1
|
Karagiannis TC, Orlowski C, Ververis K, Pitsillou E, Sarila G, Keating ST, Foong LJ, Fabris S, Ngo-Nguyen C, Malik N, Okabe J, Hung A, Mantamadiotis T, El-Osta A. γH2AX in mouse embryonic stem cells: Distribution during differentiation and following γ-irradiation. Cells Dev 2024; 177:203882. [PMID: 37956740 DOI: 10.1016/j.cdev.2023.203882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Christian Orlowski
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Gulcan Sarila
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Laura J Foong
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Stefanie Fabris
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Christina Ngo-Nguyen
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Neha Malik
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery (RMH), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Tichy ED. Specialized Circuitry of Embryonic Stem Cells Promotes Genomic Integrity. Crit Rev Oncog 2023; 27:1-15. [PMID: 36734869 DOI: 10.1615/critrevoncog.2022042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) give rise to all cell types of the organism. Given the importance of these cells in this process, ESCs must employ robust mechanisms to protect genomic integrity or risk catastrophic propagation of mutations throughout the organism. Should such an event occur in daughter cells that will eventually contribute to the germline, the overall species health could dramatically decline. This review describes several key mechanisms employed by ESCs that are unique to these cells, in order to maintain their genomic integrity. Additionally, the contributions of cell cycle regulators in modulating ESC differentiation, after DNA damage exposure, are also examined. Where data are available, findings reported in ESCs are extended to include observations described in induced pluripotent stem cells (IPSCs).
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
4
|
Hagen-Lillevik S, Johnson J, Lai K. Early postnatal alterations in follicular stress response and survival in a mouse model of Classic Galactosemia. J Ovarian Res 2022; 15:122. [PMID: 36414970 PMCID: PMC9682695 DOI: 10.1186/s13048-022-01049-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Primary ovarian insufficiency is characterized by accelerated loss of primordial follicles, which results in ovarian failure and concomitant menopause before age 40. About 1-3% of females in the general population are diagnosed with POI; however, greater than 80% of females with the inherited disease Classic Galactosemia will develop POI. Classic Galactosemia is caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase. While dietary restriction of galactose is lifesaving in the neonatal period, the development of complications including primary ovarian insufficiency is not mitigated. Additionally, the pattern(s) of follicle loss have not been completely characterized. The chronic accumulation of aberrant metabolites such as galactose-1-phosphate and galactitol are suspected culprits in the development of the sequelae, yet the mechanisms remain elusive.Our group uses a GalT gene-trapped mouse model to study the pathophysiology of primary ovarian insufficiency in Classic Galactosemia. We recently showed that differences in the Integrated Stress Response pathway occur in mutant ovaries that likely contribute to their primary ovarian insufficiency phenotype. Using immunofluorescent staining of histological sections of ovaries at progressive ages, we saw evidence of altered Integrated Stress Response activity in granulosa cells and primordial oocytes consistent with accelerated primordial follicle growth activation, aberrant DNA damage and/or repair, and increased cellular stress/death. Overall, our findings indicate that abnormal Integrated Stress Response in the Classic Galactosemia model ovary results in accelerated primordial follicle growth activation, sometimes referred to as "burnout." These aberrant early events help further clarify when/how the primary ovarian insufficiency phenotype arises under galactosemic conditions.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- grid.223827.e0000 0001 2193 0096Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT 84108 USA ,grid.223827.e0000 0001 2193 0096Department of Nutrition and Integrative Physiology, University of Utah College of Health, 250 South 1850 East Room 214, Salt Lake City, UT 84112 USA
| | - Joshua Johnson
- grid.430503.10000 0001 0703 675XDivision of Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Building RC2, Room P15 3103, Mail Stop 8613, Aurora, CO 80045 USA
| | - Kent Lai
- grid.223827.e0000 0001 2193 0096Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT 84108 USA ,grid.223827.e0000 0001 2193 0096Department of Nutrition and Integrative Physiology, University of Utah College of Health, 250 South 1850 East Room 214, Salt Lake City, UT 84112 USA
| |
Collapse
|
5
|
Zhao Q, Liu K, Zhang L, Li Z, Wang L, Cao J, Xu Y, Zheng A, Chen Q, Zhao T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis 2022; 13:976. [PMID: 36402748 PMCID: PMC9675825 DOI: 10.1038/s41419-022-05413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) have a significantly lower mutation load compared to somatic cells, but the mechanisms that guard genomic integrity in ESCs remain largely unknown. Here we show that BNIP3-dependent mitophagy protects genomic integrity in mouse ESCs. Deletion of Bnip3 increases cellular reactive oxygen species (ROS) and decreases ATP generation. Increased ROS in Bnip3-/- ESCs compromised self-renewal and were partially rescued by either NAC treatment or p53 depletion. The decreased cellular ATP in Bnip3-/- ESCs induced AMPK activation and deteriorated homologous recombination, leading to elevated mutation load during long-term propagation. Whereas activation of AMPK in X-ray-treated Bnip3+/+ ESCs dramatically ascended mutation rates, inactivation of AMPK in Bnip3-/- ESCs under X-ray stress remarkably decreased the mutation load. In addition, enhancement of BNIP3-dependent mitophagy during reprogramming markedly decreased mutation accumulation in established iPSCs. In conclusion, we demonstrated a novel pathway in which BNIP3-dependent mitophagy safeguards ESC genomic stability, and that could potentially be targeted to improve pluripotent stem cell genomic integrity for regenerative medicine.
