1
|
Jin M, Huang Y, Li B, Wang Y, Li Y, Chen Z, Tang Z, Liu C, Zhang L, Yuan X, Tian J, Liu B. Genetic Regulation of Alternative Polyadenylation Provides Novel Insights into Molecular Mechanisms Underlying Non-small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502008. [PMID: 40285671 DOI: 10.1002/advs.202502008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Emerging evidence emphasizes the critical role of alternative polyadenylation (APA) in posttranscriptional regulation of genes, and APA-associated genetic variants (apaQTLs) show particular relevance for multiple disease. However, genetic regulation of APA and its role in non-small cell lung cancer (NSCLC) risk have not been thoroughly studied. Here, by leveraging genotype and APA data from The Cancer Genome Atlas, the association between genetic variation and APA is determined in NSCLC samples. The identified apaQTLs are distinct from eQTLs and are preferentially enriched in functionally relevant characteristics, including poly(A) motifs, APA-associated RBP binding sites, functional elements, and known NSCLC risk loci. Moreover, genes associated with apaQTLs are broadly involved in cancer-related biological process. Of note, integration of apaQTL variants with traditional GWAS-derived PRS is proved as a potential screening tool for NSCLC. By integrating large-scale population and biological experiments, a functional apaQTL variant rs9606 in LYRM4 is identified. Mechanistically, rs9606 induces aberrant APA process of LYRM4 via allele-specific interacting with NUDT21, which lead to increased expression of oncogene LYRM4 and thus contribute to NSCLC risk. This study demonstrates the distinct contribution of APA-associated genetic variants in NSCLC risk, providing critical clues and potential targets for NSCLC etiology and clinical intervention.
Collapse
Affiliation(s)
- Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhirui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
2
|
Wingfield JL, Puthanveettil SV. Decoding the complex journeys of RNAs along neurons. Nucleic Acids Res 2025; 53:gkaf293. [PMID: 40243060 PMCID: PMC12004114 DOI: 10.1093/nar/gkaf293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neurons are highly polarized, specialized cells that must overcome immense challenges to ensure the health and survival of the organism in which they reside. They can spread over meters and persist for decades yet communicate at sub-millisecond and millimeter scales. Thus, neurons require extreme levels of spatial-temporal control. Neurons employ molecular motors to transport coding and noncoding RNAs to distal synapses. Intracellular trafficking of RNAs enables neurons to locally regulate protein synthesis and synaptic activity. The way in which RNAs get loaded onto molecular motors and transported to their target locations, particularly following synaptic plasticity, is explored below.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
3
|
Grzejda D, Hess A, Rezansoff A, Gorey S, Carrasco J, Alfonso-Gonzalez C, Tsagkris S, Neuhaus L, Shi M, Ozbulut HC, Vögtle FN, Vlachos A, Hilgers V. Pumilio differentially binds to mRNA 3' UTR isoforms to regulate localization of synaptic proteins. EMBO Rep 2025; 26:1792-1815. [PMID: 39984683 PMCID: PMC11976915 DOI: 10.1038/s44319-025-00401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
In neuronal cells, the regulation of RNA is crucial for the spatiotemporal control of gene expression, but how the correct localization, levels, and function of synaptic proteins are achieved is not well understood. In this study, we globally investigate the role of alternative 3' UTRs in regulating RNA localization in the synaptic regions of the Drosophila brain. We identify direct mRNA targets of the translational repressor Pumilio, finding that mRNAs bound by Pumilio encode proteins enriched in synaptosomes. Pumilio differentially binds to RNA isoforms of the same gene, favoring long, neuronal 3' UTRs. These longer 3' UTRs tend to remain in the neuronal soma, whereas shorter UTR isoforms localize to the synapse. In cultured pumilio mutant neurons, axon outgrowth defects are accompanied by mRNA isoform mislocalization, and proteins encoded by these Pumilio target mRNAs display excessive abundance at synaptic boutons. Our study identifies an important mechanism for the spatiotemporal regulation of protein function in neurons.
Collapse
Affiliation(s)
- Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Anton Hess
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Andrew Rezansoff
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Sakshi Gorey
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Judit Carrasco
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CB2 0AA, Cambridge, UK
| | - Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Stylianos Tsagkris
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Lena Neuhaus
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
| | - Mengjin Shi
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
| | - Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Friederike-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- Aging Research, Heidelberg University, 69120, Heidelberg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
6
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1756-1769. [PMID: 39030441 PMCID: PMC11909598 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
7
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
8
|
Gao Y, Shaw VR, Amos CI. Alternative polyadenylation shapes the molecular and clinical features of lung adenocarcinoma. Hum Mol Genet 2025; 34:1-10. [PMID: 39487796 DOI: 10.1093/hmg/ddae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Indexed: 11/04/2024] Open
Abstract
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation that affects mRNA stability, localization and translation efficiency. Previous pan-cancer studies have revealed that APA is frequently disrupted in cancer and is associated with patient outcomes. Yet, little is known about cancer type-specific APA alterations. Here, we integrated RNA-sequencing data from a Korean cohort (GEO: GSE40419) and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA alterations in lung adenocarcinomas (LUADs). Comparing expression levels of core genes involved in polyadenylation, we find that overall, the set of 28 of 31 genes are upregulated, with CSTF2 particularly upregulated. We observed broad and recurrent APA changes in LUAD growth-promoting genes. In addition, we find enrichment of APA events in genes associated with known LUAD pathways and an increased heterogeneity in polyadenylation (polyA) site usage of proliferation-associated genes. Upon further investigation, we report smoking-specific APA changes are also highly relevant to LUAD development. Overall, our in-depth analysis reveals APA as an important driver for the molecular and clinical features of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yipeng Gao
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Vikram R Shaw
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
9
|
Fukuchi M, Shibasaki Y, Akazawa Y, Suzuki-Masuyama H, Takeuchi KI, Iwazaki Y, Tabuchi A, Tsuda M. Neuron-selective and activity-dependent splicing of BDNF exon I-IX pre-mRNA. Neurochem Int 2024; 181:105889. [PMID: 39455010 DOI: 10.1016/j.neuint.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for numerous neuronal functions, including learning and memory. The expression of BDNF is regulated by distinctive transcriptional and post-transcriptional mechanisms. The Bdnf gene in mice and rats comprises eight untranslated exons (exons I-VIII) and one exon (exon IX) that contains the pre-proBDNF coding sequence. Multiple splice donor sites on the untranslated exons and a single acceptor site upstream of the coding sequence result in the characteristic exon skipping patterns that generate multiple Bdnf mRNA variants, which are essential for the spatiotemporal regulation of BDNF expression, mRNA localization, mRNA stability, and translational control. However, the regulation of Bdnf pre-mRNA splicing remains unclear. Here, we focused on the splicing of Bdnf exon I-IX pre-mRNA. We first constructed a minigene to evaluate Bdnf exon I-IX pre-mRNA splicing. Compared with Bdnf exon I-IX pre-mRNA splicing in non-neuronal NIH3T3 cells, splicing was preferentially observed in primary cultures of cortical neurons. Additionally, a series of overexpression and knockdown experiments suggested that neuro-oncological ventral antigen (NOVA) 2 is involved in the neuron-selective splicing of Bdnf exon I-IX pre-mRNA. Supporting this finding, endogenous Nova2 mRNA expression was markedly higher in neurons, and a strong correlation between endogenous Bdnf exon I-IX and Nova2 mRNA was observed across several brain regions. Furthermore, Bdnf exon I-IX pre-mRNA splicing was facilitated by Ca2+ signals evoked via L-type voltage-dependent Ca2+ channels. Notably, among the Bdnf pre-mRNA splicing investigated in the current study, neuron-selective and activity-dependent splicing was observed in Bdnf exon I-IX pre-mRNA. In conclusion, Bdnf exon I-IX pre-mRNA splicing is preferentially observed in neurons and is facilitated in an activity-dependent manner. The neuron-selective and activity-dependent splicing of Bdnf exon I-IX pre-mRNA may contribute to the efficient induction of Bdnf exon I-IX expression in neurons.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan; Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yumi Shibasaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Yuto Akazawa
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hitoshi Suzuki-Masuyama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yumika Iwazaki
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
10
|
Randolph LK, Pauers MM, Martínez JC, Sibener LJ, Zrzavy MA, Sharif NA, Gonzalez TM, Ramachandran KV, Dominguez D, Hengst U. Regulation of synapse density by Pumilio RNA-binding proteins. Cell Rep 2024; 43:114747. [PMID: 39298318 PMCID: PMC11544588 DOI: 10.1016/j.celrep.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The formation, stabilization, and elimination of synapses are tightly regulated during neural development and into adulthood. Pumilio RNA-binding proteins regulate the translation and localization of many synaptic mRNAs and are developmentally downregulated in the brain. We found that simultaneous downregulation of Pumilio 1 and 2 increases both excitatory and inhibitory synapse density in primary hippocampal neurons and promotes synapse maturation. Loss of Pum1 and Pum2 in the mouse brain was associated with an increase in mRNAs involved in mitochondrial function and synaptic translation. These findings reveal a role for developmental Pumilio downregulation as a permissive step in the maturation of synapses and suggest that modulation of Pumilio levels is a cell-intrinsic mechanism by which neurons tune their capacity for synapse stabilization.
Collapse
Affiliation(s)
- Lisa K Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michaela M Pauers
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - José C Martínez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie J Sibener
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michael A Zrzavy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nyle A Sharif
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tatiana M Gonzalez
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kapil V Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel Dominguez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ulrich Hengst
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
11
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A developmental mechanism to regulate alternative polyadenylation in an adult stem cell lineage. Genes Dev 2024; 38:655-674. [PMID: 39111825 PMCID: PMC11368245 DOI: 10.1101/gad.351649.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Neuza R Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Fabián Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford, California 94035, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA;
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| |
Collapse
|
13
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A Developmental Mechanism to Regulate Alternative Polyadenylation in an Adult Stem Cell Lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585561. [PMID: 38562704 PMCID: PMC10983978 DOI: 10.1101/2024.03.18.585561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alternative Cleavage and Polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3'UTRs from the same genetic locus, potentially impacting mRNA translation, localization and stability. Developmentally regulated APA can thus make major contributions to cell-type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, approximately 500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of Cleavage Factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knock down of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell-type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Neuza R. Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Fabian Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| |
Collapse
|
14
|
Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K, Kim M, Gong N, Margolis M, Vo D, Wang X, Liu C, Pasaniuc B, Li JJ, Gandal MJ, de la Torre-Ubieta L. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. Science 2024; 384:eadh7688. [PMID: 38781356 PMCID: PMC11960787 DOI: 10.1126/science.adh7688] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ashok Patowary
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Celine K. Vuong
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinzhou Ge
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Naihua Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Margolis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jingyi Jessica Li
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J. Gandal
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis de la Torre-Ubieta
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Dolcetti E, Musella A, Balletta S, Gilio L, Bruno A, Stampanoni Bassi M, Lauritano G, Buttari F, Fresegna D, Tartacca A, Mariani F, Palmerio F, Rovella V, Ferese R, Gambardella S, Giardina E, Finardi A, Furlan R, Mandolesi G, Centonze D, De Vito F. Interaction between miR-142-3p and BDNF Val/Met Polymorphism Regulates Multiple Sclerosis Severity. Int J Mol Sci 2024; 25:5253. [PMID: 38791290 PMCID: PMC11121620 DOI: 10.3390/ijms25105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1β), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1β in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1β levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1β-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.
