1
|
Teng L, Sun Y, Chen J, Wang C, Urbach JM, Kobe B, Ye N, Zeng Q. Exon shuffling and alternative splicing of ROCO genes in brown algae enables a diverse repertoire of candidate immune receptors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445022. [PMID: 39246816 PMCID: PMC11378527 DOI: 10.3389/fpls.2024.1445022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
The ROCO family is a family of GTPases characterized by a central ROC-COR tandem domain. Interest in the structure and function of ROCO proteins has increased with the identification of their important roles in human disease. Nevertheless, the functions of most ROCO proteins are still unknown. In the present study, we characterized the structure, evolution, and expression of ROCOs in four species of brown algae. Brown algae have a larger number of ROCO proteins than other organisms reported to date. Phylogenetic analyses showed that ROCOs have an ancient origin, likely originated in prokaryotes. ROCOs in brown algae clustered into four groups and showed no strong relationship with red algae or green algae. Brown algal ROCOs retain the ancestral LRR-ROC-COR domain arrangement, which is found in prokaryotes, plants and some basal metazoans. Remarkably, individual LRR motifs in ROCO genes are each encoded by separate exons and exhibit intense exon shuffling and diversifying selection. Furthermore, the tandem LRR exons exhibit alternative splicing to generate multiple transcripts. Both exon shuffling and alternative splicing of LRR repeats may be important mechanisms for generating diverse ligand-binding specificities as immune receptors. Besides their potential immune role, expression analysis shows that many ROCO genes are responsive to other stress conditions, suggesting they could participate in multiple signal pathways, not limited to the immune response. Our results substantially enhance our understanding of the structure and function of this mysterious gene family.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yuhuan Sun
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jiayi Chen
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jonathan M Urbach
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | |
Collapse
|
2
|
You MH. Mechanism of DAPK1 for Regulating Cancer Stem Cells in Thyroid Cancer. Curr Issues Mol Biol 2024; 46:7086-7096. [PMID: 39057063 PMCID: PMC11275583 DOI: 10.3390/cimb46070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled by epigenetic, transcriptional, posttranscriptional, and posttranslational processes. DAPK1 is known to regulate not only cancer cells but also stromal cells. Recent studies showed that DAPK1 was involved not only in tumor suppression but also in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in colon and thyroid cancers. CSCs are major factors in determining cancer aggressiveness in cancer metastasis and treatment prognosis by influencing EMT. However, the molecular mechanism involved in the regulation of cancer cells by DAPK1 remains unclear. In particular, little is known about the existence of CSCs and how they are regulated in papillary thyroid carcinoma (PTC) among thyroid cancers. In this review, we describe the molecular mechanism of CSC regulation by DAPK1 in PTC progression.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Anatomy, Konkuk University College of Medicine, 50-1, 268 Chungwon-daero, Cungju-si 27478, Republic of Korea
| |
Collapse
|
3
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zhang M, Shui X, Zheng X, Lee JE, Mei Y, Li R, Tian Y, Zheng X, Wang Q, Wang L, Chen D, Zhang T, Kim BM, Kim J, Lee TH. Death-associated protein kinase 1 phosphorylates MDM2 and inhibits its protein stability and function. Arch Pharm Res 2023; 46:882-896. [PMID: 37804415 DOI: 10.1007/s12272-023-01469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Breast cancer is one of the major malignancies in women, and most related deaths are due to recurrence, drug resistance, and metastasis. The expression of the mouse double minute 2 (MDM2) oncogene is upregulated in breast cancer; however, its regulatory mechanism has yet to be fully elucidated. Herein, we identified the tumor suppressor death-associated protein kinase 1 (DAPK1) as a novel MDM2 regulator by unbiased peptide library screening. DAPK1 is directly bound to MDM2 and phosphorylates it at Thr419. DAPK1-mediated MDM2 phosphorylation promoted its protein degradation via the ubiquitin-proteasome pathway, resulting in upregulated p53 expression. DAPK1 overexpression, but not its kinase activity-deficient form, decreased colony formation and increased doxorubicin-induced cell death; however, DAPK1 knockdown produced the opposite effects in human breast cancer cells. In a xenograft tumorigenesis assay, DAPK1 overexpression significantly reduced tumor formation, whereas inhibition of DAPK1 kinase activity reduced its antitumorigenic effect. Finally, DAPK1 expression was negatively correlated with MDM2 levels in human breast cancer tissues. Thus, these results suggest that DAPK1-mediated MDM2 phosphorylation and its protein degradation may contribute to its antitumorigenic function in breast cancer.
Collapse
Affiliation(s)
- Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xiaoqing Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Jong Eun Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xiuzhi Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Quling Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., Uiwang-si, Republic of Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
5
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Park JU, Kim DK, Kim JY, Jo JH, Kim YM, Jung DH, Kim HJ, Ok SM, Cho HJ, Kim S, Redon CE, Aladjem MI, Jang SM. The differentially expressed gene signatures of the Cullin 3-RING ubiquitin ligases in neuroendocrine cancer. Biochem Biophys Res Commun 2022; 636:71-78. [DOI: 10.1016/j.bbrc.2022.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
7
|
Liu H, Zhang L, Li M, Zhao F, Lu F, Zhang F, Chen S, Guo J, Zhang R, Yin H. Bone mesenchymal stem cell-derived extracellular vesicles inhibit DAPK1-mediated inflammation by delivering miR-191 to macrophages. Biochem Biophys Res Commun 2022; 598:32-39. [PMID: 35151201 DOI: 10.1016/j.bbrc.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3'-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.
Collapse
Affiliation(s)
- Hui Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China; Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China
| | - Luming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Meilian Li
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Fengzhi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Fan Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Sida Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Juntao Guo
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Rui Zhang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China.
| | - Hanyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
The Role of Autophagy in Tumor Immune Infiltration in Colorectal Cancer. Anal Cell Pathol (Amst) 2022; 2022:2055676. [PMID: 35321516 PMCID: PMC8938087 DOI: 10.1155/2022/2055676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objective. This study is aimed at exploring the association between autophagy and tumor immune infiltration (TII) in colorectal cancer (CRC). Methods and Materials. We downloaded the transcriptome profiling and clinical data for CRC from The Cancer Genome Atlas (TCGA) database and obtained the normal colon transcriptome profiling data from Genotype-Tissue Expression Project (GTEx) database. The list of autophagy-related signatures was obtained from the Human Autophagy Database. We isolated the autophagy-related genes from the CRC gene expression matrix and constructed an autophagy-related prognostic (ARP) risk model. Then, we constructed a multiROC curve to validate the prognostic ability of the ARP risk model. CIBERSORT was used to determine the fractions of 22 immune cells in each CRC sample, and the association between these TII cells and CRC clinical variables was further investigated. Finally, we estimated the association of 3 hub-ARP signatures and 20 different types of TII cell distribution. Results. We classified 447 CRC patients into 224 low-risk and 223 high-risk patients using the median ARP risk score. According to the univariate survival test results, except for gender (
), age (
), cancer stage, and pathological stage T, M, and N were closely correlated with the prognosis of CRC patients (
). Multivariate survival analysis results indicate that age and rescore were the only independent prognostic indicators with significant differences (
). After merging the immune cell distribution (by CIBERSORT) with the CRC clinical data, the results indicate that activated macrophage M0 cells exhibited the highest clinical response, which included cancer stage and stage T, N, and M. Additionally, six immune cells were closely associated with cancer stage, including regulatory T cells (Tregs), gamma delta T cells, follicular helper T cells, activated memory CD4 T cells, activated NK cells, and resting dendritic cells. Finally, we evaluated the correlation of ARP signatures with TII cell distribution. Compared with the other correlation, NRG1 and plasma cells (↑), risk score and macrophage M1 (↑), NRG1 and dendritic cell activated (↑), CDKN2A and T cell CD4 memory resting (↓), risk score and T cell CD8 (↑), risk score and T cell CD4 memory resting (↓), and DAPK1 and T cell CD4 memory activated (↓) exhibited a stronger association (
). Conclusions. In summary, we explored the correlation between the risk of autophagy and the TII microenvironment in CRC patients. Furthermore, we integrated different CAR signatures with tumor-infiltrating immune cells and found robust associations between different levels of CAR signature expression and immune cell infiltrating density.
Collapse
|
9
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
10
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Huang Y, Wang C, Li K, Ye Y, Shen A, Guo L, Chen P, Meng C, Wang Q, Yang X, Huang Z, Xing X, Lin Y, Liu X, Peng J, Lin Y. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci 2020; 111:2803-2813. [PMID: 32449268 PMCID: PMC7419049 DOI: 10.1111/cas.14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Death-associated protein kinase 1 (DAPK) is a calcium/calmodulin kinase that plays a vital role as a suppressor gene in various cancers. Yet its role and target gene independent of p53 is still unknown in hepatocellular carcinoma (HCC). In this study, we discovered that DAPK suppressed HCC cell migration and invasion instead of proliferation or colony formation. Using a proteomics approach, we identified DEAD-box helicase 20 (DDX20) as an important downstream target of DAPK in HCC cells and critical for DAPK-mediated inhibition of HCC cell migration and invasion. Using integrin inhibitor RGD and GTPase activity assays, we discovered that DDX20 suppressed HCC cell migration and invasion through the CDC42-integrin pathway, which was previously reported as an important downstream pathway of DAPK in cancer. Further research using cycloheximide found that DAPK attenuates the proteasomal degradation of DDX20 protein, which is dependent on the kinase activity of DAPK. Our results shed light on new functions and regulation for both DAPK and DDX20 in carcinogenesis and identifies new potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yide Huang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Chenyi Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Yan Ye
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on GeriatricAcademy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Libin Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Pengchen Chen
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Chen Meng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Qingshui Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xinliu Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Zhen Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on GeriatricAcademy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| |
Collapse
|
12
|
CUX1-Transcriptional Master Regulator of Tumor Progression in Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071957. [PMID: 32707646 PMCID: PMC7409270 DOI: 10.3390/cancers12071957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, we identified the homeodomain transcription factor Cut homeobox 1 (CUX1) as mediator of tumour de-differentiation and metastatic behaviour in human insulinoma patients. In insulinomas, CUX1 enhanced tumour progression by stimulating proliferation and angiogenesis in vitro and in vivo. In patients with non-functional pancreatic neuroendocrine tumours (PanNET), however, the impact of CUX1 remains to be elucidated. Here, we analysed CUX1 expression in two large independent cohorts (n = 43 and n = 141 tissues) of non-functional treatment-naïve and pre-treated PanNET patients, as well as in the RIP1Tag2 mouse model of pancreatic neuroendocrine tumours. To further assess the functional role of CUX1, expression profiling of DNA damage-, proliferation- and apoptosis-associated genes was performed in CUX1-overexpressing Bon-1 cells. Validation of differentially regulated genes was performed in Bon-1 and QGP1 cells with knock-down and overexpression strategies. CUX1 expression assessed by a predefined immunoreactivity score (IRS) was significantly associated with shorter progression-free survival (PFS) of pre-treated PanNET patients (23 vs. 8 months; p = 0.005). In treatment-naïve patients, CUX1 was negatively correlated with grading and recurrence-free survival (mRFS of 39 versus 8 months; p = 0.022). In both groups, high CUX1 levels indicated a metastatic phenotype. Functionally, CUX1 upregulated expression of caspases and death associated protein kinase 1 (DAPK1), known as mediators of tumour progression and resistance to cytotoxic drugs. This was also confirmed in both cell lines and human tissues. In the RIP1Tag2 mouse model, CUX1 expression was associated with advanced tumour stage and resistance to apoptosis. In summary, we identified the transcription factor CUX1 as mediator of tumour progression in non-functional PanNET in vitro and in vivo, indicating that the CUX1-dependent signalling network is a promising target for future therapeutic intervention.
Collapse
|
13
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
14
|
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2020; 11:1185-1202. [PMID: 32219729 DOI: 10.1007/s12975-020-00806-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Collapse
|
15
|
Chen D, Wang L, Lee TH. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Front Cell Dev Biol 2020; 8:129. [PMID: 32195254 PMCID: PMC7064559 DOI: 10.3389/fcell.2020.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) Pin1 is a unique enzyme that only binds to Ser/Thr-Pro peptide motifs after phosphorylation and regulates the conformational changes of the bond. The Pin1-catalyzed isomerization upon phosphorylation can have profound effects on substrate biological functions, including their activity, stability, assembly, and subcellular localization, affecting its role in intracellular signaling, transcription, and cell cycle progression. The functions of Pin1 are regulated by post-translational modifications (PTMs) in many biological processes, which include phosphorylation, ubiquitination, SUMOylation and oxidation. Phosphorylation of different Pin1 sites regulates Pin1 enzymatic activity, binding ability, localization, and ubiquitination by different kinases under various cellular contexts. Moreover, SUMOylation and oxidation have been shown to downregulate Pin1 activity. Although Pin1 is tightly regulated under physiological conditions, deregulation of Pin1 PTMs contributes to the development of human diseases including cancer and Alzheimer's disease (AD). Therefore, manipulating the PTMs of Pin1 may be a promising therapeutic option for treating various human diseases. In this review, we focus on the molecular mechanisms of Pin1 regulation by PTMs and the major impact of Pin1 PTMs on the progression of cancer and AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Chen D, Zhou XZ, Lee TH. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer's Disease. Recent Pat Anticancer Drug Discov 2020; 14:144-157. [PMID: 30569876 PMCID: PMC6751350 DOI: 10.2174/1574892814666181218170257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Background: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apopto-sis, tumor suppression and neurodegeneration including Alzheimer’s Disease (AD). Objective: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. Methods: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. Results: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting suscepti-bility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream tar-gets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. Conclusion: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregula-tion is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiao Z Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Tae H Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
17
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
18
|
Bao X, Zeng J, Huang H, Ma C, Wang L, Wang F, Liao X, Song X. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int J Pharm 2019; 576:118999. [PMID: 31893541 DOI: 10.1016/j.ijpharm.2019.118999] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide. Moreover, metastasis is one of the main causes of death in CRC patients. Nanotechnology-based gene therapy has shown significant therapeutic benefits in recent clinical trials for cancer treatment. Recent studies have shown that pigment epithelium-derived factor (PEDF) protein can inhibit tumor growth and metastasis by anti-angiogenesis and pro-apoptosis. In this study, we prepared a PEDF-DNA-loaded liposome for cancer-targeted gene therapy for metastatic CRC using an iRGD peptide. Our results showed that cancer-targeted PEDF-DNA liposomes (R-LP/PEDF) exhibited enhanced inhibitory effects on invasion, migration, and pro-apoptosis of CRC cells in vitro. In addition, it reduced metastasis tumor nodules in lung and prolonged the survival time in a mouse model of metastatic CRC.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jun Zeng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Hai Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Cuicui Ma
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lei Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Fazhan Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xuelian Liao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
19
|
Shi YX, Sheng DQ, Cheng L, Song XY. Current Landscape of Epigenetics in Lung Cancer: Focus on the Mechanism and Application. JOURNAL OF ONCOLOGY 2019; 2019:8107318. [PMID: 31889956 PMCID: PMC6930737 DOI: 10.1155/2019/8107318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Tumorigenesis involves a multistep process resulting from the interactions of genetic, epigenetic, and environmental factors. Genome-wide association studies and sequencing studies have identified many epigenetic alterations associated with the development of lung cancer. Epigenetic mechanisms, mainly including DNA methylation, histone modification, and noncoding RNAs (ncRNAs), are heritable and reversible modifications that are involved in some important biological processes and affect cancer hallmarks. We summarize the major epigenetic modifications in lung cancer, focusing on DNA methylation and ncRNAs, their roles in tumorigenesis, and their effects on key signaling pathways. In addition, we describe the clinical application of epigenetic biomarkers in the early diagnosis, prognosis prediction, and oncotherapy of lung cancer. Understanding the epigenetic regulation mechanism of lung cancer can provide a new explanation for tumorigenesis and a new target for the precise treatment of lung cancer.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China
| | - De-Qiao Sheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang 443002, China
| | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52246, USA
| | - Xin-Yu Song
- Department of Respiratory Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
| |
Collapse
|
20
|
DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis 2019; 10:895. [PMID: 31772156 PMCID: PMC6879526 DOI: 10.1038/s41419-019-2122-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.
Collapse
|
21
|
Yung C, MacDonald TM, Walker SP, Cannon P, Harper A, Pritchard N, Hannan NJ, Kaitu'u-Lino TJ, Tong S. Death associated protein kinase 1 (DAPK-1) is increased in preeclampsia. Placenta 2019; 88:1-7. [PMID: 31563554 DOI: 10.1016/j.placenta.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Death associated protein kinase-1 (DAPK-1) is highly expressed in the placenta relative to all other human tissues. We examine whether it is differentially expressed with preeclampsia. METHODS We examined samples from a large prospective collection of plasma from 2002 women. We split the samples into two cohorts: Cohort 1 (n = 1000) and Cohort 2 (n = 1002). We first measured circulating DAPK-1 at 36 weeks' gestation in a nested case-control group (from Cohort 1) of 39 women who developed preeclampsia and 98 controls. We then validated our findings by measuring circulating levels in all samples from both cohorts. We also measured DAPK-1 in the circulation and placentas of women who were diagnosed with preterm preeclampsia or delivered a growth restricted infant at <34 weeks' gestation. RESULTS In the case-control study, circulating DAPK-1 was significantly increased in women destined to develop preeclampsia (p < 0.01). We validated this by measuring circulating levels in Cohorts 1 and 2. Again, circulating DAPK-1 was significantly higher (p < 0.001) among women destined to develop preeclampsia (Cohort 1, Area under the receiver operator characteristic curve (AUC) = 0.66; Cohort 2 AUC = 0.67). Circulating DAPK-1 was also significantly elevated in women with established preterm preeclampsia. Placental DAPK-1 mRNA and protein expression were elevated in women with established preeclampsia. DISCUSSION DAPK-1 is a novel placenta-enriched molecule that is elevated in the circulation of women preceding the diagnosis of preeclampsia and is likely to be secreted from the placenta.
Collapse
Affiliation(s)
- Cameron Yung
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Alesia Harper
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
22
|
Franko J, Pomfy M, Prosbová T. Apoptosis and Cell Death (Mechanisms, Pharmacology and Promise for the Future). ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Rapidly growing body of evidence on cell death mechanisms and its disorders during last five years has replaced old paradigms and opened new horizons in medicine. Identification of different morphological and signaling aspects, as well as variances in requirement for energy enabled us to construct a theory of three main types of cell death: necrosis, apoptosis, and lysosomal cell death. Mitochondria, certain oncoproteins such as Bcl-2 family, and special catabolic enzymes participating in cellular demise might serve as targets for pharmacological manipulation. Upregulation or downregulation of programmed cell death has been implicated in ischemic, neurodegenerative, and autoimmune disorders, as well as in oncology and chronic inflammation. This minireview brings a short overview of genesis and development of theories on programmed cell death and apoptosis, summarizes basic relevant facts on apoptotic mechanisms and draws a new hypothesis on possible implication in medicine and surgery.
Collapse
|
23
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|
24
|
Tian Y, Yan M, Zheng J, Li R, Lin J, Xu A, Liang Y, Zheng R, Yuan Y. miR-483-5p decreases the radiosensitivity of nasopharyngeal carcinoma cells by targeting DAPK1. J Transl Med 2019; 99:602-611. [PMID: 30664712 DOI: 10.1038/s41374-018-0169-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Recurrence or metastasis resulting from radioresistance are the main challenges for the treatment of nasopharyngeal carcinoma (NPC). A great deal of evidence supports the role of abnormal expression of miRNAs in radioresistance and malignancy. In some cancers, miR-483-5p is associated with inferior disease-specific survival. Therefore, we investigated the role of miR-483-5p in NPC radiosensitivity and the mechanism by which the miR-483-5p affects the radiosensitivity of NPC cells. In this study, we show that the overexpression of miR-483-5p decreases the radiosensitivity of NPC cells in vitro and in vivo. Mechanistically, miR-483-5p exerts these functions by decreasing radiation-induced apoptosis and DNA damage, and by increasing NPC cell colony formation, via targeting death-associated protein kinase 1 (DAPK1). Finally, our results confirm that the upregulation of miR-483-5p is correlated with advanced clinical stage and inferior overall survival of patients with NPC. These findings provide novel insights into our understanding of the molecular mechanisms underlying therapy failure in NPC. Modulation of miR-483-5p and DAPK1 levels may provide a new approach for increasing the radiosensitivity of these tumors.