Collapse
Affiliation(s)
- Qian Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Kun Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Lin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zheng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Liang Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiani Cao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Youqing Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quan Chen
- grid.216938.70000 0000 9878 7032College of Life Sciences, Nankai University, Tianjin, 300073 China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
The Chromatin Architectural Protein CTCF Is Critical for Cell Survival upon Irradiation-Induced DNA Damage. Int J Mol Sci 2022; 23:ijms23073896. [PMID: 35409255 PMCID: PMC8999573 DOI: 10.3390/ijms23073896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
CTCF is a nuclear protein initially discovered for its role in enhancer-promoter insulation. It has been shown to play a role in genome architecture and in fact, its DNA binding sites are enriched at the borders of chromatin domains. Recently, we showed that depletion of CTCF impairs the DNA damage response to ionizing radiation. To investigate the relationship between chromatin domains and DNA damage repair, we present here clonogenic survival assays in different cell lines upon CTCF knockdown and ionizing irradiation. The application of a wide range of ionizing irradiation doses (0–10 Gy) allowed us to investigate the survival response through a biophysical model that accounts for the double-strand breaks’ probability distribution onto chromatin domains. We demonstrate that the radiosensitivity of different cell lines is increased upon lowering the amount of the architectural protein. Our model shows that the deficiency in the DNA repair ability is related to the changes in the size of chromatin domains that occur when different amounts of CTCF are present in the nucleus.
Collapse
|
7
|
Herchenröther A, Wunderlich TM, Lan J, Hake SB. Spotlight on histone H2A variants: From B to X to Z. Semin Cell Dev Biol 2022; 135:3-12. [PMID: 35365397 DOI: 10.1016/j.semcdb.2022.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Abstract
Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.
Collapse
Affiliation(s)
| | - Tim M Wunderlich
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| |
Collapse
|
8
|
Masteika IF, Sathya A, Homma S, Miller BM, Boyce FM, Miller JB. Downstream events initiated by expression of FSHD-associated DUX4: Studies of nucleocytoplasmic transport, γH2AX accumulation, and Bax/Bak-dependence. Biol Open 2022; 11:274475. [PMID: 35191484 PMCID: PMC8890089 DOI: 10.1242/bio.059145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormal expression in skeletal muscle of the double homeobox transcription factor DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Though multiple changes are known to be initiated by aberrant DUX4 expression, the downstream events initiated by DUX4 remain incompletely understood. In this study, we examined plausible downstream events initiated by DUX4. First, we found that nucleocytoplasmic protein export appeared to be decreased upon DUX4 expression as indicated by nuclear accumulation of a shuttle-GFP reporter. Second, building on studies from other labs, we showed that phospho(Ser139)-H2AX (γH2AX), an indicator of double-strand DNA breaks, accumulated both in human FSHD1 myotube nuclei upon endogenous DUX4 expression and in Bax-/-;Bak-/- (double knockout), SV40-immortalized mouse embryonic fibroblasts upon exogenous DUX4 expression. In contrast, DUX4-induced caspase 3/7 activation was prevented in Bax-/-;Bak-/- double knockout SV40-MEFs, but not by single knockouts of Bax, Bak, or Bid. Thus, aberrant DUX4 expression appeared to alter nucleocytoplasmic protein transport and generate double-strand DNA breaks in FSHD1 myotube nuclei, and the Bax/Bak pathway is required for DUX4-induced caspase activation but not γH2AX accumulation. These results add to our knowledge of downstream events induced by aberrant DUX4 expression and suggest possibilities for further mechanistic investigation.
Collapse
Affiliation(s)
- Isabel F Masteika
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Anvitha Sathya
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Sachiko Homma
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bess M Miller
- Biological & Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeffrey Boone Miller
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
9
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
10
|
Ooi SK, Jiang H, Kang Y, Allard P. Examining the Developmental Trajectory of an in Vitro Model of Mouse Primordial Germ Cells following Exposure to Environmentally Relevant Bisphenol A Levels. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97013. [PMID: 34585602 PMCID: PMC8480152 DOI: 10.1289/ehp8196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Animal-based studies indicate that bisphenol A (BPA) exposure is detrimental to reproductive health, but its impact on the earliest stages of germ cell development remains poorly defined. OBJECTIVES Using a murine in vitro model of early germ cell specification and differentiation, we sought to assess whether exposure to low levels of BPA prior to formation of primordial germ cells (PGCs) alters their differentiation trajectory and unique molecular program. METHODS We used an established method of in vitro differentiation of mouse embryonic stem cells (ESCs) into epiblast-like cells (EpiLCs) followed by PGC-like cells (PGCLCs), which together recapitulate defined stages of early germ cell development. Cellular consequences were determined using hemocytometer-based cell counting, fixation, and intracellular staining, followed by flow cytometry/fluorescence-activated cell sorting (FACS) of cells exposed to increasing concentrations (range: 1 nM-10 μM) of BPA. To interrogate and characterize gene expression differences resulting from BPA exposure, we also generated RNA-seq libraries from RNA extracted from FACS-purified PGCLCs and performed transcriptome analysis using bioinformatics-based approaches. RESULTS Exposure of EpiLCs to BPA resulted in higher numbers of cells that were associated with a higher proportion of cells in S-phase as well as a lower proportion undergoing apoptosis; this difference occurred in a concentration-dependent manner. Exposure also resulted in a greater fraction of EpiLCs showing signs of DNA damage. Remarkably, EpiLC exposure did not negatively affect PGC specification and resulted in a concentration-dependent effect on PGCLC proliferation in XX but not XY cells. PGCLC transcriptome analysis revealed an aberrant program with significant deregulation of X-linked genes and retrotransposon expression. Differential gene expression analysis also revealed the deregulation of genes associated with lipid metabolism as well as deregulated expression of genes associated with later stages of gametogenesis. CONCLUSIONS To the best of our knowledge our findings represent the first characterization of the consequences of early BPA exposure on a model of mammalian PGC development, highlighting altered cell behavior, altered underlying pathways, and altered molecular processes. https://doi.org/10.1289/EHP8196.