Collapse
Affiliation(s)
- Ettore Dolcetti
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Alessandra Musella
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Sara Balletta
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Luana Gilio
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Faculty of Psychology, Uninettuno Telematic International University, 00186 Rome, Italy
| | - Antonio Bruno
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Mario Stampanoni Bassi
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Gianluca Lauritano
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Fabio Buttari
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Diego Fresegna
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
| | - Alice Tartacca
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Fabrizio Mariani
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Federica Palmerio
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Valentina Rovella
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Rosangela Ferese
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Stefano Gambardella
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.F.); (R.F.)
- Faculty of Medicine and Surgery, Vita e Salute San Raffaele University, 20132 Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.F.); (R.F.)
- Faculty of Medicine and Surgery, Vita e Salute San Raffaele University, 20132 Milan, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Francesca De Vito
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| |
Collapse
|
16
|
Pelletier OB, Brunori G, Wang Y, Robishaw JD. Post-transcriptional regulation and subcellular localization of G-protein γ7 subunit: implications for striatal function and behavioral responses to cocaine. Front Neuroanat 2024; 18:1394659. [PMID: 38764487 PMCID: PMC11100332 DOI: 10.3389/fnana.2024.1394659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
The striatal D1 dopamine receptor (D1R) and A2a adenosine receptor (A2aR) signaling pathways play important roles in drug-related behaviors. These receptors activate the Golf protein comprised of a specific combination of αolfβ2γ7 subunits. During assembly, the γ7 subunit sets the cellular level of the Golf protein. In turn, the amount of Golf protein determines the collective output from both D1R and A2aR signaling pathways. This study shows the Gng7 gene encodes multiple γ7 transcripts differing only in their non-coding regions. In striatum, Transcript 1 is the predominant isoform. Preferentially expressed in the neuropil, Transcript 1 is localized in dendrites where it undergoes post-transcriptional regulation mediated by regulatory elements in its 3' untranslated region that contribute to translational suppression of the γ7 protein. Earlier studies on gene-targeted mice demonstrated loss of γ7 protein disrupts assembly of the Golf protein. In the current study, morphological analysis reveals the loss of the Golf protein is associated with altered dendritic morphology of medium spiny neurons. Finally, behavioral analysis of conditional knockout mice with cell-specific deletion of the γ7 protein in distinct populations of medium spiny neurons reveals differential roles of the Golf protein in mediating behavioral responses to cocaine. Altogether, these findings provide a better understanding of the regulation of γ7 protein expression, its impact on Golf function, and point to a new potential target and mechanisms for treating addiction and related disorders.
Collapse
Affiliation(s)
- Oliver B. Pelletier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yingcai Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Janet D. Robishaw
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Dash M, Meher P, Aditya Kumar, Satapathy SS, Namsa ND. High frequency of transition to transversion ratio in the stem region of RNA secondary structure of untranslated region of SARS-CoV-2. PeerJ 2024; 12:e16962. [PMID: 38666080 PMCID: PMC11044879 DOI: 10.7717/peerj.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction The propensity of nucleotide bases to form pairs, causes folding and the formation of secondary structure in the RNA. Therefore, purine (R): pyrimidine (Y) base-pairing is vital to maintain uniform lateral dimension in RNA secondary structure. Transversions or base substitutions between R and Y bases, are more detrimental to the stability of RNA secondary structure, than transitions derived from substitutions between A and G or C and T. The study of transversion and transition base substitutions is important to understand evolutionary mechanisms of RNA secondary structure in the 5' and 3' untranslated (UTR) regions of SARS-CoV-2. In this work, we carried out comparative analysis of transition and transversion base substitutions in the stem and loop regions of RNA secondary structure of SARS-CoV-2. Methods We have considered the experimentally determined and well documented stem and loop regions of 5' and 3' UTR regions of SARS-CoV-2 for base substitution analysis. The secondary structure comprising of stem and loop regions were visualized using the RNAfold web server. The GISAID repository was used to extract base sequence alignment of the UTR regions. Python scripts were developed for comparative analysis of transversion and transition frequencies in the stem and the loop regions. Results The results of base substitution analysis revealed a higher transition (ti) to transversion (tv) ratio (ti/tv) in the stem region of UTR of RNA secondary structure of SARS-CoV-2 reported during the early stage of the pandemic. The higher ti/tv ratio in the stem region suggested the influence of secondary structure in selecting the pattern of base substitutions. This differential pattern of ti/tv values between stem and loop regions was not observed among the Delta and Omicron variants that dominated the later stage of the pandemic. It is noteworthy that the ti/tv values in the stem and loop regions were similar among the later dominant Delta and Omicron variant strains which is to be investigated to understand the rapid evolution and global adaptation of SARS-CoV-2. Conclusion Our findings implicate the lower frequency of transversions than the transitions in the stem regions of UTRs of SARS-CoV-2. The RNA secondary structures are associated with replication, translation, and packaging, further investigations are needed to understand these base substitutions across different variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Madhusmita Dash
- Department of Electronics and Communication Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
| | - Preetisudha Meher
- Department of Electronics and Communication Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | | | - Nima D. Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
18
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
19
|
Reisbitzer A, Krauß S. The dynamic world of RNA: beyond translation to subcellular localization and function. Front Genet 2024; 15:1373899. [PMID: 38533205 PMCID: PMC10963542 DOI: 10.3389/fgene.2024.1373899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
| | - Sybille Krauß
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| |
Collapse
|
20
|
Zhang T, Li C, Zhu J, Li Y, Wang Z, Tong CY, Xi Y, Han Y, Koiwa H, Peng X, Zhang X. Structured 3' UTRs destabilize mRNAs in plants. Genome Biol 2024; 25:54. [PMID: 38388963 PMCID: PMC10885604 DOI: 10.1186/s13059-024-03186-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.