Collapse
Affiliation(s)
- Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Miaohong Yan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jielin Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yingying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
25
|
Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L, Zhou Y. UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci 2019; 110:1244-1255. [PMID: 30632669 PMCID: PMC6447834 DOI: 10.1111/cas.13935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer (PCa) death primarily occurs due to metastasis of the cells, but little is known about the underlying molecular mechanisms. This study aimed to evaluate the expression of UNC5D, a newly identified tumor suppressor gene, analyze its epigenetic alterations, and elucidate its functional relevance to PCa metastasis. Meta-analysis of publicly available microarray datasets revealed that UNC5D expression was frequently downregulated in PCa tissues and inversely associated with PCa metastasis. These results were verified in clinical specimens by real-time PCR and immunohistochemistry assays. Through methylation analysis, the downregulated expression of UNC5D in PCa tissues and cell lines was found to be attributable to the hypermethylation of the promoter. A negative correlation was observed between methylation and UNC5D mRNA expression in PCa samples. The ectopic expression of UNC5D in PCa cells effectively reduced their ability to migrate and invade both in vitro and in vivo, and siRNA-mediated knockdown of UNC5D yielded consistent results. UNC5D can recruit and activate death-associated protein kinase 1, which remained to be essential for its metastatic suppressor function. In conclusion, these results suggested that UNC5D as a novel putative metastatic suppressor gene that is commonly down-regulated by hypermethylation in PCa.
Collapse
Affiliation(s)
- Dong Dong
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Lufang Zhang
- Department of LaboratoryAviation General HospitalBeijingChina
| | - Changsen Bai
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Na Ma
- Cancer BiobankTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Wei Ji
- Public LaboratoryKey Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Jia
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Aimin Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Pengyu Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Ren
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Yunli Zhou
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| |
Collapse
|
26
|
Asiaf A, Ahmad ST, Malik AA, Aziz SA, Zargar MA. Association of Protein Expression and Methylation of DAPK1 with Clinicopathological Features in Invasive Ductal Carcinoma Patients from Kashmir. Asian Pac J Cancer Prev 2019; 20:839-848. [PMID: 30912402 PMCID: PMC6825784 DOI: 10.31557/apjcp.2019.20.3.839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: Death-associated protein kinase-1 (DAPK1) is a pro-apoptotic Ser/Thr kinase that participates in cell apoptosis
and tumor suppression. DAPK1 is frequently lost in many different tumor types including breast cancer. The aim of
this study was to evaluate the promoter methylation status of DAPK1 and a possible correlation with the expression
of DAPK1 and standard clinicopathological features in invasive ductal breast carcinoma patients (IDC). Methods:
Methylation Specific PCR (MSP) was carried out to investigate the promoter methylation status of DAPK1 from 128
breast cancer patients. The effect of promoter methylation on protein expression was evaluated by immunohistochemistry
(n=128) and western blotting (n=56). Results: We found significant difference in DAPK1 promoter methylation
frequency among breast tumors when compared with the corresponding normal tissues. Hypermethylation of DAPK1
is significantly correlated with the loss of DAPK1 protein expression (P < .001, rs= -0.361). The loss of DAPK1 protein
was significantly associated with estrogen receptor (ER) negativity (p= 0.003), triple negative breast cancer (TNB)
(p= 0.024) and advanced tumor stages (P = 0.001). Moreover, age at diagnosis (p= 0.041), tumor stage (p= 0.034), ER
negativity (p= 0.004) and TNB cancers (p=0.003) correlated significantly with the hypermethylation of the DAPK1
promoter. Coclusion: This study indicates that DAPK1 is methylated in IDC and promoter hypermethylation could be
attributed to silencing of DAPK1 gene expression in breast cancer. Thus, we consider DAPK1 inactivation by promoter
hypermethylation likely plays a role in the development and progression of breast cancer.
Collapse
Affiliation(s)
- Asia Asiaf
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, J and K, India.
| | - Shiekh Tanveer Ahmad
- Clarke H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Ajaz Ahmad Malik
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, J and K, India
| | - Shiekh Aejaz Aziz
- Departmet of Medical Oncology, Sher-I-Kashmir, Institute of Medical Sciences, Soura Srinagar, J and K, India
| | - Mohammad Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, J and K, India.
| |
Collapse
|
27
|
Sulaiman Alsaadi M. Role of DAPK1 in neuronal cell death, survival and diseases in the nervous system. Int J Dev Neurosci 2019; 74:11-17. [PMID: 30763607 DOI: 10.1016/j.ijdevneu.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Maryam Sulaiman Alsaadi
- Department of BiologyCollege of Sciences, United Arab Emirates UniversityAl Ain, P.O. Box 17551United Arab Emirates
| |
Collapse
|
28
|
Roco Proteins and the Parkinson's Disease-Associated LRRK2. Int J Mol Sci 2018; 19:ijms19124074. [PMID: 30562929 PMCID: PMC6320773 DOI: 10.3390/ijms19124074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that form transient heterodimers with specific effector proteins in the 'on' state, and cycle to back to the monomeric conformation in the 'off' state. A new class of small G-proteins called "Roco" was discovered about a decade ago; this class is distinct from the typical G-proteins in several intriguing ways. Their switch module resides within a polypeptide chain of a large multi-domain protein, always adjacent to a unique domain called COR, and its effector kinase often resides within the same polypeptide. As such, the mechanisms of action of the Roco G-proteins are likely to differ from those of the typical G-proteins. Understanding these mechanisms is important because aberrant activity in the human Roco protein LRRK2 is associated with the pathogenesis of Parkinson's disease. This review provides an update on the current state of our understanding of the Roco G-proteins and the prospects of targeting them for therapeutic purposes.
Collapse
|
29
|
Hattinger CM, Patrizio MP, Tavanti E, Luppi S, Magagnoli F, Picci P, Serra M. Genetic testing for high-grade osteosarcoma: a guide for future tailored treatments? Expert Rev Mol Diagn 2018; 18:947-961. [PMID: 30324828 DOI: 10.1080/14737159.2018.1535903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Genetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers. The definition of tailored or targeted treatment approaches may improve outcome of patients with localized tumors and, even more, of those with metastatic disease, for whom progress in cure probability is highly warranted.
Collapse
Affiliation(s)
| | - Maria Pia Patrizio
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Elisa Tavanti
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
30
|
Elbadawy M, Usui T, Yamawaki H, Sasaki K. Novel Functions of Death-Associated Protein Kinases through Mitogen-Activated Protein Kinase-Related Signals. Int J Mol Sci 2018; 19:3031. [PMID: 30287790 PMCID: PMC6213522 DOI: 10.3390/ijms19103031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Death associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine kinase; its main function is to regulate cell death. DAPK family proteins consist of DAPK1, DAPK2, DAPK3, DAPK-related apoptosis-inducing protein kinases (DRAK)-1 and DRAK-2. In this review, we discuss the roles and regulatory mechanisms of DAPK family members and their relevance to diseases. Furthermore, a special focus is given to several reports describing cross-talks between DAPKs and mitogen-activated protein kinases (MAPK) family members in various pathologies. We also discuss small molecule inhibitors of DAPKs and their potential as therapeutic targets against human diseases.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Elqaliobiya, Toukh 13736, Egypt.