Collapse
Affiliation(s)
- Steen K.T. Ooi
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Hui Jiang
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Yanyuan Kang
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Patrick Allard
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Orlando L, Tanasijevic B, Nakanishi M, Reid JC, García-Rodríguez JL, Chauhan KD, Porras DP, Aslostovar L, Lu JD, Shapovalova Z, Mitchell RR, Boyd AL, Bhatia M. Phosphorylation state of the histone variant H2A.X controls human stem and progenitor cell fate decisions. Cell Rep 2021; 34:108818. [PMID: 33691101 DOI: 10.1016/j.celrep.2021.108818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Histone variants (HVs) are a subfamily of epigenetic regulators implicated in embryonic development, but their role in human stem cell fate remains unclear. Here, we reveal that the phosphorylation state of the HV H2A.X (γH2A.X) regulates self-renewal and differentiation of human pluripotent stem cells (hPSCs) and leukemic progenitors. As demonstrated by CRISPR-Cas deletion, H2A.X is essential in maintaining normal hPSC behavior. However, reduced levels of γH2A.X enhances hPSC differentiation toward the hematopoietic lineage with concomitant inhibition of neural development. In contrast, activation and sustained levels of phosphorylated H2A.X enhance hPSC neural fate while suppressing hematopoiesis. This controlled lineage bias correlates to occupancy of γH2A.X at genomic loci associated with ectoderm versus mesoderm specification. Finally, drug modulation of H2A.X phosphorylation overcomes differentiation block of patient-derived leukemic progenitors. Our study demonstrates HVs may serve to regulate pluripotent cell fate and that this biology could be extended to somatic cancer stem cell control.
Collapse
Affiliation(s)
- Luca Orlando
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Borko Tanasijevic
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mio Nakanishi
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Juan L García-Rodríguez
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Kapil Dev Chauhan
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Deanna P Porras
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lili Aslostovar
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Justin D Lu
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Zoya Shapovalova
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Ryan R Mitchell
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mickie Bhatia
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
13
|
Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anticancer Drugs 2020; 30:475-484. [PMID: 30986804 DOI: 10.1097/cad.0000000000000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We showed recently that ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) exhibit potent antiproliferative activities against a broad spectrum of soft tissue sarcoma and gastrointestinal stromal tumor (GIST) cell lines in vitro. The molecular mechanism of action was owing to inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to the accumulation of tumor cells in the M-phase and induction of apoptosis. Given that more than 50% of the patients with GISTs develop resistance to imatinib (IM) over the 2 years of IM-based therapy, we examined whether EAPCs exhibit activity against IM-resistant GISTs in vitro and in vivo. A real-time antiproliferation assay illustrated the potent antiproliferative activities of EAPCs against IM-sensitive and IM-resistant GISTs. This was in agreement with the colony formation assay, which revealed potent antiproliferative activities of EAPCs against IM-resistant GISTs, being much stronger when compared with IM and doxorubicin, a topoisomerase II inhibitor. Next, we tested the efficacy of EAPCs in the xenograft model of GISTs, exhibiting secondary IM resistance owing to RTK switch (loss of c-KIT/gain of FGFR2α). A total of 30 5- to 8-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with IM-resistant GIST-T1-R cells (100 μl of 1×10 GIST T-1R cells/ml suspension, in Dulbecco's PBS). Mice were randomized as control (untreated), IM (50 mg/kg), EAPC-20 (10 mg/kg) or EAPC-24 (10 mg/kg) and were treated orally for 10 days. IM has a minor inhibitory effect on tumor size, thus revealing GIST resistance to IM. In contrast, both of EAPCs effectively reduced the tumor size. This was associated with an increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, both EAPCs significantly reduced the proliferative activity of tumor cells in the central zones of tumors as measured by positivity for Ki-67 staining. More importantly, in EAPC-24-treated GISTs, the histological response was mainly characterized by the induction of necrosis, whereas EAPC-20 induced the signs of intratumoral fibrosis and myxoid degeneration. Collectively, our data suggest that EAPC-20 and EAPC-24 are the perspective antitumor agents that exhibit antiproliferative and cytotoxic activity against GISTs exhibiting secondary resistance to IM.
Collapse
|
14
|
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep 2019; 23:1853-1866. [PMID: 29742439 DOI: 10.1016/j.celrep.2018.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation.
Collapse
|
15
|
TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun 2019; 10:4273. [PMID: 31537782 PMCID: PMC6753139 DOI: 10.1038/s41467-019-12126-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Recognition of specific chromatin modifications by distinct structural domains within “reader” proteins plays a critical role in the maintenance of genomic stability. However, the specific mechanisms involved in this process remain unclear. Here we report that the PHD-Bromo tandem domain of tripartite motif-containing 66 (TRIM66) recognizes the unmodified H3R2-H3K4 and acetylated H3K56. The aberrant deletion of Trim66 results in severe DNA damage and genomic instability in embryonic stem cells (ESCs). Moreover, we find that the recognition of histone modification by TRIM66 is critical for DNA damage repair (DDR) in ESCs. TRIM66 recruits Sirt6 to deacetylate H3K56ac, negatively regulating the level of H3K56ac and facilitating the initiation of DDR. Importantly, Trim66-deficient blastocysts also exhibit higher levels of H3K56ac and DNA damage. Collectively, the present findings indicate the vital role of TRIM66 in DDR in ESCs, establishing the relationship between histone readers and maintenance of genomic stability. TRIM66 protein has an N-terminal tripartite motif and a C-terminal PHD Bromodomain. Here the authors show the specific histone modification recognition of TRIM66-PHD-Bromodomain through crystallography and biochemistry assay, and further reveal that TRIM66 recognition of certain histone modification is important for DNA damage repair in ESCs.
Collapse
|
16
|
Increased error-free DNA repair gene expression through reprogramming in human iPS cells. Regen Ther 2019; 11:101-105. [PMID: 31304203 PMCID: PMC6606834 DOI: 10.1016/j.reth.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/22/2019] [Accepted: 06/08/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Many studies have reported that human-induced pluripotent stem (hiPS)/embryonic stem (hES) cells have an exceptional ability to repair damaged DNA. Moreover, unlike differentiated cells, hES cells have features and mechanisms such as apoptosis-prone mitochondria, which prevent any changes in genetic information caused by DNA damage to be transmitted to their descendants. Type-A (dark) spermatogonia and cancer stem cells are thought to be dormant. However, hiPS/hES cells, the so-called stem cells used in regenerative medicine, generally have a high proliferative capacity. This suggests that in these cells, oxidative DNA damage associated with vigorous proliferation and DNA scission associated with replication occur frequently. Although pluripotency according to change of genomic structure is well studied, the change of DNA repair through reprogramming has not been well studied. Methods We analyzed the expression of DNA repair-related genes in hiPS cells using microarray and western blotting analyses and assessed changes in PARP activity through reprogramming. Results Through reprogramming, hiPS cells were found to upregulate poly (ADP-ribose) polymerase (PARP) activity and genes regulating homologous recombination (HR). Simultaneously, the expression level of genes involved in non-homologous end joining (NHEJ) was not high, suggesting that at least at the gene expression level, frequently occurring DNA scission is preferentially dealt with via HR instead of NHEJ. Also, reflecting the high proliferative activity, genes related to mismatch repair (MMR) were upregulated through reprogramming. Conversely, error-prone polymerase was downregulated through reprogramming. These are also likely to be the mechanisms preventing changes in genetic information. Conclusions High PARP activity and HR-related gene expression in hiPS cells were achieved through reprogramming and likely facilitate precise genome editing in these cells in exchange for a high possibility of cell death.