Collapse
Affiliation(s)
- Tianru Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Xi
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
21
|
Torres-Ulloa L, Calvo-Roitberg E, Pai AA. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage. RNA (NEW YORK, N.Y.) 2024; 30:256-270. [PMID: 38164598 PMCID: PMC10870368 DOI: 10.1261/rna.079783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.
Collapse
Affiliation(s)
- Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
22
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
23
|
Matsuoka Y, Nakasone H, Kasahara R, Fukuchi M. Expression Profiles of Brain-Derived Neurotrophic Factor Splice Variants in the Hippocampus of Alzheimer's Disease Model Mouse. Biol Pharm Bull 2024; 47:1858-1867. [PMID: 39522980 DOI: 10.1248/bpb.b24-00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dysregulation of brain-derived neurotrophic factor (BDNF) has been implicated in Alzheimer's disease (AD). In this study, we investigated the temporal dynamics of BDNF expression in the hippocampus of 5xFAD mice, an AD model, focusing on sex and age differences and Bdnf mRNA splice variants. At 3 months of age, female wild-type (WT) mice exhibited significantly higher Bdnf mRNA levels compared to males. However, this difference was abolished in female 5xFAD mice. At 6 months of age, no sex differences in Bdnf mRNA levels were observed in WT mice, and the levels tended to be lower in female 5xFAD mice. Additionally, a significant decrease in the mRNA levels of full-length tropomyosin-related kinase B (TrkB), a BDNF receptor, was found in female 5xFAD mice at 6 months, while mRNA levels of the truncated TrkB were increased in both male and female 5xFAD mice. Specifically, among the Bdnf mRNA splice variants, the levels of Bdnf exon IIA-IX, exon IIB-IX, exon IIC-IX, and exon IXA mRNA were significantly higher in female WT mice compared to male WT mice at 3 months, but this difference was lost in female 5xFAD mice. These findings suggest that the expression of specific Bdnf splice variants would be maintained at higher levels in the hippocampus of young female mice than in males but may be disrupted in AD model mice. Our study may provide insights into the relationship between sex differences in AD onset and BDNF expression.
Collapse
Affiliation(s)
- Yuka Matsuoka
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Hibiki Nakasone
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Rento Kasahara
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
24
|
Qin X, Meng C, Li C, Zhao W, Ren S, Cao S, Zhou G. Alternative Polyadenylation of Malic Enzyme 1 Is Essential for Accelerated Adipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20815-20825. [PMID: 38088871 DOI: 10.1021/acs.jafc.3c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Understanding the mechanism of adipogenesis is an important basis for improving meat quality traits of livestock. Alternative polyadenylation (APA) is a vital mechanism to regulate the expression of eukaryotic genes. However, how the individual APA functions in adipogenesis remains elusive. This study was intended to investigate the effect of malic enzyme 1 (ME1) APA on adipogenesis. Here, intracellular lipid droplets were stained using Oil red O. 3' RACE was used to verify APA events of the ME1 gene. Interactions between ME1 3' untranslated region (3' UTR)-APA isoforms and miRNAs, as well as differential expression of isoforms, were examined using dual-luciferase reporter and molecular experiments. The mechanism of ME1 APA on adipogenesis was explored by gain and loss of function assays. In this study, two ME1 isoforms with different 3' UTR lengths were detected during adipogenesis. Moreover, the ME1 isoform with a short 3' UTR was significantly upregulated compared with the one with a long 3' UTR. Mechanistically, only the long ME1 isoform was targeted by miR-153-3p to attenuate adipogenesis, while the short one escaped the regulation of miR-153-3p to accelerate adipogenesis. Our results reveal a novel mechanism of ME1 APA in regulating adipogenesis.