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
31
|
Zhang J, Shen Z, Liu H, Liu S, Shu W. Diagnostic potential of methylated DAPK in brushing samples of nasopharyngeal carcinoma. Cancer Manag Res 2018; 10:2953-2964. [PMID: 30214290 PMCID: PMC6118259 DOI: 10.2147/cmar.s171796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The death-associated protein kinase (DAPK) gene is an important member of the apoptotic pathway and is inactivated by abnormal methylation in numerous cancers, including nasopharyngeal carcinoma (NPC). However, the diagnostic value of DAPK methylation in brushing samples and tissue samples of NPC remains unclear. Methods We conducted a systematic meta-analysis based on 17 studies (including 386 tissue cases, 233 brushing cases, and 296 blood cases). Results Our results revealed an association between methylated DAPK and increased risk of NPC in blood, brushing, and tissue samples. In addition, the comparison of the pooled sensitivity, specificity, and area under the curve of methylated DAPK in brushing and tissue samples demonstrated the non-inferior effectiveness of methylated DAPK in brushing samples to monitor the development of NPC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, People's Republic of China
| | - Shuai Liu
- Department of Radiology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, People's Republic of China
| | - Wenxiu Shu
- Department of Oncology and Hematology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, People's Republic of China,
| |
Collapse
|
32
|
Yabasin IB, Sanches JGP, Ibrahim MM, Huidan J, Williams W, Lu ZL, Wen Q. Cisatracurium Retards Cell Migration and Invasion Upon Upregulation of p53 and Inhibits the Aggressiveness of Colorectal Cancer. Front Physiol 2018; 9:941. [PMID: 30108509 PMCID: PMC6079220 DOI: 10.3389/fphys.2018.00941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is reported to be the third and fourth, most diagnosed and cause of cancer associated deaths respectively. In 2012 for instance, about 1.4 million new cases were reported, and approximately 700,000 deaths recorded. Survival from CRC is dependent on the stage at which it is diagnosed coupled with appropriate surgical and medical intervention. Cisatracurium is widely used for skeletal muscle relaxation during abdominal surgeries, including bowel and colon surgeries. Recent studies reported that cisatracurium inhibits progression of human cancer cells, however, the mechanisms leading to the inhibition are yet to be completely understood. To elucidate mechanisms resulting particularly in tumor cell growth and metastasis, we developed ex vivo and in in vivo xenograft models of CRC. Cisatracurium caused upregulation of p53 and its down-stream genes and proteins known to regulate proliferation and metastasis in vitro and in vivo. Genomic analyses of CRC following cisatracurium treatment revealed moderate to high DNA damage, while functional analyses demonstrated significant tumor cells growth regression, as well as repression of migration and invasion. Importantly, cisatracurium increased E-Cadherin and CALD-1 but decreased SNAI-1 and SLUG levels in vitro and in vivo. Together, the findings demonstrate that elevation of p53 upon cisatracurium-induced genomic injury, represent a potential mechanism by which cisatracurium result in the suppression of CRC progression and metastasis.
Collapse
Affiliation(s)
- Iddrisu B Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Mohammed M Ibrahim
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jin Huidan
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Walana Williams
- Department of Microbiology and Immunology, Dalian Medical University, Dalian, China
| | - Zhi-Li Lu
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingping Wen
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Zittoon RF, Madian YT, Alhennawi DEM, Nadeem HS. Cochlear Changes Caused by Peginterferon α-2b. J Interferon Cytokine Res 2018; 38:311-316. [PMID: 30016180 DOI: 10.1089/jir.2018.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To evaluate the effect of peginterferon α-2b on guinea pigs' hearing and its cochlea, and to determine whether these effects are permanent or reversible. This study is an experimental animal study done on the organs of Corti of 30 guinea pigs after a peginterferon α-2b injection course. The cochleae of guinea pigs were extracted and examined by scanning electron microscopy for the right side and immunohistochemistry for the left side. All guinea pigs were subjected to pinna reflex, otological examination, and distortion product otoacoustic emission (DPOAE) both before and after the receiving of interferon (IFN). Electron microscopic scanning and immunohistochemistry of the cochleae revealed that peginterferon α-2b has a harmful effect on guinea pigs' cochleae, in the form of structural changes in the hair cells and supporting cells with apoptotic changes in the organ of Corti and the stria vascularis. These changes were reversible. DPOAE showed a significant reduction in distortion product mean amplitude and signal-to-noise ratio in all frequencies after 3 days from the last dose of IFN injection except at 1,006 Hz. After 14 days, there was a significant improvement in most of the frequencies, but are still below the normal values.
Collapse
Affiliation(s)
- Reham F Zittoon
- 1 Department of Otorhinolaryngology, Faculty of Medicine, Suez Canal University , Ismailia, Egypt
| | - Yasser T Madian
- 1 Department of Otorhinolaryngology, Faculty of Medicine, Suez Canal University , Ismailia, Egypt
| | - Diaa Eldeen M Alhennawi
- 1 Department of Otorhinolaryngology, Faculty of Medicine, Suez Canal University , Ismailia, Egypt
| | - Hany S Nadeem
- 2 Department of Anatomy, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| |
Collapse
|
34
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
35
|
Li Y, Humphries B, Yang C, Wang Z. Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities. NANOMATERIALS 2018; 8:nano8060361. [PMID: 29794968 PMCID: PMC6027372 DOI: 10.3390/nano8060361] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Breast cancer (BC) is the second leading cause of cancer-related death in American women and more than 90% of BC-related death is caused by metastatic BC (MBC). This review stresses the limited success of traditional therapies as well as the use of nanomedicine for treating MBC. Understanding the biological barriers of MBC that nanoparticle in vivo trafficking must overcome could provide valuable new insights for translating nanomedicine from the bench side to the bedside. A view about nanomedicine applied in BC therapy has been summarized with their present status, which is gaining attention in the clinically-applied landscape. The progressions of drug/gene delivery systems, especially the status of their preclinical or clinical trials, are also discussed. Here we highlight that the treatment of metastasis, in addition to the extensively described inhibition of primary tumor growth, is an indispensable requirement for nanomedicine. Along with more innovations in material chemistry and more progressions in biology, nanomedicine will constantly supply more exciting new approaches for targeted drug/gene delivery against MBC.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
- Department of Pharmaceutics, Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, China.
| | - Brock Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
36
|
Tomkins JE, Dihanich S, Beilina A, Ferrari R, Ilacqua N, Cookson MR, Lewis PA, Manzoni C. Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics 2018; 18:e1700444. [PMID: 29513927 PMCID: PMC5992104 DOI: 10.1002/pmic.201700444] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/05/2018] [Indexed: 12/19/2022]
Abstract
Signal transduction cascades governed by kinases and GTPases are a critical component of the command and control of cellular processes, with the precise outcome partly determined by direct protein-protein interactions (PPIs). Here, we use the human ROCO proteins as a model for investigating PPI signaling events-taking advantage of the unique dual kinase/GTPase activities and scaffolding properties of these multidomain proteins. PPI networks are reported that encompass the human ROCO proteins, developed using two complementary approaches. First, using the recently developed weighted PPI network analysis (WPPINA) pipeline, a confidence-weighted overview of validated ROCO protein interactors is obtained from peer-reviewed literature. Second, novel ROCO PPIs are assessed experimentally via protein microarray screens. The networks derived from these orthologous approaches are compared to identify common elements within the ROCO protein interactome; functional enrichment analysis of this common core of the network identified stress response and cell projection organization as shared functions within this protein family. Despite the presence of these commonalities, the results suggest that many unique interactors and therefore some specialized cellular roles have evolved for different members of the ROCO proteins. Overall, this multi-approach strategy to increase the resolution of protein interaction networks represents a prototype for the utility of PPI data integration in understanding signaling biology.
Collapse
Affiliation(s)
- James E. Tomkins
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
| | - Sybille Dihanich
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Alexandra Beilina
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Raffaele Ferrari
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Nicolò Ilacqua
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Mark R. Cookson
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Patrick A. Lewis
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Claudia Manzoni
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| |
Collapse
|
37
|
Wang X, Gu M, Toh TB, Abdullah NLB, Chow EKH. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. SLAS Technol 2017; 23:44-56. [PMID: 29020497 DOI: 10.1177/2472630317735497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengjie Gu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nurrul Lissa Binti Abdullah
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Tur MK, Daramola AK, Gattenlöhner S, Herling M, Chetty S, Barth S. Restoration of DAP Kinase Tumor Suppressor Function: A Therapeutic Strategy to Selectively Induce Apoptosis in Cancer Cells Using Immunokinase Fusion Proteins. Biomedicines 2017; 5:biomedicines5040059. [PMID: 28976934 PMCID: PMC5744083 DOI: 10.3390/biomedicines5040059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Targeted cancer immunotherapy is designed to selectively eliminate tumor cells without harming the surrounding healthy tissues. The death-associated protein kinases (DAPk) are a family of proapoptotic proteins that play a vital role in the regulation of cellular process and have been identified as positive mediators of apoptosis via extrinsic and intrinsic death-regulating signaling pathways. Tumor suppressor activities have been shown for DAPk1 and DAPk2 and they are downregulated in e.g., Hodgkin's (HL) and B cell lymphoma (CLL), respectively. Here, we review a targeted therapeutic approach which involves reconstitution of DAPks by the generation of immunokinase fusion proteins. These recombinant proteins consist of a disease-specific ligand fused to a modified version of DAPk1 or DAPk2. HL was targeted via CD30 and B-CLL via CD22 cell surface antigens.
Collapse
Affiliation(s)
- Mehmet Kemal Tur
- Institute of Pathology, University Hospital, Justus Liebig University Giessen, 35390 Giessen, Germany.
| | - Adebukola K Daramola
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital, Justus Liebig University Giessen, 35390 Giessen, Germany.
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and CECAD, University of Cologne, 50923 Köln, Germany.
| | - Shivan Chetty
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
39
|
Zhou X, Geng L, Wang D, Yi H, Talmon G, Wang J. R-Spondin1/LGR5 Activates TGFβ Signaling and Suppresses Colon Cancer Metastasis. Cancer Res 2017; 77:6589-6602. [PMID: 28939678 DOI: 10.1158/0008-5472.can-17-0219] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat containing G-protein-coupled receptor 5 (LGR5), an intestinal stem cell marker, is known to exhibit tumor suppressor activity in colon cancer, the mechanism of which is not understood. Here we show that R-spondin 1 (RSPO1)/LGR5 directly activates TGFβ signaling cooperatively with TGFβ type II receptor in colon cancer cells, enhancing TGFβ-mediated growth inhibition and stress-induced apoptosis. Knockdown of LGR5 attenuated downstream TGFβ signaling and increased cell proliferation, survival, and metastasis in an orthotopic model of colon cancer in vivo Upon RSPO1 stimulation, LGR5 formed complexes with TGFβ receptors. Studies of patient specimens indicate that LGR5 expression was reduced in advanced stages and positively correlated with markers of TGFβ activation in colon cancer. Our study uncovers a novel cross-talk between LGR5 and TGFβ signaling in colon cancer and identifies LGR5 as a new modulator of TGFβ signaling able to suppress colon cancer metastasis. Cancer Res; 77(23); 6589-602. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaolin Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Liying Geng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Degeng Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas
| | - Haowei Yi
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska. .,Department of Genetics, Cell Biology and Anatomy, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
40
|
Li L, Guo L, Wang Q, Liu X, Zeng Y, Wen Q, Zhang S, Kwok HF, Lin Y, Liu J. DAPK1 as an independent prognostic marker in liver cancer. PeerJ 2017; 5:e3568. [PMID: 28740751 PMCID: PMC5520959 DOI: 10.7717/peerj.3568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
The death-associated protein kinase 1 (DAPK1) can act as an oncogene or a tumor suppressor gene depending on the cellular context as well as external stimuli. Our study aims to investigate the prognostic significance of DAPK1 in liver cancer in both mRNA and protein levels. The mRNA expression of DAPK1 was extracted from the Gene Expression Omnibus database in three independent liver cancer datasets while protein expression of DAPK1 was detected by immunohistochemistry in our Chinese liver cancer patient cohort. The associations between DAPK1 expression and clinical characteristics were tested. DAPK1 mRNA expression was down-regulated in liver cancer. Low levels of DAPK1 mRNA were associated with shorter survival in a liver cancer patient cohort (n = 115; p = 0.041), while negative staining of DAPK1 protein was significantly correlated with shorter time to progression (p = 0.002) and overall survival (p = 0.02). DAPK1 was an independent prognostic marker for both time to progression and overall survival by multivariate analysis. Liver cancer with the b-catenin mutation has a lower DAPK1 expression, suggesting that DAPK1 may be regulated under the b-catenin pathway. In addition, we also identified genes that are co-regulated with DAPK1. DAPK1 expression was positively correlated with IRF2, IL7R, PCOLCE and ZBTB16, and negatively correlated with SLC16A3 in both liver cancer datasets. Among these genes, PCOLCE and ZBTB16 were significantly down-regulated, while SLC16A3 was significantly upregulated in liver cancer. By using connectivity mapping of these co-regulated genes, we have identified amcinonide and sulpiride as potential small molecules that could potentially reverse DAPK1/PCOLCE/ZBTB16/SLC16A3 expression. Our study demonstrated for the first time that both DAPK1 mRNA and protein expression levels are important prognostic markers in liver cancer, and have identified genes that may contribute to DAPK1-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Ling Li
- Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Libin Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Qingshui Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Xiaolong Liu
- United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yongyi Zeng
- United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qing Wen
- Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Shudong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Jingfeng Liu
- Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
p14ARF interacts with the focal adhesion kinase and protects cells from anoikis. Oncogene 2017; 36:4913-4928. [PMID: 28436949 PMCID: PMC5582215 DOI: 10.1038/onc.2017.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
The ARF protein functions as an important sensor of hyper-proliferative stimuli restricting cell proliferation through both p53-dependent and -independent pathways. Although to date the majority of studies on ARF have focused on its anti-proliferative role, few studies have addressed whether ARF may also have pro-survival functions. Here we show for the first time that during the process of adhesion and spreading ARF re-localizes to sites of active actin polymerization and to focal adhesion points where it interacts with the phosphorylated focal adhesion kinase. In line with its recruitment to focal adhesions, we observe that hampering ARF function in cancer cells leads to gross defects in cytoskeleton organization resulting in apoptosis through a mechanism dependent on the Death-Associated Protein Kinase. Our data uncover a novel function for p14ARF in protecting cells from anoikis that may reflect its role in anchorage independence, a hallmark of malignant tumor cells.
Collapse
|
42
|
Qiao X, Yang X, Zhou Y, Mei X, Dou J, Xie W, Li G, Wang Y, Qiao S, Hu J, Wu Y. Characterization of DAPK1 as a novel transcriptional target of BRMS1. Int J Oncol 2017; 50:1760-1766. [PMID: 28339067 DOI: 10.3892/ijo.2017.3930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 11/06/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) can specifically regulate tumor metastasis in many cancers. Our previous studies have demonstrated that BRMS1 can promote cell apoptosis through regulating osteopontin (OPN) expression in hepatocellular carcinoma (HCC) cells. However, the transcriptional targets of BRMS1 have not been thoroughly studied. In this study, death-associated protein kinase 1 (DAPK1), a tumor suppressor gene with multiple roles in regulating cell death, was identified as a potential transcriptional target of BRMS1 in the whole genome expression microarray. Quantitative real-time PCR and western blot analysis of HCC cells overexpressing BRMS1 further confirmed the transcriptional regulation relationship between BRMS1 and DAPK1. Moreover, DAPK1 expression was frequently decreased or even lost in HCC tissue samples by comparison with neighboring pathologically normal liver tissue, which was consistent with the decreased BRMS1 expression pattern. To unravel the molecular mechanism of BRMS1 in regulating DAPK1, a series of deletion mutants of DAPK1 promoter was subjected to luciferase assay. The luciferase units of -200 to -80 bp region, with two tandem putative NF-κB binding sites, were specifically enhanced by BRMS1 expression. Site-directed mutants of NF-κB binding sites blocked the transcriptional activation effect. In addition, the binding capability of BRMS1 and the putative NF-κB binding sites were demonstrated in the chromatin immunoprecipitation (ChIP) assay. In conclusion, our study characterized DAPK1 as a novel transcriptional target of BRMS1. Transcriptional activation of DAPK1 might be another important mechanism accounting for the metastasis suppressive activity of BRMS1.
Collapse
Affiliation(s)
- Xiaojing Qiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xi Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yiren Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Mei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jianming Dou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Wenjuan Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Guoqing Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yekai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Shouyi Qiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jianwei Hu
- Endoscopy Center and Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, P.R. China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
43
|
Ivanovska J, Zlobec I, Forster S, Karamitopoulou E, Dawson H, Koelzer VH, Agaimy A, Garreis F, Söder S, Laqua W, Lugli A, Hartmann A, Rau TT, Schneider-Stock R. DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells. Oncotarget 2017; 6:36774-88. [PMID: 26405175 PMCID: PMC4742210 DOI: 10.18632/oncotarget.4908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Collapse
Affiliation(s)
- Jelena Ivanovska
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stefan Forster
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Heather Dawson
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Garreis
- Department of Anatomy, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan Söder
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - William Laqua
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman T Rau
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
44
|
Cai F, Xiao X, Niu X, Zhong Y. Association between promoter methylation of DAPK gene and HNSCC: A meta-analysis. PLoS One 2017; 12:e0173194. [PMID: 28249042 PMCID: PMC5332095 DOI: 10.1371/journal.pone.0173194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The death-associated protein kinase (DAPK) is a tumor suppressor gene, which is a mediator of cell death of INF-γ-induced apoptosis. Aberrant methylation of DAPK promoter has been reported in patients with head and neck squamous cell carcinoma (HNSCC). However, the results of these studies are inconsistent. Hence, the present study aimed to evaluate the association between the promoter methylation of DAPK gene and HNSCC. METHODS Relevant studies were systematically searched in PubMed, Web of Science, Ovid, and Embase. The association between DAPK promoter methylation and HNSCC was assessed by odds ratio (ORs) and 95% confidence intervals (CI). To evaluate the potential sources of heterogeneity, we conducted the meta-regression analysis and subgroup analysis. RESULTS Eighteen studies were finally included in the meta-analysis. The frequency of DAPK promoter methylation in patients with HNSCC was 4.09-fold higher than the non-cancerous controls (OR = 3.96, 95%CI = 2.26-6.95). A significant association between DAPK promoter methylation and HNSCC was found among the Asian region and the Non-Asia region (Asian region, OR = 4.43, 95% CI = 2.29-8.58; Non-Asia region, OR = 3.39, 95% CI = 1.18-9.78). In the control source, the significant association between DAPK promoter methylation and HNSCC was seen among the autologous group and the heterogeneous group (autologous group, OR = 2.71, 95% CI = 1.49-4.93; heterogeneous group, OR = 9.50, 95% CI = 2.98-30.27). DAPK promoter methylation was significantly correlated with alcohol status (OR = 1.85, 95% CI = 1.07-3.21). CONCLUSION The results of this meta-analysis suggested that aberrant methylation of DAPK promoter was associated with HNSCC.
Collapse
Affiliation(s)
- Fucheng Cai
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiyue Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Geng L, Wang J. Molecular effectors of radiation resistance in colorectal cancer. PRECISION RADIATION ONCOLOGY 2017. [DOI: 10.1002/pro6.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Liying Geng
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases
- Department of Genetics; Cell Biology and Anatomy
- Department of Biochemistry and Molecular Biology; University of Nebraska Medical Center, 985950 Nebraska Medical Center; Omaha Nebraska USA
| |
Collapse
|
46
|
Pegylated IFN-α suppresses hepatitis C virus by promoting the DAPK-mTOR pathway. Proc Natl Acad Sci U S A 2016; 113:14799-14804. [PMID: 27930338 DOI: 10.1073/pnas.1618517114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Death-associated protein kinase (DAPK) has been found to be induced by IFN, but its antiviral activity remains elusive. Therefore, we investigated whether DAPK plays a role in the pegylated IFN-α (peg-IFN-α)-induced antiviral activity against hepatitis C virus (HCV) replication. Primary human hepatocytes, Huh-7, and infectious HCV cell culture were used to study the relationship between peg-IFN-α and the DAPK-mammalian target of rapamycin (mTOR) pathways. The activation of DAPK and signaling pathways were determined using immunoblotting. By silencing DAPK and mTOR, we further assessed the role of DAPK and mTOR in the peg-IFN-α-induced suppression of HCV replication. Peg-IFN-α up-regulated the expression of DAPK and mTOR, which was associated with the suppression of HCV replication. Overexpression of DAPK enhanced mTOR expression and then inhibited HCV replication. In addition, knockdown of DAPK reduced the expression of mTOR in peg-IFN-α-treated cells, whereas silencing of mTOR had no effect on DAPK expression, suggesting mTOR may be a downstream effector of DAPK. More importantly, knockdown of DAPK or mTOR significantly mitigated the inhibitory effects of peg-IFN-α on HCV replication. In conclusion, our data suggest that the DAPK-mTOR pathway is critical for anti-HCV effects of peg-IFN-α.
Collapse
|
47
|
Geraldes C, Gonçalves AC, Cortesão E, Pereira MI, Roque A, Paiva A, Ribeiro L, Nascimento-Costa JM, Sarmento-Ribeiro AB. Aberrant p15, p16, p53, and DAPK Gene Methylation in Myelomagenesis: Clinical and Prognostic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:713-720.e2. [PMID: 27622827 DOI: 10.1016/j.clml.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant DNA methylation is considered a crucial mechanism in the pathogenesis of monoclonal gammopathies. We aimed to investigate the contribution of hypermethylation of 4 tumor suppressor genes to the multistep process of myelomagenesis. METHODS The methylation status of p15, p16, p53, and DAPK genes was evaluated in bone marrow samples from 94 patients at diagnosis: monoclonal gammopathy of uncertain significance (MGUS) (n = 48), smoldering multiple myeloma (SMM) (n = 8) and symptomatic multiple myeloma (MM) (n = 38), and from 8 healthy controls by methylation-specific polymerase chain reaction analysis. RESULTS Overall, 63% of patients with MM and 39% of patients with MGUS presented at least 1 hypermethylated gene (P < .05). No aberrant methylation was detected in normal bone marrow. The frequency of methylation for individual genes in patients with MGUS, SMM, and MM was p15, 15%, 50%, 21%; p16, 15%, 13%, 32%; p53, 2%, 12,5%, 5%, and DAPK, 19%, 25%, 39%, respectively (P < .05). No correlation was found between aberrant methylation and immunophenotypic markers, cytogenetic features, progression-free survival, and overall survival in patients with MM. CONCLUSIONS The current study supports a relevant role for p15, p16, and DAPK hypermethylation in the genesis of the plasma cell neoplasm. DAPK hypermethylation also might be an important step in the progression from MGUS to MM.
Collapse
Affiliation(s)
- Catarina Geraldes
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| | - Ana Cristina Gonçalves
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Emília Cortesão
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Marta Isabel Pereira
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Adriana Roque
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Letícia Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - José Manuel Nascimento-Costa
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Oncology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Oncology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
48
|
Singh P, Ravanan P, Talwar P. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy. Front Mol Neurosci 2016; 9:46. [PMID: 27445685 PMCID: PMC4917528 DOI: 10.3389/fnmol.2016.00046] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner.
Collapse
Affiliation(s)
- Pratibha Singh
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Chou TF, Chuang YT, Hsieh WC, Chang PY, Liu HY, Mo ST, Hsu TS, Miaw SC, Chen RH, Kimchi A, Lai MZ. Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1α for Th17 suppression. Nat Commun 2016; 7:11904. [PMID: 27312851 PMCID: PMC4915028 DOI: 10.1038/ncomms11904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
Death-associated protein kinase (DAPK) is a tumour suppressor. Here we show that DAPK also inhibits T helper 17 (Th17) and prevents Th17-mediated pathology in a mouse model of autoimmunity. We demonstrate that DAPK specifically downregulates hypoxia-inducible factor 1α (HIF-1α). In contrast to the predominant nuclear localization of HIF-1α in many cell types, HIF-1α is located in both the cytoplasm and nucleus in T cells, allowing for a cytosolic DAPK–HIF-1α interaction. DAPK also binds prolyl hydroxylase domain protein 2 (PHD2) and increases HIF-1α-PHD2 association. DAPK thereby promotes the proline hydroxylation and proteasome degradation of HIF-1α. Consequently, DAPK deficiency leads to excess HIF-1α accumulation, enhanced IL-17 expression and exacerbated experimental autoimmune encephalomyelitis. Additional knockout of HIF-1α restores the normal differentiation of Dapk−/− Th17 cells and prevents experimental autoimmune encephalomyelitis development. Our results reveal a mechanism involving DAPK-mediated degradation of cytoplasmic HIF-1α, and suggest that raising DAPK levels could be used for treatment of Th17-associated inflammatory diseases. HIF-1α is critical for Th17 differentiation. Here the authors show that DAPK (Death-Associated Protein Kinase) inhibits Th17 differentiation and immunopathology in a mouse model of multiple sclerosis by promoting HIF1-α binding to its negative regulator PHD2.
Collapse
Affiliation(s)
- Ting-Fang Chou
- Graduate Institute of Life Sciences, National Defense Medical College, Taipei 11490, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Wan-Chen Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Yun Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shi-Chuen Miaw
- Institute of Immunology, National Taiwan University, Taipei 10057, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Institute of Molecular Medicine, National Taiwan University, Taipei 10057, Taiwan
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ming-Zong Lai
- Graduate Institute of Life Sciences, National Defense Medical College, Taipei 11490, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Institute of Immunology, National Taiwan University, Taipei 10057, Taiwan
| |
Collapse
|
50
|
Chen HY, Liu CC, Chen RH. Cul3-KLHL20 ubiquitin ligase: physiological functions, stress responses, and disease implications. Cell Div 2016; 11:5. [PMID: 27042198 PMCID: PMC4818519 DOI: 10.1186/s13008-016-0017-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023] Open
Abstract
Cullin-RING ubiquitin ligases are the largest Ubiquitin ligase family in eukaryotes and are multi-protein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. KLHL20 is a substrate-binding subunit of Cullin3 (Cul3) ubiquitin ligase. Recent studies have identified a number of substrates of KLHL20-based ubiquitin ligase. Through ubiquitination of these substrates, KLHL20 elicits diverse cellular functions, some of which are associated with human diseases. Furthermore, the functions, subcellular localizations, and expression of KLHL20 are regulated by several physiological and stressed signals, which allow KLHL20 to preferentially act on certain substrates to response to these signals. Here, we provide a summary of the functions and regulations of KLHL20 in several physiological processes and stress responses and its disease implications.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chin-Chih Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan ; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan ; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|