1
|
Kashiwakura JI, Matsuda T. [Understanding New Regulatory Mechanism of TCR Signal Transduction]. YAKUGAKU ZASSHI 2024; 144:497-501. [PMID: 38692923 DOI: 10.1248/yakushi.23-00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/physiology
- Adaptor Proteins, Signal Transducing/metabolism
- Apoptosis
- CD3 Complex
- Cell Adhesion
- Cell Movement
- Chemokine CXCL12/physiology
- Chemokine CXCL12/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Inflammation/immunology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Propionibacterium acnes/physiology
- Propionibacterium acnes/immunology
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- ZAP-70 Protein-Tyrosine Kinase/physiology
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
2
|
Kashiwakura JI, Kawahara S, Inagaki I, Inui K, Saitoh K, Kagohashi K, Sasaki Y, Kobayashi F, Kitai Y, Muromoto R, Oritani K, Matsuda T. STAP-2 negatively regulates BCR-mediated B cell activation by recruiting tyrosine-protein kinase CSK to LYN. FEBS Lett 2023; 597:2433-2445. [PMID: 37669828 DOI: 10.1002/1873-3468.14730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Although signal-transducing adaptor protein-2 (STAP-2) acts in certain immune responses, its role in B cell receptor (BCR)-mediated signals remains unknown. In this study, we have revealed that BCR-mediated signals, cytokine production and antibody production were increased in STAP-2 knockout (KO) mice compared with wild-type (WT) mice. Phosphorylation of tyrosine-protein kinase LYN Y508 was reduced in STAP-2 KO B cells after BCR stimulation. Mechanistic analysis revealed that STAP-2 directly binds to LYN, dependently of STAP-2 Y250 phosphorylation by LYN. Furthermore, phosphorylation of STAP-2 enhanced interactions between LYN and tyrosine-protein kinase CSK, resulting in enhanced CSK-mediated LYN Y508 phosphorylation. These results suggest that STAP-2 is crucial for controlling BCR-mediated signals and antibody production by enhanced CSK-mediated feedback regulation of LYN.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Iori Inagaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kyosuke Inui
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuki Kobayashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
4
|
Zhang X, Wu Y, Liu X, Lin X, Liu Y, Kang L, Ye H, Wang Z, Ma Y, Dai Z, Che D, Pi Y, Che L, Wang J, Han D. Pro-inflammatory Polarization of Macrophages Causes Intestinal Inflammation in Low-Birth-Weight Piglets and Mice. J Nutr 2023:S0022-3166(23)37559-X. [PMID: 37084872 DOI: 10.1016/j.tjnut.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Low-birth-weight (LBW) animals suffer from intestinal damage and inflammation in their early life. OBJECTIVES The aim of this study was to investigate the role of macrophages in intestinal inflammation in LBW piglets and mice. METHODS Major genes involved in intestinal barrier function such as claudin-1, zonula occludens-1 (ZO-1), occludin, and mucin 2 and inflammatory cytokines such as IL-1β, TNF-α, IL-10, and IL-13 were evaluated in 21-day-old, normal birth weight (NBW) and LBW piglets and mice. Macrophage markers such as CD16/32, CD163, and CD206 were also assessed by immunofluorescence and flow cytometry. Polarized and unpolarized macrophages were further transferred into NBW and LBW mice, followed by evaluation of intestinal permeability and inflammation. RESULTS Claudin-1 mRNA in LBW piglets as well as claudin-1, occludin, ZO-1 and mucin 2 mRNAs in LBW mice was significantly downregulated. IL-1β and TNF-α were significantly upregulated in LBW piglets (P < 0.05). LBW mice showed a reduced expression of IL-10 and IL-13 (P < 0.05), with a heightened IL-6 level (P < 0.01) in the jejunum. CD16, a marker for M1 macrophages, was significantly elevated in the jejunum of LBW piglets, whereas CD163, a marker for M2 macrophages, was significantly decreased (P < 0.05). Similarly, LBW mice had more CD11b+CD16/32+ M1 macrophages (P < 0.05) and fewer CD206+ M2 macrophages (P < 0.01) than NBW mice. Moreover, transfer of M1 macrophages exacerbated intestinal inflammation in LBW mice. Furthermore, two major glycolysis-associated genes, hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), were significantly upregulated in LBW piglets and mice (P < 0.05). CONCLUSIONS This study revealed for the first time that the intestinal macrophages are polarized towards a pro-inflammatory phenotype in LBW piglets and mice, contributing to intestinal inflammation. The findings of this study provide new options for the management of intestinal inflammation in LBW animals.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xu Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Department of Animal Sciences, Wageningen University, Wageningen 6700 AH, Netherlands
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingying Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 611130, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Kashiwakura JI, Oritani K, Matsuda T. The Functional Properties and Physiological Roles of Signal-Transducing Adaptor Protein-2 in the Pathogenesis of Inflammatory and Immune Disorders. Biomedicines 2022; 10:biomedicines10123079. [PMID: 36551835 PMCID: PMC9776019 DOI: 10.3390/biomedicines10123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Adaptor molecules play a crucial role in signal transduction in immune cells. Several adaptor molecules, such as the linker for the activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76), are essential for T cell development and activation following T cell receptor (TCR) aggregation, suggesting that adaptor molecules are good therapeutic targets for T cell-mediated immune disorders, such as autoimmune diseases and allergies. Signal-transducing adaptor protein (STAP)-2 is a member of the STAP family of adaptor proteins. STAP-2 functions as a scaffold for various intracellular proteins, including BRK, signal transducer, and activator of transcription (STAT)3, STAT5, and myeloid differentiation primary response protein (MyD88). In T cells, STAP-2 is involved in stromal cell-derived factor (SDF)-1α-induced migration, integrin-dependent cell adhesion, and Fas-mediated apoptosis. We previously reported the critical function of STAP-2 in TCR-mediated T cell activation and T cell-mediated autoimmune diseases. Here, we review how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases in order to develop novel STAP-2-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Jun-ichi Kashiwakura
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo 0068585, Hokkaido, Japan
- Correspondence: (J.-i.K.); (T.M.); Tel.: +81-11-676-8738 (J.-i.K.); +81-11-706-3243 (T.M.); Fax: +81-11-676-8666 (J.-i.K.); +81-11-706-4990 (T.M.)