Collapse
Affiliation(s)
- Xuyong Qin
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chaoqun Meng
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Wei Zhao
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shizhong Ren
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shujun Cao
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
25
|
Marjamaa A, Gibbs B, Kotrba C, Masamha CP. The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep 2023; 13:17476. [PMID: 37838788 PMCID: PMC10576765 DOI: 10.1038/s41598-023-44548-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The ATP-binding cassette transporter (ABCC1) is associated with poor survival and chemotherapy drug resistance in high grade serous ovarian cancer (HGSOC). The mechanisms driving ABCC1 expression are poorly understood. Alternative polyadenylation (APA) can give rise to ABCC1 mRNAs which differ only in the length of their 3'untranslated regions (3'UTRs) in a process known as 3'UTR-APA. Like other ABC transporters, shortening of the 3'UTR of ABCC1 through 3'UTR-APA would eliminate microRNA binding sites found within the longer 3'UTRs, hence eliminating miRNA regulation and altering gene expression. We found that the HGSOC cell lines Caov-3 and Ovcar-3 express higher levels of ABCC1 protein than normal cells. APA of ABCC1 occurs in all three cell lines resulting in mRNAs with both short and long 3'UTRs. In Ovcar-3, mRNAs with shorter 3'UTRs dominate resulting in a six-fold increase in protein expression. We were able to show that miR-185-5p and miR-326 both target the ABCC1 3'UTR. Hence, 3'UTR-APA should be considered as an important regulator of ABCC1 expression in HGSOC. Both HGSOC cell lines are cisplatin resistant, and we used erastin to induce ferroptosis, an alternative form of cell death. We showed that we could induce ferroptosis and sensitize the cisplatin resistant cells to cisplatin by using erastin. Knocking down ABCC1 resulted in decreased cell viability, but did not contribute to erastin induced ferroptosis.
Collapse
Affiliation(s)
- Audrey Marjamaa
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN, 46208, USA
| | - Bettine Gibbs
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe Kotrba
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | | |
Collapse
|
26
|
Kang B, Yang Y, Hu K, Ruan X, Liu YL, Lee P, Lee J, Wang J, Zhang X. Infernape uncovers cell type-specific and spatially resolved alternative polyadenylation in the brain. Genome Res 2023; 33:1774-1787. [PMID: 37907328 PMCID: PMC10691540 DOI: 10.1101/gr.277864.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023]
Abstract
Differential polyadenylation sites (PAs) critically regulate gene expression, but their cell type-specific usage and spatial distribution in the brain have not been systematically characterized. Here, we present Infernape, which infers and quantifies PA usage from single-cell and spatial transcriptomic data and show its application in the mouse brain. Infernape uncovers alternative intronic PAs and 3'-UTR lengthening during cortical neurogenesis. Progenitor-neuron comparisons in the excitatory and inhibitory neuron lineages show overlapping PA changes in embryonic brains, suggesting that the neural proliferation-differentiation axis plays a prominent role. In the adult mouse brain, we uncover cell type-specific PAs and visualize such events using spatial transcriptomic data. Over two dozen neurodevelopmental disorder-associated genes such as Csnk2a1 and Mecp2 show differential PAs during brain development. This study presents Infernape to identify PAs from scRNA-seq and spatial data, and highlights the role of alternative PAs in neuronal gene regulation.
Collapse
Affiliation(s)
- Bowei Kang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yalan Yang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaining Hu
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yi-Lin Liu
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pinky Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jasper Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jingshu Wang
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA;
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
27
|
Grlickova-Duzevik E, Reimonn TM, Michael M, Tian T, Owyoung J, McGrath-Conwell A, Neufeld P, Mueth M, Molliver DC, Ward PJ, Harrison BJ. Members of the CUGBP Elav-like family of RNA-binding proteins are expressed in distinct populations of primary sensory neurons. J Comp Neurol 2023; 531:1425-1442. [PMID: 37537886 PMCID: PMC11792980 DOI: 10.1002/cne.25520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023]
Abstract
Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Thomas M Reimonn
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Merilla Michael
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Tina Tian
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jordan Owyoung
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Aidan McGrath-Conwell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Peter Neufeld
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Madison Mueth
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Derek C Molliver
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Patricia Jillian Ward
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin J Harrison
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| |
Collapse
|
28
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
30
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
31
|
Kiltschewskij DJ, Harrison PF, Fitzsimmons C, Beilharz T, Cairns M. Extension of mRNA poly(A) tails and 3'UTRs during neuronal differentiation exhibits variable association with post-transcriptional dynamics. Nucleic Acids Res 2023; 51:8181-8198. [PMID: 37293985 PMCID: PMC10450200 DOI: 10.1093/nar/gkad499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation. Differential analysis revealed a strong bias towards poly(A) tail and 3'UTR lengthening during differentiation, both of which were positively correlated with changes in mRNA abundance, but not translation. Globally, changes in miRNA expression were predominantly associated with mRNA abundance and translation, however several miRNA-mRNA pairings with potential to regulate poly(A) tail length were identified. Furthermore, 3'UTR lengthening was observed to significantly increase the inclusion of non-conserved miRNA binding sites, potentially enhancing the regulatory capacity of these molecules in mature neuronal cells. Together, our findings suggest poly(A) tail length and APA function as part of a rich post-transcriptional regulatory matrix during neuronal differentiation.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul F Harrison
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
32
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Jean G, Carton J, Haq K, Musto AE. The role of dendritic spines in epileptogenesis. Front Cell Neurosci 2023; 17:1173694. [PMID: 37601280 PMCID: PMC10433379 DOI: 10.3389/fncel.2023.1173694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Epilepsy is a chronic central nervous system (CNS) disease associated with high morbidity. To date, there is no known disease-modifying therapy for epilepsy. A leading hypothesis for a mechanism of epileptogenesis is the generation of aberrant neuronal networks. Although the underlying biological mechanism is not clear, scientific evidence indicates that it is associated with a hyperexcitable synchronous neuronal network and active dendritic spine plasticity. Changes in dendritic spine morphology are related to altered expression of synaptic cytoskeletal proteins, inflammatory molecules, neurotrophic factors, and extracellular matrix signaling. However, it remains to be determined if these aberrant dendritic spine formations lead to neuronal hyperexcitability and abnormal synaptic connections or whether they constitute an underlying mechanism of seizure susceptibility. Focusing on dendritic spine machinery as a potential target for medications could limit or reverse the development of epilepsy.
Collapse
Affiliation(s)
- Gary Jean
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Joseph Carton
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kaleem Haq
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
34
|
Yin X, Li Z, Zhao T, Yang L. Effects of Genes, Lifestyles, and Noise Kurtosis on Noise-Induced Hearing Loss. Noise Health 2023; 25:143-157. [PMID: 37815076 PMCID: PMC10747805 DOI: 10.4103/nah.nah_65_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 10/11/2023] Open
Abstract
Objective To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL). Design Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case-control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method. Results The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031). Conclusions Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.
Collapse
Affiliation(s)
- Xiaoyu Yin
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Zheng Li
- Wu Yun Shan Hospital of Hangzhou, Hangzhou, China
| | - Tianyu Zhao
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
35
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
36
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
37
|
Chiavacci E, Bagnoli S, Cellerino A, Terzibasi Tozzini E. Distribution of Brain-Derived Neurotrophic Factor in the Brain of the Small-Spotted Catshark Scyliorhinus canicula, and Evolution of Neurotrophins in Basal Vertebrates. Int J Mol Sci 2023; 24:ijms24119495. [PMID: 37298444 DOI: 10.3390/ijms24119495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex. Whole genome sequencing efforts showed that NTF signaling evolved before the evolution of Vertebrates; thus, the shared ancestor of Protostomes, Cyclostomes, and Deuterostomes must have possessed a single ortholog of neurotrophins. After the first round of whole genome duplication that occurred in the last common ancestor of Vertebrates, the presence of two neurotrophins in Agnatha was hypothesized, while the monophyletic group of cartilaginous fishes, or Chondrichthyans, was situated immediately after the second whole genome duplication round that occurred in the last common ancestor of Gnathostomes. Chondrichthyans represent the outgroup of all other living jawed vertebrates (Gnathostomes) and the sister group of Osteichthyans (comprehensive of Actinopterygians and Sarcopterygians). We were able to first identify the second neurotrophin in Agnatha. Secondly, we expanded our analysis to include the Chondrichthyans, with their strategic phylogenetic position as the most basal extant Gnathostome taxon. Results from the phylogenetic analysis confirmed the presence of four neurotrophins in the Chondrichthyans, namely the orthologs of the four mammalian neurotrophins BDNF, NGF, NT-3, and NT-4. We then proceeded to study the expression of BDNF in the adult brain of the Chondrichthyan Scyliorhinus canicula. Our results showed that BDNF is highly expressed in the S. canicula brain and that its expression is highest in the Telencephalon, while the Mesencephalic and Diencephalic areas showed expression of BDNF in isolated and well-defined cell groups. NGF was expressed at much lower levels that could be detected by PCR but not by in situ hybridization. Our results warrant further investigations in Chondrichthyans to characterize the putative ancestral function of neurotrophins in Vertebrates.
Collapse
Affiliation(s)
- Elena Chiavacci
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sara Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
| | - Alessandro Cellerino
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute, 07745 Jena, Germany
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
38
|
Lai X, Li R, Wang P, Li M, Xiao C, Cao Q, Li X, Zhao W. Cumulative effects of weakly repressive regulatory regions in the 3' UTR maintain PD-1 expression homeostasis in mammals. Commun Biol 2023; 6:537. [PMID: 37202440 DOI: 10.1038/s42003-023-04922-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
PD-1 has become a common target for cancer treatment. However, the molecular regulation of PD-1 expression homeostasis remains unclear. Here we report the PD-1 3' UTR can dramatically repress gene expression via promoting mRNA decay. Deletion of the PD-1 3' UTR inhibits T cell activity and promotes T-ALL cell proliferation. Interestingly, the robust repression is attributable to cumulative effects of many weak regulatory regions, which we show together are better able to maintain PD-1 expression homeostasis. We further identify several RNA binding proteins (RBPs) that modulate PD-1 expression via the 3' UTR, including IGF2BP2, RBM38, SRSF7, and SRSF4. Moreover, despite rapid evolution, PD-1 3' UTRs are functionally conserved and strongly repress gene expression through many common RBP binding sites. These findings reveal a previously unrecognized mechanism of maintaining PD-1 expression homeostasis and might represent a general model for how small regulatory effects play big roles in regulation of gene expression and biology.
Collapse
Affiliation(s)
- Xiaoqian Lai
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Rong Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Panpan Wang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Meng Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenxi Xiao
- Undergraduate Program in Medicine, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Cao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenxue Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
39
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of Alternative Splicing and Alternative Polyadenylation revealed by Targeted Long-Read Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533999. [PMID: 36993601 PMCID: PMC10055423 DOI: 10.1101/2023.03.23.533999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to resolve the connectivity of alternative exons to alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
41
|
Zhong J, Cui J, Liu J, Zhong C, Hu F, Dong J, Cheng J, Hu K. Fine-mapping and candidate gene analysis of the Mcgy1 locus responsible for gynoecy in bitter gourd (Momordica spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:81. [PMID: 36952023 DOI: 10.1007/s00122-023-04314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The Mcgy1 locus responsible for gynoecy was fine-mapped into a 296.94-kb region, in which four single-nucleotide variations and six genes adjacent to them might be associate with sex differentiation in bitter gourd. Gynoecy plays an important role in high-efficiency hybrid seed production, and gynoecious plants are excellent materials for dissecting sex differentiation in Cucurbitaceae crop species, including bitter gourd. However, the gene responsible for gynoecy in bitter gourd is unknown. Here, we first identified a gynoecy locus designated Mcgy1 using the F2 population (n = 291) crossed from the gynoecious line S156G and the monoecious line K8-201 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis. Then, a large S156G × K8-201 F2 population (n = 5,656) was used for fine-mapping to delimit the Mcgy1 locus into a 296.94-kb physical region on pseudochromosome MC01, where included 33 annotated genes different from any homologous gynoecy genes previously reported in Cucurbitaceae species. Within this region, four underlying single-nucleotide variations (SNVs) that might cause gynoecy were identified by multiple genomic sequence variation analysis, and their six neighbouring genes were considered as potential candidate genes for Mcgy1. Of these, only MC01g1681 showed a significant differential expression at two-leaf developmental stage between S156G and its monoecious near-isogenic line S156 based on RNA sequencing (RNA-seq) and qRT-PCR analyses. In addition, transcriptome analysis revealed 21 key differentially expressed genes (DEGs) and possible regulatory pathways of the formation of gynoecy in bitter gourd. Our findings provide a new clue for researching on gynoecious plants in Cucurbitaceae species and a theoretical basis for breeding gynoecious bitter gourd lines by the use of molecular markers-assisted selection.
Collapse
Affiliation(s)
- Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Cui
- Department of Horticulture, Foshan University, Foshan, 528225, China
| | - Jia Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunfeng Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Hu
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, 512023, China
| | - Jichi Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Massively parallel identification of mRNA localization elements in primary cortical neurons. Nat Neurosci 2023; 26:394-405. [PMID: 36646877 PMCID: PMC9991926 DOI: 10.1038/s41593-022-01243-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/01/2022] [Indexed: 01/18/2023]
Abstract
Cells adopt highly polarized shapes and form distinct subcellular compartments in many cases due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called 'zipcodes'. Although there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3' untranslated regions. This approach combines a method of separating the principal subcellular compartments of neurons-cell bodies and neurites-with a massively parallel reporter assay. N-zip identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons. Our analysis also provides, to our knowledge, the first demonstration of an miRNA affecting mRNA localization and suggests a strategy for detecting many more zipcodes.
Collapse
|
43
|
Mätlik K, Olfat S, Cowlishaw MC, Moreno ED, Ollila S, Andressoo JO. In vivo modulation of endogenous gene expression via CRISPR/Cas9-mediated 3'UTR editing. Heliyon 2023; 9:e13844. [PMID: 36923835 PMCID: PMC10009458 DOI: 10.1016/j.heliyon.2023.e13844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The 3' untranslated regions (UTRs) modulate gene expression levels by regulating mRNA stability and translation. We previously showed that the replacement of the negative regulatory elements from the 3'UTR of glial cell line-derived neurotrophic factor (GDNF) resulted in increased endogenous GDNF expression while retaining its normal spatiotemporal expression pattern. Here, we have developed a methodology for the generation of in vivo hyper- and hypomorphic alleles via 3'UTR targeting using the CRISPR/Cas9 system. We demonstrate that CRISPR/Cas9-mediated excision of a long inhibitory sequence from Gdnf native 3'UTR in mouse zygotes increases the levels of endogenous GDNF with similar phenotypic alterations in embryonic kidney development as we described in GDNF constitutive and conditional hypermorphic mice. Furthermore, we show that CRISPR/Cas9-mediated targeting of 3'UTRs in vivo allows the modulation of the expression levels of two other morphogens, Gdf11 and Bdnf. Together, our work demonstrates the power of in vivo 3'UTR editing using the CRISPR/Cas9 system to create hyper- and hypomorphic alleles, suggesting wide applicability in studies on gene function and potentially, in gene therapy.
Collapse
Affiliation(s)
- Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Soophie Olfat
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mark Cary Cowlishaw
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Eva Domenech Moreno
- Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Translational Cancer Medicine Program, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, 00290 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Ball N, Duncan S, Zhang Y, Payet R, Piec I, Whittle E, Tang JCY, Schoenmakers I, Lopez B, Chipchase A, Kumar A, Perry L, Maxwell H, Ding Y, Fraser WD, Green D. 3' Untranslated Region Structural Elements in CYP24A1 Are Associated With Infantile Hypercalcemia Type 1. J Bone Miner Res 2023; 38:414-426. [PMID: 36625425 DOI: 10.1002/jbmr.4769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Loss-of-function mutations in the CYP24A1 protein-coding region causing reduced 25 hydroxyvitamin D (25OHD) and 1,25 dihydroxyvitamin D (1,25(OH)2 D) catabolism have been observed in some cases of infantile hypercalcemia type 1 (HCINF1), which can manifest as nephrocalcinosis, hypercalcemia and adult-onset hypercalciuria, and renal stone formation. Some cases present with apparent CYP24A1 phenotypes but do not exhibit pathogenic mutations. Here, we assessed the molecular mechanisms driving apparent HCINF1 where there was a lack of CYP24A1 mutation. We obtained blood samples from 47 patients with either a single abnormality of no obvious cause or a combination of hypercalcemia, hypercalciuria, and nephrolithiasis as part of our metabolic and stone clinics. We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine serum vitamin D metabolites and direct sequencing to confirm CYP24A1 genotype. Six patients presented with profiles characteristic of altered CYP24A1 function but lacked protein-coding mutations in CYP24A1. Analysis upstream and downstream of the coding sequence showed single nucleotide variants (SNVs) in the CYP24A1 3' untranslated region (UTR). Bioinformatics approaches revealed that these 3' UTR abnormalities did not result in microRNA silencing but altered the CYP24A1 messenger RNA (mRNA) secondary structure, which negatively impacted translation. Our experiments showed that mRNA misfolding driven by these 3' UTR sequence-dependent structural elements was associated with normal 25OHD but abnormal 1,25(OH)2 D catabolism. Using CRISPR-Cas9 gene editing, we developed an in vitro mutant model for future CYP24A1 studies. Our results form a basis for future studies investigating structure-function relationships and novel CYP24A1 mutations producing a semifunctional protein. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nicole Ball
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Susan Duncan
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yueying Zhang
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Rocky Payet
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Isabelle Piec
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Eloise Whittle
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jonathan C Y Tang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Inez Schoenmakers
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Berenice Lopez
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Allison Chipchase
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Arun Kumar
- Paediatrics, Croydon University Hospital, Croydon, UK
| | - Leslie Perry
- Clinical Biochemistry, Croydon University Hospital, Croydon, UK
| | | | - Yiliang Ding
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - William D Fraser
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
45
|
Zhao T, Zhan D, Qu S, Jiang S, Gan W, Qin W, Zheng C, Cheng F, Lu Y, Liu M, Shi J, Liang H, Wang Y, Qin J, Zen K, Liu Z. Transcriptomics-proteomics Integration reveals alternative polyadenylation driving inflammation-related protein translation in patients with diabetic nephropathy. J Transl Med 2023; 21:86. [PMID: 36747266 PMCID: PMC9900993 DOI: 10.1186/s12967-023-03934-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a complex disease involving the upregulation of many inflammation-related proteins. Alternative polyadenylation (APA), a crucial post-transcriptional regulatory mechanism, has been proven to play vital roles in many inflammatory diseases. However, it is largely unknown whether and how APA exerts function in DN. METHODS We performed transcriptomics and proteomics analysis of glomeruli samples isolated from 50 biopsy-proven DN patients and 25 control subjects. DaPars and QAPA algorithms were adopted to identify APA events from RNA-seq data. The qRT-PCR analysis was conducted to verify 3'UTR length alteration. Short and long 3'UTRs isoforms were also overexpressed in podocytes under hyperglycemia condition for examining protein expression. RESULTS We detected transcriptome-wide 3'UTR APA events in DN, and found that APA-mediated 3'UTR lengthening of genes (APA genes) increased their expression at protein but not mRNA level. Increased protein level of 3'UTR lengthening gene was validated in podocytes under hyperglycemia condition. Pathway enrichment analysis showed that APA genes were enriched in inflammation-related biological processes including endoplasmic reticulum stress pathways, NF-κB signaling and autophagy. Further bioinformatics analysis demonstrated that 3'UTR APA of genes probably altered the binding sites for RNA-binding proteins, thus enhancing protein translation. CONCLUSION This study revealed for the first time that 3'UTR lengthening of APA genes contributed to the progression of DN by elevating the translation of corresponding proteins, providing new insight and a rich resource for investigating DN mechanisms.
Collapse
Affiliation(s)
- Tingting Zhao
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Dongdong Zhan
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Shuang Qu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, 210093 Jiangsu China
| | - Song Jiang
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Wenhua Gan
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, 210093 Jiangsu China
| | - Weisong Qin
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Chunxia Zheng
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Fang Cheng
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Yinghui Lu
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Mingwei Liu
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Jinsong Shi
- grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Hongwei Liang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, 210093 Jiangsu China
| | - Yi Wang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, 210093, Jiangsu, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
46
|
Tahraoui-Bories J, Mérien A, González-Barriga A, Lainé J, Leteur C, Polvèche H, Carteron A, De Lamotte JD, Nicoleau C, Polentes J, Jarrige M, Gomes-Pereira M, Ventre E, Poydenot P, Furling D, Schaeffer L, Legay C, Martinat C. MBNL-dependent impaired development within the neuromuscular system in myotonic dystrophy type 1. Neuropathol Appl Neurobiol 2023; 49:e12876. [PMID: 36575942 PMCID: PMC10107781 DOI: 10.1111/nan.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
AIMS Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.
Collapse
Affiliation(s)
| | - Antoine Mérien
- INSERM/UEVE UMR 861, Université Paris Saclay, I-STEM, Corbeil-Essonnes, France
| | - Anchel González-Barriga
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Jeanne Lainé
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | | | | | | | | | | | | | | | - Mário Gomes-Pereira
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | | | | | - Denis Furling
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Laurent Schaeffer
- INMG, INSERM U1217, CNRS UMR5310, Université Lyon 1, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Claire Legay
- CNRS, SPINN-Saint-Pères Paris Institute for the Neurosciences, Université Paris Cité, Paris, France
| | - Cécile Martinat
- INSERM/UEVE UMR 861, Université Paris Saclay, I-STEM, Corbeil-Essonnes, France
| |
Collapse
|
47
|
Sharma V, Singh TG, Kaur A, Mannan A, Dhiman S. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochem Res 2023; 48:317-339. [PMID: 36308619 DOI: 10.1007/s11064-022-03755-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| |
Collapse
|
48
|
Lekk I, Cabrera-Cabrera F, Turconi G, Tuvikene J, Esvald EE, Rähni A, Casserly L, Garton DR, Andressoo JO, Timmusk T, Koppel I. Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. J Biol Chem 2023; 299:102897. [PMID: 36639028 PMCID: PMC9943900 DOI: 10.1016/j.jbc.2023.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Giorgio Turconi
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Laoise Casserly
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R. Garton
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia.
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
49
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
50
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|