Collapse
|
17
|
Rastogi A, Joshi P, Contreras E, Gama V. Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress 2019; 3:181-194. [PMID: 31225513 PMCID: PMC6558935 DOI: 10.15698/cst2019.06.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Research in the stem cell field has traditionally focused on understanding key transcriptional factors that provide pluripotent cell identity. However, much less is known about other critical non-transcriptional signaling networks that govern stem cell identity. Although we continue to gain critical insights into the mechanisms underlying mitochondrial morphology and function during cellular reprogramming – the process of reverting the fate of a differentiated cell into a stem cell, many uncertainties remain. Recent studies suggest an emerging landscape in which mitochondrial morphology and function have an active role in maintaining and regulating changes in cell identity. In this review, we will focus on these emerging concepts as crucial modulators of cellular reprogramming. Recognition of the widespread applicability of these concepts will increase our understanding of the mitochondrial mechanisms involved in cell identity, cell fate and disease.
Collapse
Affiliation(s)
- Anuj Rastogi
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Piyush Joshi
- Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37240
| | - Ela Contreras
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Vivian Gama
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240.,Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
18
|
Kermi C, Aze A, Maiorano D. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. Genes (Basel) 2019; 10:genes10050398. [PMID: 31137726 PMCID: PMC6563053 DOI: 10.3390/genes10050398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.
Collapse
Affiliation(s)
- Chames Kermi
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| | - Antoine Aze
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| | - Domenico Maiorano
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
19
|
Ooi J, Langley SR, Xu X, Utami KH, Sim B, Huang Y, Harmston NP, Tay YL, Ziaei A, Zeng R, Low D, Aminkeng F, Sobota RM, Ginhoux F, Petretto E, Pouladi MA. Unbiased Profiling of Isogenic Huntington Disease hPSC-Derived CNS and Peripheral Cells Reveals Strong Cell-Type Specificity of CAG Length Effects. Cell Rep 2019; 26:2494-2508.e7. [DOI: 10.1016/j.celrep.2019.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
|
20
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
21
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
22
|
Hernandez C, Wang Z, Ramazanov B, Tang Y, Mehta S, Dambrot C, Lee YW, Tessema K, Kumar I, Astudillo M, Neubert TA, Guo S, Ivanova NB. Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency. Cell Stem Cell 2018; 23:396-411.e8. [PMID: 30146411 PMCID: PMC6128737 DOI: 10.1016/j.stem.2018.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 06/04/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
As somatic cells are converted into induced pluripotent stem cells (iPSCs), their chromatin is remodeled to a pluripotent configuration with unique euchromatin-to-heterochromatin ratios, DNA methylation patterns, and enhancer and promoter status. The molecular machinery underlying this process is largely unknown. Here, we show that embryonic stem cell (ESC)-specific factors Dppa2 and Dppa4 play a key role in resetting the epigenome to a pluripotent state. They are induced in reprogramming intermediates, function as a heterodimer, and are required for efficient reprogramming of mouse and human cells. When co-expressed with Oct4, Klf4, Sox2, and Myc (OKSM) factors, Dppa2/4 yield reprogramming efficiencies that exceed 80% and accelerate reprogramming kinetics, generating iPSCs in 2 to 4 days. When bound to chromatin, Dppa2/4 initiate global chromatin decompaction via the DNA damage response pathway and contribute to downregulation of somatic genes and activation of ESC enhancers, all of which enables an efficient transition to pluripotency. Our work provides critical insights into how the epigenome is remodeled during acquisition of pluripotency.
Collapse
Affiliation(s)
- Charles Hernandez
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Zheng Wang
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Bulat Ramazanov
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Yin Tang
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Sameet Mehta
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Cheryl Dambrot
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Yu-Wei Lee
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Kaleab Tessema
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Ishan Kumar
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Michael Astudillo
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Shangqin Guo
- Yale Stem Cell Center, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Natalia B Ivanova
- Department of Genetics, Yale University, New Haven, CT, USA; Yale Stem Cell Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Vallabhaneni H, Lynch PJ, Chen G, Park K, Liu Y, Goehe R, Mallon BS, Boehm M, Hursh DA. High Basal Levels of γH2AX in Human Induced Pluripotent Stem Cells Are Linked to Replication-Associated DNA Damage and Repair. Stem Cells 2018; 36:1501-1513. [PMID: 29873142 DOI: 10.1002/stem.2861] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/02/2018] [Accepted: 05/19/2018] [Indexed: 01/07/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) have great potential as source cells for therapeutic uses. However, reports indicate that iPSCs carry genetic abnormalities, which may impede their medical use. Little is known about mechanisms contributing to intrinsic DNA damage in iPSCs that could lead to genomic instability. In this report, we investigated the level of DNA damage in human iPSC lines compared with their founder fibroblast line and derived mesenchymal stromal cell (MSC) lines using the phosphorylated histone variant, γH2AX, as a marker of DNA damage. We show that human iPSCs have elevated basal levels of γH2AX, which correlate with markers of DNA replication: 5-ethynyl-2'-deoxyuridine and the single-stranded binding protein, replication protein A. γH2AX foci in iPSCs also colocalize to BRCA1 and RAD51, proteins in the homologous repair pathway, implying γH2AX in iPSCs marks sites of double strand breaks. Our study demonstrates an association between increased basal levels of γH2AX and the rapid replication of iPSCs. Stem Cells 2018;36:1501-1513.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Division of Cellular and Gene Therapy, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick J Lynch
- Division of Biotechnology Review and Research II, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Kyeyoon Park
- Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yangtengyu Liu
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Rachel Goehe
- Division of Cellular and Gene Therapy, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Barbara S Mallon
- Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Deborah A Hursh
- Division of Cellular and Gene Therapy, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
25
|
Zylicz JJ, Borensztein M, Wong FC, Huang Y, Lee C, Dietmann S, Surani MA. G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. eLife 2018; 7:33361. [PMID: 29745895 PMCID: PMC5959720 DOI: 10.7554/elife.33361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/09/2018] [Indexed: 01/14/2023] Open
Abstract
Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.
Collapse
Affiliation(s)
- Jan J Zylicz
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maud Borensztein
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Ck Wong
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yun Huang
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Lee
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice. Mol Cell Biol 2017; 37:MCB.00117-17. [PMID: 28894029 DOI: 10.1128/mcb.00117-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
DNA replication is frequently perturbed by intrinsic, as well as extrinsic, genotoxic stress. At damaged forks, DNA replication and repair activities require proper coordination to maintain genome integrity. We show here that PARI antirecombinase plays an essential role in modulating the initial response to replication stress in mice. PARI is functionally dormant at replisomes during normal replication, but upon replication stress, it enhances nascent-strand shortening that is regulated by RAD51 and MRE11. PARI then promotes double-strand break induction, followed by new origin firing instead of replication restart. Such PARI function is apparently obstructive to replication but is nonetheless physiologically required for chromosome stability in vivo and ex vivo Of note, Pari-deficient embryonic stem cells exhibit spontaneous chromosome instability, which is attenuated by differentiation induction, suggesting that pluripotent stem cells have a preferential requirement for PARI that acts against endogenous replication stress. PARI is a latent modulator of stalled fork processing, which is required for stable genome inheritance under both endogenous and exogenous replication stress in mice.
Collapse
|
27
|
Zhao B, Zhang W, Cun Y, Li J, Liu Y, Gao J, Zhu H, Zhou H, Zhang R, Zheng P. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex. Cell Res 2017; 28:69-89. [PMID: 29125140 DOI: 10.1038/cr.2017.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor constitutive DNA replication stress during their rapid proliferation and the consequent genome instability hampers their applications in regenerative medicine. It is therefore important to understand the regulatory mechanisms of replication stress response in PSCs. Here, we report that mouse embryonic stem cells (ESCs) are superior to differentiated cells in resolving replication stress. Specifically, ESCs utilize a unique Filia-Floped protein complex-dependent mechanism to efficiently promote the restart of stalled replication forks, therefore maintaining genomic stability. The ESC-specific Filia-Floped complex resides on replication forks under normal conditions. Replication stress stimulates their recruitment to stalling forks and the serine 151 residue of Filia is phosphorylated in an ATR-dependent manner. This modification enables the Filia-Floped complex to act as a functional scaffold, which then promotes the stalling fork restart through a dual mechanism: both enhancing recruitment of the replication fork restart protein, Blm, and stimulating ATR kinase activation. In the Blm pathway, the scaffolds recruit the E3 ubiquitin ligase, Trim25, to the stalled replication forks, and in turn Trim25 tethers and concentrates Blm at stalled replication forks through ubiquitination. In differentiated cells, the recruitment of the Trim25-Blm complex to replication forks and the activation of ATR signaling are much less robust due to lack of the ESC-specific Filia-Floped scaffold. Thus, our study reveals that ESCs utilize an additional and unique regulatory layer to efficiently promote the stalled fork restart and maintain genomic stability.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yixian Cun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jingzheng Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
28
|
Werner E, Wang Y, Doetsch PW. A Single Exposure to Low- or High-LET Radiation Induces Persistent Genomic Damage in Mouse Epithelial Cells In Vitro and in Lung Tissue. Radiat Res 2017; 188:373-380. [PMID: 28753066 DOI: 10.1667/rr14685.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to low- and high-linear energy transfer (LET) radiation induce clustered damage in DNA that is difficult to repair. These lesions are manifested as DNA-associated foci positive for DNA repair proteins and have been shown to persist in vitro and in vivo for days in several cell types and tissues in response to low-LET radiation. Although in some experimental conditions these residual foci have been linked with genomic instability and chromosomal aberrations, it remains poorly understood what type of damage they represent. Because high-LET radiation induces complex DNA lesions more efficiently than low-LET radiation, we compared the efficacy of several heavy ions (oxygen, silicon and iron) in a range (17 , 70 and 175 keV/μm, respectively) of LET and X rays at a 1 Gy dose. Persistent genomic damage was measured by γ-H2AX-53BP1-positive residual foci and micronucleus levels during the first three days and up to a week after in vitro and in vivo irradiation in lung cells and tissue. We demonstrate that in an in vitro irradiated mouse bronchial epithelial cell line, the expression of residual foci is readily detectable at 24 h with levels declining in the following 72 h postirradiation, but still persisting elevated over background at day 7. At this time, foci numbers are low but significant and proportional to the dose and quality of the radiation. The expression of residual foci in vitro was mirrored by increased micronuclei generation measured in cytokinesis-blocked cells, indicating long-term, persistent effects of genomic damage in this cell type. We also tested the expression of residual foci in lung tissue of C57BL/6 mice that received whole-body X-ray or heavy-ion irradiation. We found that at day 7 postirradiation, Clara/Club cells, but not pro-SPC-positive pneumocytes, contained a subpopulation of cells expressing γ-H2AX-53BP1-positive foci in a radiation quality-dependent manner. These findings suggest that in vivo persistent DNA repair foci reflect the initial genotoxic damage induced by radiation and a differential vulnerability among cells in the lung.
Collapse
Affiliation(s)
- Erica Werner
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ya Wang
- b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Paul W Doetsch
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia.,c Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
29
|
Seifert BA, Dejosez M, Zwaka TP. Ronin influences the DNA damage response in pluripotent stem cells. Stem Cell Res 2017; 23:98-104. [PMID: 28715716 DOI: 10.1016/j.scr.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
Early mammalian embryonic cells must maintain a particularly robust DNA repair system, as mutations at this developmental point have detrimental consequences for the organism. How the repair system can be tuned to fulfill such elevated requirements is largely unknown, but it may involve transcriptional regulation. Ronin (Thap11) is a transcriptional regulator responsible for vital programs in pluripotent cells. Here, we report that this protein also modulates the DNA damage response of such cells. We show that conditional Ronin knockout sensitizes embryonic stem cells (ESCs) to UV-C-induced DNA damage in association with Atr pathway activation and G2/M arrest. Ronin binds to and regulates the genes encoding several DNA repair factors, including Gtf2h4 and Rad18, providing a potential mechanism for this phenotype. Our results suggest that the unique DNA repair requirements of the early embryo are not met by a static system, but rather via highly regulated processes.
Collapse
Affiliation(s)
- Bryce A Seifert
- Graduate Program in Molecular and Human Genetics at Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marion Dejosez
- Huffington Center for Cell-Based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Huffington Center for Cell-Based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, New York, NY 10029, USA.
| |
Collapse
|
30
|
Rahjouei A, Pirouz M, Di Virgilio M, Kamin D, Kessel M. MAD2L2 Promotes Open Chromatin in Embryonic Stem Cells and Derepresses the Dppa3 Locus. Stem Cell Reports 2017; 8:813-821. [PMID: 28330620 PMCID: PMC5390107 DOI: 10.1016/j.stemcr.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The chromatin of naive embryonic stem cells (ESCs) has a largely open configuration, as evident by the lack of condensed heterochromatin and the hypomethylation of DNA. Several molecular mechanisms promoting this constellation were previously identified. Here we present evidence for an important epigenetic function of MAD2L2, a protein originally known for its role in DNA damage repair, and for its requirement in germ cell development. We demonstrate using super-resolution microscopy that numerous MAD2L2 microfoci are exclusively associated with euchromatin, similar to other factors of the DNA damage response. In the absence of MAD2L2 the amount of heterochromatin demarcated by H3K9me2 was significantly increased. Among the most strongly suppressed genes was Dppa3, an ESC- and germ-cell-specific gene regulating DNA methylation. In Mad2l2-deficient ESCs 5-methylcytosine levels were globally increased, while several imprinted genes became hypomethylated and transcriptionally activated. Our results emphasize the important function of MAD2L2 for the open chromatin configuration of ESCs.
Collapse
Affiliation(s)
- Ali Rahjouei
- RG Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany; DNA Repair and Maintenance of Genome Stability, Max-Delbruck Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Mehdi Pirouz
- RG Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | - Michela Di Virgilio
- DNA Repair and Maintenance of Genome Stability, Max-Delbruck Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Dirk Kamin
- Department NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | - Michael Kessel
- RG Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| |
Collapse
|
31
|
Suchorska WM, Augustyniak E, Łukjanow M. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation. Mol Med Rep 2017; 15:1952-1962. [PMID: 28259963 PMCID: PMC5364988 DOI: 10.3892/mmr.2017.6270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment-associated purposes. Therefore, the aim of the present study was to examine and compare early IR-induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non-homologous end-joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC-based clinical protocols.
Collapse
Affiliation(s)
| | - Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | - Magdalena Łukjanow
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| |
Collapse
|
32
|
Regulation of DNA Replication in Early Embryonic Cleavages. Genes (Basel) 2017; 8:genes8010042. [PMID: 28106858 PMCID: PMC5295036 DOI: 10.3390/genes8010042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.
Collapse
|
33
|
Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G, Boutros M. Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal 2017; 10:10/461/eaah6829. [PMID: 28074006 DOI: 10.1126/scisignal.aah6829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.
Collapse
Affiliation(s)
- Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| | - Dyah L Dewi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Jennifer Hundshammer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Gerrit Erdmann
- NMI TT Naturwissenschaftliches und Medizinisches Institut Technologie Transfer GmbH Pharmaservices, Berlin 13353, Germany
| | - Grainne Kerr
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
34
|
Czerwinska AM, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, Iwanicka-Nowicka R, Jańczyk-Ilach K, Koblowska M, Ciemerych MA, Grabowska I. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle 2016; 15:2931-2942. [PMID: 27610933 PMCID: PMC5105925 DOI: 10.1080/15384101.2016.1231260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.
Collapse
Affiliation(s)
- Areta M Czerwinska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Joanna Nowacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Aszer
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Sylwia Gawrzak
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Karolina Archacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Anna Fogtman
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Katarzyna Jańczyk-Ilach
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Marta Koblowska
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Iwona Grabowska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
35
|
MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene 2016; 35:5905-5915. [PMID: 27109101 PMCID: PMC6071667 DOI: 10.1038/onc.2016.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 12/21/2022]
Abstract
MMSET/WHSC1 is a histone methyltransferase (HMT) overexpressed in t(4;14)+ multiple myeloma (MM) patients, believed to be the driving factor in the pathogenesis of this MM subtype. MMSET overexpression in MM leads to an increase in histone 3 lysine 36 dimethylation (H3K36me2), and a decrease in histone 3 lysine 27 trimethylation (H3K27me3), as well as changes in proliferation, gene expression, and chromatin accessibility. Prior work linked methylation of histones to the ability of cells to undergo DNA damage repair. In addition, t(4;14)+ patients frequently relapse after regimens that include DNA damage-inducing agents, suggesting that MMSET may play a role in DNA damage repair and response. In U2OS cells, we found that MMSET is required for efficient non-homologous end joining as well as homologous recombination. Loss of MMSET led to loss of expression of several DNA repair proteins, as well as decreased recruitment of DNA repair proteins to sites of DNA double strand breaks (DSBs). Using genetically matched MM cell lines that had either high (pathological) or low (physiological) expression of MMSET, we found that MMSET high cells had increased damage at baseline. Upon addition of a DNA damaging agent, MMSET high cells repaired DNA damage at an enhanced rate and continued to proliferate, whereas MMSET low cells accumulated DNA damage and entered cell cycle arrest. In a murine xenograft model using t(4;14)+ KMS11 MM cells harboring an inducible MMSET shRNA, depletion of MMSET enhanced the efficacy of chemotherapy, inhibiting tumor growth and extending survival. These findings help explain the poorer prognosis of t(4;14) MM and further validate MMSET as a potential therapeutic target in MM and other cancers.
Collapse
|
36
|
Turinetto V, Giachino C. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 2016; 10:563-73. [PMID: 26114724 DOI: 10.1080/15592294.2015.1053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.
Collapse
Affiliation(s)
- Valentina Turinetto
- a Department of Clinical and Biological Sciences; University of Turin ; Orbassano , Turin , Italy
| | | |
Collapse
|
37
|
Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE, Sharma GG. Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell 2016; 27:1332-45. [PMID: 26941327 PMCID: PMC4831886 DOI: 10.1091/mbc.e16-01-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
Normal stem cells from tissues often exhibiting radiation injury are highly radiosensitive and exhibit a muted DNA damage response, in contrast to differentiated progeny. These radioresponses can be attributed to unique epigenetic regulation in stem cells, identifying potential therapeutic targets for radioprotection. Normal tissue injury resulting from cancer radiotherapy is often associated with diminished regenerative capacity. We examined the relative radiosensitivity of normal stem cell populations compared with non–stem cells within several radiosensitive tissue niches and culture models. We found that these stem cells are highly radiosensitive, in contrast to their isogenic differentiated progeny. Of interest, they also exhibited a uniquely attenuated DNA damage response (DDR) and muted DNA repair. Whereas stem cells exhibit reduced ATM activation and ionizing radiation–induced foci, they display apoptotic pannuclear H2AX-S139 phosphorylation (γH2AX), indicating unique radioresponses. We also observed persistent phosphorylation of H2AX-Y142 along the DNA breaks in stem cells, which promotes apoptosis while inhibiting DDR signaling. In addition, down-regulation of constitutively elevated histone-3 lysine-56 acetylation (H3K56ac) in stem cells significantly decreased their radiosensitivity, restored DDR function, and increased survival, signifying its role as a key contributor to stem cell radiosensitivity. These results establish that unique epigenetic landscapes affect cellular heterogeneity in radiosensitivity and demonstrate the nonubiquitous nature of radiation responses. We thus elucidate novel epigenetic rheostats that promote ionizing radiation hypersensitivity in various normal stem cell populations, identifying potential molecular targets for pharmacological radioprotection of stem cells and hopefully improving the efficacy of future cancer treatment.
Collapse
Affiliation(s)
- Keith M Jacobs
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Sandeep Misri
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barbara Meyer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Suyash Raj
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Cheri L Zobel
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barry P Sleckman
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108 Department of Pathology, Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63108
| | - Dennis E Hallahan
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Girdhar G Sharma
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
38
|
Fujitani K, Otomo A, Wada M, Takamatsu N, Ito M. Sexually dimorphic expression of Dmrt1 and γH2AX in germ stem cells during gonadal development in Xenopus laevis. FEBS Open Bio 2016; 6:276-84. [PMID: 27239441 PMCID: PMC4821358 DOI: 10.1002/2211-5463.12035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
In many animals, primordial germ cells (PGCs) migrate into developing gonads. There, they proliferate and differentiate into female and male germ stem cells (GSCs), oogonia and spermatogonia, respectively. Few studies have focused on the molecular mechanisms underlying the development of GSC sex determination. Here, we investigated the expression of the transcription factor Dmrt1 and a phosphorylated form of the histone variant H2AX (γH2AX) during gonadal development in Xenopus laevis. During early sexual differentiation, Dmrt1 was expressed in the GSCs of the ZW (female) and ZZ (male) gonads as well as somatic cells of the ZZ gonads. Notably, the PGCs and primary GSCs contained large, unstructured nuclei, whereas condensed, rounder nuclei appeared only in primary oogonia during tadpole development. After metamorphosis, Dmrt1 showed its expression in secondary spermatogonia, but not in secondary oogonia. Like Dmrt1, γH2AX was expressed in the nuclei of primary GSCs in early developing gonads. However, after metamorphosis, γH2AX expression continued in primary and secondary spermatogonia, but was barely detected in the condensed nuclei of primary oogonia. Taken together, these observations indicate that spermatogonia tend to retain PGC characteristics, compared to oogonia, which undergo substantial changes during gonadal differentiation in X. laevis. Our findings suggest that Dmrt1 and γH2AX may contribute to the maintenance of stem cell identity by controlling gene expression and epigenetic changes, respectively.
Collapse
Affiliation(s)
- Kazuko Fujitani
- Department of Bioscience School of Science Kitasato University Sagamihara Japan
| | - Asako Otomo
- Department of Molecular Life Sciences Tokai University School of Medicine Isehara Japan
| | - Mikako Wada
- Department of Bioscience School of Science Kitasato University Sagamihara Japan
| | - Nobuhiko Takamatsu
- Department of Bioscience School of Science Kitasato University Sagamihara Japan
| | - Michihiko Ito
- Department of Bioscience School of Science Kitasato University Sagamihara Japan
| |
Collapse
|
39
|
Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, Lopes M. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 2016; 7:10660. [PMID: 26876348 PMCID: PMC4756311 DOI: 10.1038/ncomms10660] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity. In fast proliferating embryonic stem cells (ESC) the DNA damage response is activated by mechanisms that are as yet elusive. Here, Ahuja et al. link the DNA damage response to replication stress in mouse ESCs, caused by a short G1 phase, and propose fork remodelling as maintaining genome stability in embryos.