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 2868686, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 0600812, Hokkaido, Japan
- Correspondence: (J.-i.K.); (T.M.); Tel.: +81-11-676-8738 (J.-i.K.); +81-11-706-3243 (T.M.); Fax: +81-11-676-8666 (J.-i.K.); +81-11-706-4990 (T.M.)
| |
Collapse
|
6
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
8
|
TRIM32 promotes radioresistance by disrupting TC45-STAT3 interaction in triple-negative breast cancer. Oncogene 2022; 41:1589-1599. [PMID: 35091679 DOI: 10.1038/s41388-022-02204-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Radioresistance is common in the treatment of triple-negative breast cancer (TNBC), but the molecular mechanisms involved remain unclear. Herein, we reveal that tripartite motif-containing protein 32 (TRIM32) is upregulated in TNBC and is negatively associated with survival of TNBC patients. Radiotherapy resulted in enhanced expression of TRIM32, whereas TRIM32 depletion reduced TNBC radioresistance in vitro and in vivo. Mechanistically, radiotherapy promoted the association between TRIM32 and nuclear STAT3, which suppressed TC45-induced dephosphorylation of STAT3, resulting in increased STAT3 transcriptional activation and TNBC radioresistance. Finally, we demonstrated that TRIM32 and STAT3 phosphorylation are co-expressed in TNBC tissues. Moreover, high expression of TRIM32 and STAT3 phosphorylation is positively linked to poor prognosis of TNBC patients. Our study demonstrates that TRIM32 is a novel target for predicting radioresistance in TNBC patients.
Collapse
|
9
|
Signal-transducing adaptor protein-2 has a nonredundant role for IL-33-triggered mast cell activation. Biochem Biophys Res Commun 2021; 572:80-85. [PMID: 34358967 DOI: 10.1016/j.bbrc.2021.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Signal-transducing adaptor protein (STAP)-2 is one of the STAP family adaptor proteins and ubiquitously expressed in a variety types of cells. Although STAP-2 is required for modification of FcεRI signal transduction in mast cells, other involvement of STAP-2 in mast cell functions is unknown, yet. In the present study, we mainly investigated functional roles of STAP-2 in IL-33-induced mast cell activation. In STAP-2-deficient, but not STAP-1-deficient, mast cells, IL-33-induced IL-6 and TNF-α production was significantly decreased compared with that of wild-type mast cells. In addition, STAP-2-deficiency greatly reduced TLR4-mediated mast cell activation and cytokine production. For the mechanisms, STAP-2 directly binds to IKKα after IL-33 stimulation, leading to elevated NF-κB activity. In conclusion, STAP-2, but not STAP-1, participates in IL-33-induced mast cells activation.
Collapse
|
10
|
Matsuda T, Oritani K. STAP-2 Adaptor Protein Regulates Multiple Steps of Immune and Inflammatory Responses. Biol Pharm Bull 2021; 44:895-901. [PMID: 34193686 DOI: 10.1248/bpb.b21-00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal-transducing adaptor protein (STAP)-2 is an adaptor molecule involved in regulation of several intracellular signaling events in immune cells. STAP-2 contains a pleckstrin homology domain at the N-terminus, an src homology domain in the central portion and a proline-rich region at the C-terminus. STAP-2 also has a YXXQ motif, which is a potential signal transducer and activator of transcription (STAT)3-binding site. STAP-2 influences the STAT3 and STAT5 activity, integrin-mediated T cell adhesion, chemokine-induced T cell migration, Fas-mediated T cell apoptosis, Toll-like receptor-mediated macrophage functions, macrophage colony-stimulating factor-induced macrophage activation, and the high-affinity immunoglobulin E receptor-mediated mast cell activation. This article reviews the current understanding of roles of the STAP-2 during immune and/or inflammatory responses, and discusses possible therapeutic applications of targeting STAP-2 proteins in immune-related disorders.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare
| |
Collapse
|
11
|
Ang HL, Yuan Y, Lai X, Tan TZ, Wang L, Huang BB, Pandey V, Huang RYJ, Lobie PE, Goh BC, Sethi G, Yap CT, Chan CW, Lee SC, Kumar AP. Putting the BRK on breast cancer: From molecular target to therapeutics. Am J Cancer Res 2021; 11:1115-1128. [PMID: 33391524 PMCID: PMC7738883 DOI: 10.7150/thno.49716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
BReast tumor Kinase (BRK, also known as PTK6) is a non-receptor tyrosine kinase that is highly expressed in breast carcinomas while having low expression in the normal mammary gland, which hints at the oncogenic nature of this kinase in breast cancer. In the past twenty-six years since the discovery of BRK, an increasing number of studies have strived to understand the cellular roles of BRK in breast cancer. Since then, BRK has been found both in vitro and in vivo to activate a multitude of oncoproteins to promote cell proliferation, metastasis, and cancer development. The compelling evidence concerning the oncogenic roles of BRK has also led, since then, to the rapid and exponential development of inhibitors against BRK. This review highlights recent advances in BRK biology in contributing to the “hallmarks of cancer”, as well as BRK's therapeutic significance. Importantly, this review consolidates all known inhibitors of BRK activity and highlights the connection between drug action and BRK-mediated effects. Despite the volume of inhibitors designed against BRK, none have progressed into clinical phase. Understanding the successes and challenges of these inhibitor developments are crucial for the future improvements of new inhibitors that can be clinically relevant.
Collapse
|
12
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
13
|
STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19061787. [PMID: 29914167 PMCID: PMC6032216 DOI: 10.3390/ijms19061787] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signaling pathways in different biological processes, including immune responses, hematopoiesis, and neurogenesis. Among the STAT members, STAT3 plays crucial roles in cell proliferation, survival, and differentiation. While STAT3 activation is transient in physiological conditions, STAT3 becomes persistently activated in a high percentage of solid and hematopoietic malignancies (e.g., melanoma, multiple myeloma, breast, prostate, ovarian, and colon cancers), thus contributing to malignant transformation and progression. This makes STAT3 an attractive therapeutic target for cancers. Initial strategies aimed at inhibiting STAT3 functions have focused on blocking the action of its activating kinases or sequestering its DNA binding ability. More recently, the diffusion of proteomic-based techniques, which have allowed for the identification and characterization of novel STAT3-interacting proteins able to modulate STAT3 activity via its subcellular localization, interact with upstream kinases, and recruit transcriptional machinery, has raised the possibility to target such cofactors to specifically restrain STAT3 oncogenic functions. In this article, we summarize the available data about the function of STAT3 interactors in malignant cells and discuss their role as potential therapeutic targets for cancer treatment.
Collapse
|
14
|
Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D, Tang J, Liu F, Chang Z, Hatakeyama S, Hu B, Cheng SY, Feng H. TRIM59 Promotes Gliomagenesis by Inhibiting TC45 Dephosphorylation of STAT3. Cancer Res 2018; 78:1792-1804. [PMID: 29386185 PMCID: PMC5882560 DOI: 10.1158/0008-5472.can-17-2774] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Aberrant EGFR signaling is a common driver of glioblastoma (GBM) pathogenesis; however, the downstream effectors that sustain this oncogenic pathway remain unclarified. Here we demonstrate that tripartite motif-containing protein 59 (TRIM59) acts as a new downstream effector of EGFR signaling by regulating STAT3 activation in GBM. EGFR signaling led to TRIM59 upregulation through SOX9 and enhanced the interaction between TRIM59 and nuclear STAT3, which prevents STAT3 dephosphorylation by the nuclear form of T-cell protein tyrosine phosphatase (TC45), thereby maintaining transcriptional activation and promoting tumorigenesis. Silencing TRIM59 suppresses cell proliferation, migration, and orthotopic xenograft brain tumor formation of GBM cells and glioma stem cells. Evaluation of GBM patient samples revealed an association between EGFR activation, TRIM59 expression, STAT3 phosphorylation, and poor prognoses. Our study identifies TRIM59 as a new regulator of oncogenic EGFR/STAT3 signaling and as a potential therapeutic target for GBM patients with EGFR activation.Significance: These findings identify a novel component of the EGFR/STAT3 signaling axis in the regulation of glioma tumorigenesis. Cancer Res; 78(7); 1792-804. ©2018 AACR.
Collapse
Affiliation(s)
- Youzhou Sang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lina Song
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deguan Lv
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijie Chang
- School of Medicine, Tsinghua University, Beijing, China
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Kitai Y, Iwakami M, Saitoh K, Togi S, Isayama S, Sekine Y, Muromoto R, Kashiwakura JI, Yoshimura A, Oritani K, Matsuda T. STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization. J Biol Chem 2017; 292:19392-19399. [PMID: 28986450 DOI: 10.1074/jbc.m117.802884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/03/2017] [Indexed: 11/06/2022] Open
Abstract
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signaling pathways and promotes tumorigenesis in melanoma and breast cancer cells. However, the contribution of STAP-2 to the behavior of other types of cancer cells is unclear. Here, we show that STAP-2 promotes tumorigenesis of prostate cancer cells through up-regulation of EGF receptor (EGFR) signaling. Tumor growth of a prostate cancer cell line, DU145, was strongly decreased by STAP-2 knockdown. EGF-induced gene expression and phosphorylation of AKT, ERK, and STAT3 were significantly decreased in STAP-2-knockdown DU145 cells. Mechanistically, we found that STAP-2 interacted with EGFR and enhanced its stability by inhibiting c-CBL-mediated EGFR ubiquitination. Our results indicate that STAP-2 promotes prostate cancer progression via facilitating EGFR activation.
Collapse
Affiliation(s)
- Yuichi Kitai
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Masashi Iwakami
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Kodai Saitoh
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Sumihito Togi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Serina Isayama
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Yuichi Sekine
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Jun-Ichi Kashiwakura
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Akihiko Yoshimura
- the the Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, and
| | - Kenji Oritani
- the Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba 286-8686, Japan
| | - Tadashi Matsuda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812,
| |
Collapse
|
16
|
Saitoh K, Tsuchiya T, Kashiwakura JI, Muromoto R, Kitai Y, Sekine Y, Oritani K, Matsuda T. STAP-2 interacts with Pyk2 and enhances Pyk2 activity in T-cells. Biochem Biophys Res Commun 2017; 488:81-87. [DOI: 10.1016/j.bbrc.2017.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
|
17
|
Thakur MK, Kumar A, Birudukota S, Swaminathan S, Tyagi R, Gosu R. Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution. Biochem Biophys Res Commun 2016; 478:637-42. [DOI: 10.1016/j.bbrc.2016.07.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022]
|
18
|
Matsuda T, Muromoto R, Sekine Y, Togi S, Kitai Y, Kon S, Oritani K. Signal transducer and activator of transcription 3 regulation by novel binding partners. World J Biol Chem 2015; 6:324-332. [PMID: 26629315 PMCID: PMC4657126 DOI: 10.4331/wjbc.v6.i4.324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/02/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signals for various biological processes, including immune responses, hematopoiesis, and neurogenesis. STAT3, for example, is involved in the pathogenesis of various human diseases, including cancers, autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2, in the regulation of STAT3-mediated signaling.
Collapse
|
19
|
Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Breast Cancer Res 2015; 17:86. [PMID: 26084280 PMCID: PMC4496943 DOI: 10.1186/s13058-015-0594-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2+ (Her2+) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2+ breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2+ breast cancer, either intrinsically or acquired after continuous drug exposure. Methods To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2+ breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Results Lapatinib treatment of “sensitive” Her2+ cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively “resistant” Her2+ cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these “resistant” cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D MatrigelTM cultures, and also inhibits growth of Her2+ primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. Conclusions PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2+ breast cancer cells by enhancing Bim expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6 inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0594-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Hee Park
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - William Olcott
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Igor Katsyv
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
20
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
21
|
Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal 2014; 26:2843-2856. [PMID: 25093804 DOI: 10.1016/j.cellsig.2014.07.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Understanding the biology of this malignant disease is a prerequisite for selecting an appropriate treatment. Cell cycle alterations are seen in many cancers, including breast cancer. Newly popular targeted agents in breast cancer include cyclin dependent kinase inhibitors (CDKIs) which are agents inhibiting the function of cyclin dependent kinases (CDKs) and agents targeting proto-oncogenic signaling pathways like Notch, Wnt, and SHH (Sonic hedgehog). CDKIs are categorized as selective and non-selective inhibitors of CDK. CDKIs have been tried as monotherapy and combination therapy. The CDKI Palbocyclib is now a promising therapeutic in breast cancer. This drug recently entered phase III trial for estrogen receptor (ER) positive breast cancer after showing encouraging results in progression free survival in a phase II trials. The tumor microenvironment is now recognized as a significant factor in cancer treatment response. The tumor microenvironment is increasingly considered as a target for combination therapy of breast cancer. Recent findings in the signaling pathways in breast cancer are herein summarized and discussed. Furthermore, the therapeutic targeting of the microenvironment in breast cancer is also considered.
Collapse
Affiliation(s)
- Armel Herve Nwabo Kamdje
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | - Jean Marc Muller
- Université de Poitiers, Faculté des Sciences, Pôle Biologie-Santé Bât B36, 1, rue Georges Bonnet-BP633, 86022-Poitiers cedex, France
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, Room 4D30.5 Health Sciences Bldg, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK. S7N 5E5, Canada
| |
Collapse
|
22
|
Mahmoud KA, Krug M, Wersig T, Slynko I, Schächtele C, Totzke F, Sippl W, Hilgeroth A. Discovery of 4-anilino α-carbolines as novel Brk inhibitors. Bioorg Med Chem Lett 2014; 24:1948-51. [DOI: 10.1016/j.bmcl.2014.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
|
23
|
Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014; 9:e87684. [PMID: 24523872 PMCID: PMC3921129 DOI: 10.1371/journal.pone.0087684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Kalra
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Beaton-Brown
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edward T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Protein tyrosine kinase 6 regulates mammary gland tumorigenesis in mouse models. Oncogenesis 2013; 2:e81. [PMID: 24323291 PMCID: PMC3940860 DOI: 10.1038/oncsis.2013.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the majority of human breast tumors and breast cancer cell lines, but its expression has not been reported in normal mammary gland. To study functions of PTK6 in vivo, we generated and characterized several transgenic mouse lines with expression of human PTK6 under control of the mouse mammary tumor virus (MMTV) long terminal repeat. Ectopic active PTK6 was detected in luminal epithelial cells of mature transgenic mammary glands. Lines expressing the MMTV-PTK6 transgene exhibited more than a two-fold increase in mammary gland tumor formation compared with nontransgenic control animals. PTK6 activates signal transducer and activator of transcription 3 (STAT3), and active STAT3 was detected in PTK6-positive mammary gland epithelial cells. Endogenous mouse PTK6 was not detected in the normal mouse mammary gland, but it was induced in mouse mammary gland tumors of different origin, including spontaneous tumors that developed in control mice, and tumors that formed in PTK6, H-Ras, ERBB2 and PyMT transgenic models. MMTV-PTK6 and MMTV-ERBB2 transgenic mice were crossed to explore crosstalk between PTK6 and ERBB2 signaling in vivo. We found no significant increase in tumor incidence, size or metastasis in ERBB2/PTK6 double transgenic mice. Although we detected increased proliferation in ERBB2/PTK6 double transgenic tumors, an increase in apoptosis was also observed. MMTV-PTK6 clearly promotes mammary gland tumorigenesis in vivo, but its impact may be underrepresented in our transgenic models because of induction of endogenous PTK6 expression.
Collapse
|
25
|
Ludyga N, Englert S, Pflieger K, Rauser S, Braselmann H, Walch A, Auer G, Höfler H, Aubele M. The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer. Mol Cancer 2013; 12:28. [PMID: 23570421 PMCID: PMC3666946 DOI: 10.1186/1476-4598-12-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/01/2013] [Indexed: 01/19/2023] Open
Abstract
Background CRIP1 (cysteine-rich intestinal protein 1) has been found in several tumor types, its prognostic impact and its role in cellular processes, particularly in breast cancer, are still unclear. Methods To elucidate the prognostic impact of CRIP1, we analyzed tissues from 113 primary invasive ductal breast carcinomas using immunohistochemistry. For the functional characterization of CRIP1, its endogenous expression was transiently downregulated in T47D and BT474 breast cancer cells and the effects analyzed by immunoblotting, WST-1 proliferation assay and invasion assay. Results We found a significant correlation between CRIP1 and HER2 (human epidermal growth factor receptor 2) expression levels (p = 0.016) in tumor tissues. In Kaplan Meier analyses, CRIP1 expression was significantly associated with the distant metastases-free survival of patients, revealing a better prognosis for high CRIP1 expression (p = 0.039). Moreover, in multivariate survival analyses, the expression of CRIP1 was an independent negative prognostic factor, along with the positive prognosticators nodal status and tumor size (p = 0.029). CRIP1 knockdown in the T47D and BT474 breast cancer cell lines led to the increased phosphorylation of MAPK and Akt, to the reduced phosphorylation of cdc2, and to a significantly elevated cell proliferation in vitro (p < 0.001). These results indicate that reduced CRIP1 levels may increase cell proliferation and activate cell growth. In addition, CRIP1 knockdown increased cell invasion in vitro. Conclusions Because the lack of CRIP1 expression in breast cancer tissue is significantly associated with a worse prognosis for patients and low endogenous CRIP1 levels in vitro increased the malignant potential of breast cancer cells, we hypothesize that CRIP1 may act as a tumor suppressor in proliferation and invasion processes. Therefore, CRIP1 may be an independent prognostic marker with significant predictive power for use in breast cancer therapy.
Collapse
Affiliation(s)
- Natalie Ludyga
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest 2013; 43:397-404. [PMID: 23398121 PMCID: PMC3602132 DOI: 10.1111/eci.12050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to SRC family kinases. PTK6 is nuclear in normal prostate epithelia, but nuclear localization is lost in prostate tumours. Increased expression of PTK6 is detected in human prostate cancer, especially at metastatic stages, and in other types of cancers, including breast, colon, head and neck cancers, and serous carcinoma of the ovary. MATERIALS AND METHODS Potential novel substrates of PTK6 identified by mass spectrometry were validated in vitro. The significance of PTK6-induced phosphorylation of these substrates was addressed using human prostate cell lines by knockdown of endogenous PTK6 or overexpression of targeted PTK6 to different intracellular compartments. RESULTS We identified AKT, p130CAS and focal adhesion kinase (FAK) as novel PTK6 substrates and demonstrated their roles in promoting cell proliferation, migration and resistance to anoikis. In prostate cancer cells, active PTK6 is primarily associated with membrane compartments, although the majority of total PTK6 is localized within the cytoplasm. Ectopic expression of membrane-targeted PTK6 transforms immortalized fibroblasts. Knockdown of endogenous cytoplasmic PTK6 in PC3 prostate cancer cells impairs proliferation, migration and anoikis resistance. However, re-introduction of PTK6 into the nucleus significantly decreases cell proliferation, suggesting context-specific functions for nuclear PTK6. CONCLUSIONS In human prostate cancer, elevated PTK6 expression, translocation of PTK6 from the nucleus to the cytoplasm and its activation at the plasma membrane contribute to increased phosphorylation and activation of its substrates such as AKT, p130CAS and FAK, thereby promoting prostate cancer progression.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
27
|
Zhao C, Chen Y, Zhang W, Zhang J, Xu Y, Li W, Chen S, Deng A. Expression of protein tyrosine kinase 6 (PTK6) in nonsmall cell lung cancer and their clinical and prognostic significance. Onco Targets Ther 2013; 6:183-8. [PMID: 23525678 PMCID: PMC3596122 DOI: 10.2147/ott.s41283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 11/23/2022] Open
Abstract
Aim: The aim of the study was to validate the expression of protein tyrosine kinase 6 (PTK6) in nonsmall cell lung cancer (NSCLC), and to evaluate its clinicopathological and prognostic significance. Methods: We first conducted a meta-analysis on the mRNA profiling data sets of NSCLC in the Oncomine database. Then, one of the most significantly upregulated tyrosine kinase targets, PTK6, was further validated by immunohistochemistry in 104 primary NSCLC tumors. Furthermore the association between PTK6 expression, the clinical parameters, and overall survival was further analyzed. Results: Using the Oncomine database, we identified a list of tyrosine kinase genes related to NSCLC, among which PTK6 was the second most overexpressed gene (median rank = 915, P = 2.9 × 10−5). We further confirmed that NSCLC tumors had a higher expression level of PTK6 than normal pulmonary tissues. Moreover, high PTK6 expression correlated positively with shorter overall survival time, but not with other clinicopathological characteristics. In the multivariate Cox regression model, high PTK6 expression was demonstrated to be an independent prognostic factor for NSCLC patients. Conclusion: Our results validated that PTK6 was found to be overexpressed in a proportion of NSCLC samples, and was associated with a poor prognosis, suggesting that this subgroup of NSCLC patients might benefit from PTK6 inhibitors in the future.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Laboratory Diagnostic, the 89th Hospital, Weifang, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ludyga N, Anastasov N, Rosemann M, Seiler J, Lohmann N, Braselmann H, Mengele K, Schmitt M, Höfler H, Aubele M. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells. Mol Cancer Res 2013; 11:381-92. [PMID: 23364537 DOI: 10.1158/1541-7786.mcr-12-0378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer.
Collapse
Affiliation(s)
- Natalie Ludyga
- Institut für Pathologie, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
30
|
Gierut J, Zheng Y, Bie W, Carroll RE, Ball-Kell S, Haegebarth A, Tyner AL. Disruption of the mouse protein tyrosine kinase 6 gene prevents STAT3 activation and confers resistance to azoxymethane. Gastroenterology 2011; 141:1371-80, 1380.e1-2. [PMID: 21741923 PMCID: PMC3448944 DOI: 10.1053/j.gastro.2011.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/18/2011] [Accepted: 06/24/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Protein tyrosine kinase 6 (PTK6) is expressed throughout the gastrointestinal tract and is a negative regulator of proliferation that promotes differentiation and DNA-damage-induced apoptosis in the small intestine. PTK6 is not expressed in normal mammary gland, but is induced in most human breast tumors. Signal transducer and activator of transcription 3 (STAT3) mediates pathogenesis of colon cancer and is a substrate of PTK6. We investigated the role of PTK6 in colon tumorigenesis. METHODS Ptk6+/+ and Ptk6-/- mice were injected with azoxymethane alone or in combination with dextran sodium sulfate; formation of aberrant crypt foci and colon tumors was examined. Effects of disruption of Ptk6 on proliferation, apoptosis, and STAT3 activation were examined by immunoblot and immunohistochemical analyses. Regulation of STAT3 activation was examined in the HCT116 colon cancer cell line and young adult mouse colon cells. RESULTS Ptk6-/- mice developed fewer azoxymethane-induced aberrant crypt foci and tumors. Induction of PTK6 increased apoptosis, proliferation, and STAT3 activation in Ptk6+/+ mice injected with azoxymethane. Disruption of Ptk6 impaired STAT3 activation following azoxymethane injection, and reduced active STAT3 levels in Ptk6-/- tumors. Stable knockdown of PTK6 reduced basal levels of active STAT3, as well as activation of STAT3 by epidermal growth factor in HCT116 cells. Disruption of Ptk6 reduced activity of STAT3 in young adult mouse colon cells. CONCLUSIONS PTK6 promotes STAT3 activation in the colon following injection of the carcinogen azoxymethane and regulates STAT3 activity in mouse colon tumors and in the HCT116 and young adult mouse colon cell lines. Disruption of Ptk6 decreases azoxymethane-induced colon tumorigenesis in mice.
Collapse
Affiliation(s)
- Jessica Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Robert E. Carroll
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Susan Ball-Kell
- University of Illinois College of Veterinary Medicine Veterinary Diagnostic Laboratory Urbana, IL 61802
| | - Andrea Haegebarth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
31
|
Lofgren KA, Ostrander JH, Housa D, Hubbard GK, Locatelli A, Bliss RL, Schwertfeger KL, Lange CA. Mammary gland specific expression of Brk/PTK6 promotes delayed involution and tumor formation associated with activation of p38 MAPK. Breast Cancer Res 2011; 13:R89. [PMID: 21923922 PMCID: PMC3262201 DOI: 10.1186/bcr2946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/23/2011] [Accepted: 09/17/2011] [Indexed: 01/20/2023] Open
Abstract
Introduction Protein tyrosine kinases (PTKs) are frequently overexpressed and/or activated in human malignancies, and regulate cancer cell proliferation, cellular survival, and migration. As such, they have become promising molecular targets for new therapies. The non-receptor PTK termed breast tumor kinase (Brk/PTK6) is overexpressed in approximately 86% of human breast tumors. The role of Brk in breast pathology is unclear. Methods We expressed a WAP-driven Brk/PTK6 transgene in FVB/n mice, and analyzed mammary glands from wild-type (wt) and transgenic mice after forced weaning. Western blotting and immunohistochemistry (IHC) studies were conducted to visualize markers of mammary gland involution, cell proliferation and apoptosis, as well as Brk, STAT3, and activated p38 mitogen-activated protein kinase (MAPK) in mammary tissues and tumors from WAP-Brk mice. Human (HMEC) or mouse (HC11) mammary epithelial cells were stably or transiently transfected with Brk cDNA to assay p38 MAPK signaling and cell survival in suspension or in response to chemotherapeutic agents. Results Brk-transgenic dams exhibited delayed mammary gland involution and aged mice developed infrequent tumors with reduced latency relative to wt mice. Consistent with delayed involution, mammary glands of transgenic animals displayed decreased STAT3 phosphorylation, a marker of early-stage involution. Notably, p38 MAPK, a pro-survival signaling mediator downstream of Brk, was activated in mammary glands of Brk transgenic relative to wt mice. Brk-dependent signaling to p38 MAPK was recapitulated by Brk overexpression in the HC11 murine mammary epithelial cell (MEC) line and human MEC, while Brk knock-down in breast cancer cells blocked EGF-stimulated p38 signaling. Additionally, human or mouse MECs expressing Brk exhibited increased anchorage-independent survival and resistance to doxorubicin. Finally, breast tumor biopsies were subjected to IHC analysis for co-expression of Brk and phospho-p38 MAPK; ductal and lobular carcinomas expressing Brk were significantly more likely to express elevated phospho-p38 MAPK. Conclusions These studies illustrate that forced expression of Brk/PTK6 in non-transformed mammary epithelial cells mediates p38 MAPK phosphorylation and promotes increased cellular survival, delayed involution, and latent tumor formation. Brk expression in human breast tumors may contribute to progression by inducing p38-driven pro-survival signaling pathways.
Collapse
Affiliation(s)
- Kristopher A Lofgren
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, 420 Delaware St. SE, MMC 806, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeng H, Belanger DB, Curran PJ, Shipps GW, Miao H, Bracken JB, Arshad Siddiqui M, Malkowski M, Wang Y. Discovery of novel imidazo[1,2-a]pyrazin-8-amines as Brk/PTK6 inhibitors. Bioorg Med Chem Lett 2011; 21:5870-5. [PMID: 21855335 DOI: 10.1016/j.bmcl.2011.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023]
Abstract
A series of substituted imidazo[1,2-a]pyrazin-8-amines were discovered as novel breast tumor kinase (Brk)/protein tyrosine kinase 6 (PTK6) inhibitors. Tool compounds with low-nanomolar Brk inhibition activity, high selectivity towards other kinases and desirable DMPK properties were achieved to enable the exploration of Brk as an oncology target.
Collapse
Affiliation(s)
- Hongbo Zeng
- Department of Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ikeda O, Mizushima A, Sekine Y, Yamamoto C, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T. Involvement of STAP-2 in Brk-mediated phosphorylation and activation of STAT5 in breast cancer cells. Cancer Sci 2011; 102:756-61. [PMID: 21205088 DOI: 10.1111/j.1349-7006.2010.01842.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Signal-transducing adaptor protein (STAP)-2 is a recently identified adaptor protein that contains Pleckstrin homology and Src homology 2-like domains, and is also known to be a substrate of breast tumor kinase (Brk). In a previous study, we found that STAP-2 upregulated Brk-mediated activation of signal transducer and activator of transcription (STAT) 3 in breast cancer cells. Here, we examined the involvement of STAP-2 in Brk-mediated STAT5 activation in breast cancer cells. Ectopic expression of STAP-2 induced Brk-mediated transcriptional activity of STAT5. Furthermore, STAP-2-knockdown in T47D breast cancer cells induced a marked decrease in proliferation that was as strong as that after Brk- or STAT5b-knockdown. Regarding the mechanism, the Pleckstrin homology domain of STAP-2 is likely to participate in the process by which Brk phosphorylates and activates STAT5. Taken together, our findings provide insights toward the development of novel therapeutic strategies as well as novel prognostic values in breast carcinomas.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ludyga N, Anastasov N, Gonzalez-Vasconcellos I, Ram M, Höfler H, Aubele M. Impact of protein tyrosine kinase 6 (PTK6) on human epidermal growth factor receptor (HER) signalling in breast cancer. MOLECULAR BIOSYSTEMS 2011; 7:1603-12. [DOI: 10.1039/c0mb00286k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Ostrander JH, Daniel AR, Lange CA. Brk/PTK6 signaling in normal and cancer cell models. Curr Opin Pharmacol 2010; 10:662-9. [PMID: 20832360 PMCID: PMC2981671 DOI: 10.1016/j.coph.2010.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 01/08/2023]
Abstract
Breast tumor kinase (Brk), also termed PTK6, is known to function in cell-type and context-dependent processes governing normal differentiation. However, in tumors in which Brk is overexpressed, this unusual soluble tyrosine kinase is emerging as a mediator of cancer cell phenotypes, including increased proliferation, survival, and migration. Nuclear and cytoplasmic substrates phosphorylated by Brk include a collection of regulatory RNA-binding proteins, adaptor molecules that link Brk to signaling pathways generally associated with the activation of growth factor receptors, and Signal Transducers and Activators of Transcription (STAT) molecules that are direct regulators of gene expression. Understanding Brk-dependent regulation of these key signaling pathways and how they influence cancer cell behavior is predicted to inform the development of improved 'targeted' cancer therapies and may provide insight into ways to avoid chemo-resistance to established treatments.
Collapse
Affiliation(s)
- Julie H. Ostrander
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710
| | - Andrea R. Daniel
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Women's Cancer Program, University of Minnesota Masonic Cancer Center, Minneapolis MN 55455
| | - Carol A. Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Women's Cancer Program, University of Minnesota Masonic Cancer Center, Minneapolis MN 55455
| |
Collapse
|
36
|
Ikeda O, Sekine Y, Mizushima A, Nakasuji M, Miyasaka Y, Yamamoto C, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T. Interactions of STAP-2 with Brk and STAT3 participate in cell growth of human breast cancer cells. J Biol Chem 2010; 285:38093-103. [PMID: 20929863 DOI: 10.1074/jbc.m110.162388] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
STAP-2 (signal transducing adaptor protein-2) is a recently identified adaptor protein that contains pleckstrin homology (PH) and Src homology 2-like domains, as well as a STAT3-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (Brk). In breast cancers, Brk expression is deregulated and promotes STAT3-dependent cell proliferation. In the present study, manipulated STAP-2 expression demonstrated essential roles of STAP-2 in Brk-mediated STAT3 activation. STAP-2 interacts with both Brk and STAT3. In addition, small interfering RNA-mediated reduction of endogenous STAP-2 expression strongly decreased Brk-mediated STAT3 activation in T47D breast cancer cells. The PH domain of STAP-2 is involved in multiple steps: the binding between Brk and STAP-2, the activation and tyrosine phosphorylation of STAT3, and the activation of Brk. Notably, a STAP-2 PH-Brk fusion protein exhibited robust kinase activity and increased activation and tyrosine phosphorylation of STAT3. Finally, STAP-2 knockdown in T47D cells induced a significant decrease of proliferation, as strong as that of Brk or STAT3 knockdown. Taken together, our findings are likely to inform the development of a novel therapeutic strategy, as well as the determination of novel prognostic values, in breast carcinomas.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Draper S, Kirigiti M, Glavas M, Grayson B, Chong CA, Jiang B, Smith MS, Zeltser LM, Grove KL. Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: microarray analysis study. Brain Res 2010; 1350:139-50. [PMID: 20380814 PMCID: PMC2917610 DOI: 10.1016/j.brainres.2010.03.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/21/2010] [Accepted: 03/24/2010] [Indexed: 12/29/2022]
Abstract
The Dorsomedial Nucleus of the Hypothalamus (DMH) is known to play important roles in ingestive behavior and body weight homeostasis. The DMH contains neurons expressing Neuropeptide Y (NPY) during specific physiological conditions of hyperphagia and obesity, however, the role of DMH-NPY neurons has yet to be characterized. In contrast to the DMH-NPY neurons, NPY expressing neurons have been best characterized in the Arcuate Nucleus of the Hypothalamus (ARH). The purpose of this study is to characterize the chemical phenotype of DMH-NPY neurons by comparing the gene expression profiles of NPY neurons in the DMH and ARH isolated from postnatal NPY-hrGFP mice by microarray analysis. Twenty genes were differentially expressed in the DMH-NPY neurons compared to the ARH. Among them, there were several transcriptional factors that play important roles in the regulation of energy balance. DMH-NPY neurons expressed Glutamic Acid Decarboxylase (GAD) 65 and 67, suggesting that they may be GABAergic, similar to ARH-NPY neurons. While ARH-NPY neurons expressed leptin receptor (ObRb) and displayed the activation of STAT3 in response to leptin administration, DMH-NPY neurons showed neither. These findings strongly suggest that DMH-NPY neurons could play a distinct role in the control of energy homeostasis and are differentially regulated from ARH-NPY neurons through afferent inputs and transcriptional regulators.
Collapse
Affiliation(s)
- Shin Draper
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Melissa Kirigiti
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Maria Glavas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Bernadette Grayson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - C.N. Angie Chong
- Division of Molecular Genetics, Columbia College of Physicians and Surgeons 1150 St Nicholas Ave, New York, NY 10032, USA
| | - Betty Jiang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - M Susan Smith
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Columbia College of Physicians and Surgeons 1150 St Nicholas Ave, New York, NY 10032, USA
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| |
Collapse
|
38
|
Brauer PM, Tyner AL. Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1806:66-73. [PMID: 20193745 PMCID: PMC2885473 DOI: 10.1016/j.bbcan.2010.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/21/2023]
Abstract
Protein tyrosine kinase 6 (PTK6), also referred to as breast tumor kinase BRK, is a member of a distinct family of kinases that is evolutionarily related to the SRC family of tyrosine kinases. While not expressed in the normal mammary gland, PTK6 expression is detected in a large proportion of human mammary gland tumors. In breast tumor cells, PTK6 promotes growth factor signaling and cell migration. PTK6 expression is also increased in a number of other epithelial tumors, including ovarian and colon cancer. In contrast, PTK6 is expressed in diverse normal epithelia, including the linings of the gastrointestinal tract, skin and prostate, where its expression correlates with cell cycle exit and differentiation. Disruption of the mouse Ptk6 gene leads to increased growth and impaired differentiation in the small intestine that is accompanied by increased AKT and Wnt signaling. Following total body irradiation, PTK6 expression is induced in proliferating progenitor cells of the intestine, where it plays an essential role in DNA-damage induced apoptosis. A distinguishing feature of PTK6 is its flexibility in intracellular localization, due to a lack of amino-terminal myristoylation/palmitoylation. Recently a number of substrates of PTK6 have been identified, including nuclear RNA-binding proteins and transcription factors. We discuss PTK6 signaling, its apparent conflicting roles in cancer and normal epithelia, and its potential as a therapeutic target in epithelial cancers.
Collapse
Affiliation(s)
- Patrick M. Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
39
|
Kang SA, Lee ES, Yoon HY, Randazzo PA, Lee ST. PTK6 inhibits down-regulation of EGF receptor through phosphorylation of ARAP1. J Biol Chem 2010; 285:26013-21. [PMID: 20554524 DOI: 10.1074/jbc.m109.088971] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PTK6 (also known as Brk) is a non-receptor-tyrosine kinase containing SH3, SH2, and catalytic domains, that is expressed in more than 60% of breast carcinomas but not in normal mammary tissues. To analyze PTK6-interacting proteins, we have expressed Flag-tagged PTK6 in HEK293 cells and performed co-immunoprecipitation assays with Flag antibody-conjugated agarose. A 164-kDa protein in the precipitated fraction was identified as ARAP1 (also known as centaurin delta-2) by MALDI-TOF mass analysis. ARAP1 associated with PTK6 in an EGF/EGF receptor (EGFR)-dependent manner. In addition, the SH2 domain of PTK6, particularly the Arg(105) residue that contacts the phosphate group of the tyrosine residue, was essential for the association. Moreover, PTK6 phosphorylated residue Tyr(231) in the N-terminal domain of ARAP1. Expression of ARAP1, but not of the Y231F mutant, inhibited the down-regulation of EGFR in HEK293 cells expressing PTK6. Silencing of endogenous PTK6 expression in breast carcinoma cells decreased EGFR levels. These results demonstrate that PTK6 enhances EGFR signaling by inhibition of EGFR down-regulation through phosphorylation of ARAP1 in breast cancer cells.
Collapse
Affiliation(s)
- Shin-Ae Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
40
|
Sekine Y. [Novel adaptor protein, STAP-2 functions as a signal modulator in immune system]. YAKUGAKU ZASSHI 2010; 130:769-75. [PMID: 20519854 DOI: 10.1248/yakushi.130.769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) was recently identified as a novel adaptor protein and is a family of STAP adaptor protein and has a variety of functions in cellular signal transductions. Especially STAP-2 has a crucial role in immune systems by controlling cytokine signal transduction. STAP-2 functionally interacts with STAT3 through its YXXQ motif and enhances STAT3 transcriptional activation. In contrast, STAP-2 interacts with STAT5 through its PH and SH2-like domains and decreases STAT5 activity. Importantly, STAP-2 also binds to MyD88 and IKK-alpha/beta and regulates LPS/TLR4 signaling. Moreover, STAP-2 interacts with Epstein-Barr virus-derived LMP1 and modulates LMP1-mediated NF-kappaB signaling. More importantly, experiments using STAP-2 deficient mice showed that STAP-2 modulated several T-cell functions. T-cells from STAP-2 deficient mice showed enhanced integrin-mediated cell adhesion to fibronectin. Furthermore STAP-2-deficient T-cells show reduced chemotaxis toward SDF-1alpha. These accumulated evidences indicate that novel adaptor protein STAP-2 plays an important modulator role in both of innate and adaptive immune systems.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University.
| |
Collapse
|
41
|
Harvey AJ, Pennington CJ, Porter S, Burmi RS, Edwards DR, Court W, Eccles SA, Crompton MR. Brk protects breast cancer cells from autophagic cell death induced by loss of anchorage. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1226-34. [PMID: 19661439 PMCID: PMC2731141 DOI: 10.2353/ajpath.2009.080811] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 01/20/2023]
Abstract
Brk, a tyrosine kinase expressed in a majority of breast tumors, but not normal mammary tissue, promotes breast carcinoma cell proliferation. Normal epithelial cells are dependent on cell-cell or cell-matrix interactions for survival and undergo apoptosis after disruption of these interactions. Tumor cells are less sensitive to the induction of apoptosis and are predicted to have the potential to disseminate. We investigated whether Brk has further roles in breast tumor progression by relating its expression to tumor grade and demonstrating its role in the regulation of carcinoma cell survival under non-adherent conditions. Brk expression was determined by reverse transcription PCR on RNA extracted from surgical samples of human breast cancers. Breast carcinoma cell survival in suspension culture was examined when Brk protein levels were suppressed by RNA interference. Additionally, the effect of experimentally overexpressing Brk in otherwise Brk-negative breast carcinoma cells was assessed. Brk mRNA expression was notably higher in grade 3 breast tumors, as compared with lower tumor grades. In suspension culture, Brk suppression increased the rate of cell death, as compared with controls, and this cell death program exhibited characteristics of autophagy but not of apoptosis. