriasis.
Collapse
|
41
|
Oszajca K, Szemraj J. Assessment of the correlation between oxidative stress and expression of MMP-2, TIMP-1 and COX-2 in human aortic smooth muscle cells. Arch Med Sci Atheroscler Dis 2021; 6:e158-e165. [PMID: 34703944 PMCID: PMC8525249 DOI: 10.5114/amsad.2021.109255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/21/2021] [Indexed: 05/13/2023] Open
Abstract
INTRODUCTION Smooth muscle cells (SMCs) are considered to be the main producer of matrix metalloproteinase-2 (MMP-2) participating primarily in extracellular matrix (ECM) remodeling. Any disturbances in ECM structure may underlie the pathogenesis of many cardiovascular diseases and contribute to angiogenesis, cancer development, invasion or metastasis. The purpose of the study was to examine the effect of oxidative stress on the expression of MMP-2, its tissue inhibitor type 1 (TIMP-1) and cyclooxygenase-2 (COX-2) in human aortic smooth muscle cells (HASMCs). MATERIAL AND METHODS HASMCs were treated with exogenously applied H2O2 or TNF-α. N-acetylcysteine (NAC) was used as an antioxidant. Gene expression levels were measured by real-time PCR and the protein levels were determined using ELISA assay. RESULTS The studies revealed no association between oxidative stress and either mRNA quantity or protein secretion of MMP-2 and TIMP-1. However, we found markedly reduced (p < 0.001) MMP-2 secretion in cells incubated with NAC. HASMCs stimulated with TNF-α demonstrated a significantly increased COX-2 mRNA level as well as enzyme activity. H2O2-induced cells showed lowered COX-2 activity in comparison to untreated cells. MMP-2 and TIMP-1 expression did not change after COX-2 inhibition with DuP-697. CONCLUSIONS We did not find any effect of oxidative stress on expression of MMP-2 and TIMP-1 in HASMCs. However, COX-2 mRNA and protein level were elevated in these conditions. There was no correlation between COX-2 activity and MMP-2 and TIMP-1 mRNA expression or protein secretion.
Collapse
Affiliation(s)
- Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
Genetics and Individual Predispositions in Contact Dermatitis. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Abstract
Our understanding of the pathogenesis of acne vulgaris is still evolving. It is known that multiple factors impact acne pathophysiology, including genetic, hormonal, inflammatory, and environmental influences. Because of its implications in many of these factors, diet has been a part of the acne discussion for decades. Several studies have evaluated the significance of the glycemic index of various foods and glycemic load in patients with acne, demonstrating individuals with acne who consume diets with a low glycemic load have reduced acne lesions compared with individuals on high glycemic load diets. Dairy has also been a focus of study regarding dietary influences on acne; whey proteins responsible for the insulinotropic effects of milk may contribute more to acne development than the actual fat or dairy content. Other studies have examined the effects of omega-3 fatty acid and γ-linoleic acid consumption in individuals with acne, showing individuals with acne benefit from diets consisting of fish and healthy oils, thereby increasing omega-3 and omega-6 fatty acid intake. Recent research into the effects of probiotic administration in individuals with acne present promising results; further study of the effects of probiotics on acne is needed to support the findings of these early studies. In this review, we discuss the current evidence regarding the diets of US patients with acne and how they may impact acne and acne treatment.
Collapse
Affiliation(s)
- Hilary Baldwin
- The Acne Treatment and Research Center, 142 Joralemon Street, suite 8A, Brooklyn, NY, 11201, USA.
- Rutgers Robert Wood Johnson Medical Center, New Brunswick, NJ, USA.
| | - Jerry Tan
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Windsor Clinical Research Inc., Windsor, ON, Canada
| |
Collapse
|
44
|
Shomali T, Ashrafi M. Statins, cancer, and oxidative stress. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Abstract
Psoriasis is caused by a complex interplay among the immune system, genetic background, autoantigens, and environmental factors. Recent studies have demonstrated that patients with psoriasis have a significantly higher serum homocysteine (Hcy) level and a higher prevalence of hyperhomocysteinaemia (HHcy). Insufficiency of folic acid and vitamin B12 can be a cause of HHcy in psoriasis. Hcy may promote the immuno-inflammatory process in the pathogenesis of psoriasis by activating Th1 and Th17 cells and neutrophils, while suppressing regulatory T cells. Moreover, Hcy can drive the immuno-inflammatory process by enhancing the production of the pro-inflammatory cytokines in related to psoriasis. Hcy can induce nuclear factor kappa B activation, which is critical in the immunopathogenesis of psoriasis. There may be a link between the oxidative stress state in psoriasis and the effect of HHcy. Hydrogen sulfide (H2S) may play a protective role in the pathogenesis of psoriasis and the deficiency of H2S in psoriasis may be caused by HHcy. As the role of Hcy in the pathogenesis of psoriasis is most likely established, Hcy can be a potential therapeutic target for the treatment of psoriasis. Systemic folinate calcium, a folic acid derivative, and topical vitamin B12 have found to be effective in treating psoriasis.
Collapse
|
46
|
Dall'Oglio F, Puviani M, Milani M, Micali G. Efficacy and tolerability of a cream containing modified glutathione (GSH-C4), beta-Glycyrrhetic, and azelaic acids in mild-to-moderate rosacea: A pilot, assessor-blinded, VISIA and ANTERA 3-D analysis, two-center study (The "Rosazel" Trial). J Cosmet Dermatol 2020; 20:1197-1203. [PMID: 32885541 DOI: 10.1111/jocd.13707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rosacea is a very common, chronic inflammatory disease characterized by flushing, erythema and inflammatory lesions. Increased oxidative stress plays a relevant pathogenetic role in Rosacea. Intracellular Glutathione (GSH) is the main scavenger protective mechanism against increased oxidative stress. An altered GSH metabolism in Rosacea has been described. GSH-C4 is a modified GSH molecule characterized by a better intracellular bioavailability and longer half-life. A daily cream (E-AR) containing GSH-C4 (0.1%) with beta-Glycyrrhetic (0.5%) and azelaic acids (10%), with an SPF of 30, is available. AIM In a pilot, prospective, two-center, assessor-blinded study we evaluate the efficacy and the tolerability of E-AR cream in subjects with mild to moderate Rosacea treated for 8 weeks. PATIENTS AND METHODS The main outcomes were the Investigator Global Assessment (IGA) 7-point score (from 0, completely clear; to 6, severe) and the clinical and instrumental erythema severity score (ESS) (from 0 to 4) evaluated in a blinded fashion (randomly coded photographs) at baseline, after 4 (only clinical) and 8 weeks (clinical and instrumental). VISIA evaluation for erythema and lesion counts and ANTERA 3D analysis for skin haemoglobin concentration (a parameter associated with inflammation) were also performed at the same time points. Analysis of primary outcomes was performed on an intention-to-treat basis. Tolerability was evaluated at week 4 and 8 recording spontaneously reported side effects. RESULTS Thirty subjects (22 women and 8 men; mean age 38 years) were enrolled after their written informed consent. Twenty-six (87%) subjects completed the study phases. Four subjects stopped prematurely the trial due to low skin tolerability (n=3) or lost to follow-up (n=1). At baseline, mean (SD) IGA score was 2.6 (0.9). At week 4, IGA score decreased (NS) to 2.3 (1.2). IGA score decreased significantly (p=0.0001) at week 8 to 1.2 (1) (mean difference 1.3; 95% CI of the difference from 0.9 to 1.7) in comparison with the baseline. The inflammatory mean (SD) lesion count, evaluated clinically, were 5.1(2.5) at baseline, 2.8 (1.9) at week 4, and 1.9 (1.7) at week 8 (P=0.0001; ANOVA Test), representing a 63% reduction. This reduction was confirmed by inflammatory lesions count performed on VISIA pictures (from 4.5 at baseline to 1.7 lesions at week 8). Similar evolution was observed for the clinical and instrumental ESS with a reduction of 56% (clinical) and 48% (VISIA), respectively, at week 8 in comparison with the baseline. ANTERA 3D photographs confirmed the positive evolution observed clinically with a significant reduction (-24%) in hemoglobin content: from 1.88 at baseline to 1.44 at week 8. CONCLUSION This new GSH-C4, beta-glycyrrethic and azelaic acids cream has shown to be efficacious in mild to moderate rosacea subjects. Local tolerability is in line with other anti-rosacea treatments.
Collapse
Affiliation(s)
| | - Mario Puviani
- Dermatology Service Medica Plus Modena, Modena, Italy
| | - Massimo Milani
- Cantabria Labs Difa Cooper Medical Department, Catania, Italy
| | | |
Collapse
|
47
|
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int J Mol Sci 2020; 21:E6206. [PMID: 32867343 PMCID: PMC7503883 DOI: 10.3390/ijms21176206] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023] Open
Abstract
This review discusses how oxidative stress (OS), an imbalance between oxidants and antioxidants in favor of the oxidants, increased production of reactive oxygen species (ROS)/reactive nitrogen species (RNS), and decreased concentration/activity of antioxidants affect the pathogenesis or cause the enhancement of psoriasis (Ps). Here, we also consider how ROS/RNS-induced stress modulates the activity of transcriptional factors and regulates numerous protein kinase cascades that participate in the regulation of crosstalk between autophagy, apoptosis, and regeneration. Answers to these questions will likely uncover novel strategies for the treatment of Ps. Action in the field will avoid destructive effects of ROS/RNS-mediated OS resulting in cellular dysfunction and cell death. The combination of the fragmentary information on the role of OS can provide evidence to extend the full picture of Ps.
Collapse
Affiliation(s)
- Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
48
|
Phytochemistry of Verbascum Species Growing in Iraqi Kurdistan and Bioactive Iridoids from the Flowers of Verbascum calvum. PLANTS 2020; 9:plants9091066. [PMID: 32825214 PMCID: PMC7569995 DOI: 10.3390/plants9091066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Traditional medicine is still widely practiced in Iraqi Kurdistan, especially by people living in villages on mountainous regions; medicinal plants are also sold in the markets of the large towns, such as at Erbil, the capital of the Kurdistan Autonomous Region. About a dozen of Verbascum species (Scrophulariaceae) are commonly employed in the Kurdish traditional medicine, especially for treating burns and other skin diseases. However, the isolation of bioactive secondary metabolites from these plants has not been the subject of intense scientific investigations in Iraq. Therefore, the information reported in the literature about the species growing in Kurdistan has been summarized in the first part of this paper, although investigations have been performed on vegetable samples collected in neighbouring countries, such as Turkey and Iran. In the second part of the work, we have investigated, for the first time, the contents of a methanol and a hydromethanol extract of V. calvum flowers. The extracts exhibited weak antimicrobial activities, whereas the methanol extract showed significant antiproliferative effects against an A549 lung cancer cell line. Moreover, both extracts exhibited a significant dose-dependent free radical scavenging action against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, comparable to that of ascorbic acid. In the subsequent phytochemical study, a high phenolic content was determined in both extracts by the Folin–Ciocalteu assay and medium-pressure liquid chromatographic (MPLC) separation led to the isolation of iridoid glucosides ajugol and aucubin from the methanol extract. In conclusion, the high anti-inflammatory effects of aucubin and the remarkable antioxidant (antiradical) properties of the extracts give scientific support to the traditional use of V. calvum flowers for the preparation in Kurdistan of remedies to cure skin burns and inflammations.
Collapse
|
49
|
DAS K, Deb S, Karanth T. Phytochemical Screening and Metallic Ion Content and Its Impact on the Antipsoriasis Activity of Aqueous Leaf Extracts of Calendula officinalis and Phlebodium decumanum in an Animal Experiment Model. Turk J Pharm Sci 2020; 16:292-302. [PMID: 32454727 DOI: 10.4274/tjps.galenos.2018.44265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/01/2022]
Abstract
Objectives The aim of this study was to evaluate the influence of metal ions present in soil as well as in leaf samples of Calendula officinalis and Phlebodium decumanum for the treatment of psoriasis. Materials and Methods To meet the objective, soil and leaf samples were estimated for metal ions by atomic absorption spectrophotometer to determine the influence in antipsoriatic activity. Thereafter imiquimod-induced dermatitis lesions were created in grouped mice. Two plant extracts (aqueous) separately as well as in combinations and standard Retino-A (0.05%) were used. Psoriasis severity index (PSI) was evaluated according to the phenotypic (redness, erythema, and scales) and histological features (epidermal thickness). Further content of phytochemicals in terms of extract was correlated with the effect of psoriasis activity. Results We observed redness, erythema, and scales and the histological features and found a progressive reduction (P<0.05) in the severity of psoriatic lesions (redness, erythema, and scales) from days 7 to 21 and decreased epidermal thickness in animals treated with combined extracts at a dose of 200 mg/kg b.w. Furthermore, plant samples procured from the Nandi Hills, Bangalore, showed better uptake of metals with respect to Fe (2.05 mg/kg), Cu (0.78 mg/kg), and Zn (1.12 mg/kg), which showed a positive impact on procurement of maximum amount of extracts that further correlated with the activity, indicating a significant reduction in psoriatic lesions. Conclusion The results revealed that the significant dose-dependent antipsoriasis activity of combined aqueous extracts of C. officinalis and P. decumanum as well as metal ions had an impact on the procurement of extracts and said activity.
Collapse
Affiliation(s)
- Kuntal DAS
- Krupanidhi College of Pharmacy, Bangalore, India
| | - Someswar Deb
- Krupanidhi College of Pharmacy, Bangalore, India
| | | |
Collapse
|
50
|
Hydrogen peroxide regulates endothelial surface N-glycoforms to control inflammatory monocyte rolling and adhesion. Redox Biol 2020; 34:101498. [PMID: 32171755 PMCID: PMC7327964 DOI: 10.1016/j.redox.2020.101498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Monocyte extravasation through the endothelial layer is a hallmark of atherosclerotic plaque development and is mediated by heavily N-glycosylated surface adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1). N-glycosylation is a key co- and post-translational modification that adds sugar molecules to Asparagine residues of surface and secreted proteins. While it has been suggested that surface and secreted proteins will not be expressed unless fully processed to a complex N-glycoform, emerging data has suggested that multiple N-glycoforms can exist on the cell surface. Previous data from our lab has shown that endothelial inflammation produces multiple N-glycoforms of ICAM-1, and that a hypoglycosylated, or high-mannose (HM), form of ICAM-1 enhances adhesion of pro-inflammatory monocytes associated with more severe atherosclerosis and adverse cardiac events. Despite these findings, little is understood about the regulation of N-glycans during disease. In this study, we focus on the α-mannosidases; an understudied class of enzymes for early N-glycan processing. We show that α-mannosidase activity decreases with TNFα treatment in endothelial cells, and this decrease correlates with HM N-glycan formation on the cell surface. Further, we demonstrate that this inhibition is class-I dependent, and is independent of NF-κB upregulation of ICAM-1. Finally, we show that this inhibition is due in part to hydrogen peroxide (H2O2), generated by Endoplasmic Reticulum oxidoreductase 1-α (ERO1α). These data provide insights into the regulation of surface N-glycans during inflammation and demonstrate a novel role for reactive species in N-glycan biosynthesis.
Collapse
|