Collapse
Affiliation(s)
- Akshay K Ahuja
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Karolina Jodkowska
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Anna H Bizard
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Raquel Herrador
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Biotechnology Programme, CNIO, Madrid E-28029, Spain
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
40
|
Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, Carlton PM. 5-Hydroxymethylcytosine Marks Sites of DNA Damage and Promotes Genome Stability. Cell Rep 2016; 14:1283-1292. [PMID: 26854228 DOI: 10.1016/j.celrep.2016.01.035] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/03/2015] [Accepted: 01/08/2016] [Indexed: 01/05/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) is a DNA base created during active DNA demethylation by the recently discovered TET enzymes. 5hmC has essential roles in gene expression and differentiation. Here, we demonstrate that 5hmC also localizes to sites of DNA damage and repair. 5hmC accumulates at damage foci induced by aphidicolin and microirradiation and colocalizes with major DNA damage response proteins 53BP1 and γH2AX, revealing 5hmC as an epigenetic marker of DNA damage. Deficiency for the TET enzymes eliminates damage-induced 5hmC accumulation and elicits chromosome segregation defects in response to replication stress. Our results indicate that the TET enzymes and 5hmC play essential roles in ensuring genome integrity.
Collapse
Affiliation(s)
- Georgia Rose Kafer
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan; CREST, Japan Science and Technology Agency
| | - Xuan Li
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Peter Mark Carlton
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan; CREST, Japan Science and Technology Agency.
| |
Collapse
|
41
|
Suchorska WM, Augustyniak E, Łukjanow M. Genetic stability of pluripotent stem cells during anti-cancer therapies. Exp Ther Med 2016; 11:695-702. [PMID: 26997981 PMCID: PMC4774348 DOI: 10.3892/etm.2016.2993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a rapidly growing field that holds promise for the treatment of many currently unresponsive diseases. Stem cells (SCs) are undifferentiated cells with long-term self-renewal potential and the capacity to develop into specialized cells. SC-based therapies constitute a novel and promising concept in regenerative medicine. Radiotherapy is the most frequently used method in the adjuvant treatment of tumorous alterations. In the future, the usage of SCs in regenerative medicine will be affected by their regular and inevitable exposure to ionizing radiation (IR). This phenomenon will be observed during treatment as well as diagnosis. The issue of the genetic stability of SCs and cells differentiated from SCs is crucial in the context of the application of these cells in clinical practice. This review examines current knowledge concerning the DNA repair mechanisms (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining) of SCs in response to the harmful effects of genotoxic agents such as IR and chemotherapeutics.
Collapse
Affiliation(s)
- Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland; The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 20-091 Warsaw, Poland; Department of Electroradiology, Poznań University of Medical Sciences, 61-866 Poznań, Poland
| | - Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland; The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 20-091 Warsaw, Poland
| | - Magdalena Łukjanow
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
42
|
Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Müller AM, Becker M. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J Cell Sci 2016; 129:788-803. [PMID: 26759175 DOI: 10.1242/jcs.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs.
Collapse
Affiliation(s)
- Christine Hofstetter
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Justyna M Kampka
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Sascha Huppertz
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Heike Weber
- Microarray Core Unit, Interdisciplinary Center for Clinical Science, University of Würzburg, Würzburg 97078, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97078, Germany
| | - Albrecht M Müller
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Matthias Becker
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| |
Collapse
|
43
|
Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, Gershon TR, Hammond S, Sethupathy P, Deshmukh M. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum. Cell Rep 2015; 14:216-24. [PMID: 26748703 DOI: 10.1016/j.celrep.2015.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 01/09/2023] Open
Abstract
Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Ayumi Nakamura
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeanette Baran-Gale
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sons
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Praveen Sethupathy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Wang QE. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem 2015; 6:57-64. [PMID: 26322164 PMCID: PMC4549769 DOI: 10.4331/wjbc.v6.i3.57] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/16/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
The identification of cancer stem cells (CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells, CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response (DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.
Collapse
|
45
|
Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 2015; 61:290-8. [DOI: 10.1016/j.biomaterials.2015.05.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
|
46
|
Kostyuk S, Smirnova T, Kameneva L, Porokhovnik L, Speranskij A, Ershova E, Stukalov S, Izevskaya V, Veiko N. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:782123. [PMID: 26273425 PMCID: PMC4529983 DOI: 10.1155/2015/782123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. PRINCIPAL FINDINGS Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). CONCLUSIONS GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.
Collapse
Affiliation(s)
- Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Tatiana Smirnova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Larisa Kameneva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Lev Porokhovnik
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Anatolij Speranskij
- V.A. Nasonova Research Institute of Rheumatology, Russian Academy of Medical Sciences, Russia
| | - Elizaveta Ershova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Sergey Stukalov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Vera Izevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Natalia Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| |
Collapse
|
47
|
Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J 2015; 34:1296-308. [PMID: 25820261 PMCID: PMC4491992 DOI: 10.15252/embj.201490649] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cell identity is a reflection of a cell type-specific gene expression profile, and consequently, cell type-specific transcription factor networks are considered to be at the heart of a given cellular phenotype. Although generally stable, cell identity can be reprogrammed in vitro by forced changes to the transcriptional network, the most dramatic example of which was shown by the induction of pluripotency in somatic cells by the ectopic expression of defined transcription factors alone. Although changes to cell fate can be achieved in this way, the efficiency of such conversion remains very low, in large part due to specific chromatin signatures constituting an epigenetic barrier to the transcription factor-mediated reprogramming processes. Here we discuss the two-way relationship between transcription factor binding and chromatin structure during cell fate reprogramming. We additionally explore the potential roles and mechanisms by which histone variants, chromatin remodelling enzymes, and histone and DNA modifications contribute to the stability of cell identity and/or provide a permissive environment for cell fate change during cellular reprogramming.
Collapse
Affiliation(s)
- Buhe Nashun
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| | - Peter W S Hill
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| | - Petra Hajkova
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
48
|
Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res 2015; 43:2489-98. [PMID: 25712102 PMCID: PMC4357700 DOI: 10.1093/nar/gkv061] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
49
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.
miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
50
|
Karlsson HL, Gliga AR, Calléja FMGR, Gonçalves CSAG, Wallinder IO, Vrieling H, Fadeel B, Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part Fibre Toxicol 2014; 11:41. [PMID: 25179117 PMCID: PMC4237954 DOI: 10.1186/s12989-014-0041-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). METHODS The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). RESULTS We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. CONCLUSIONS We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|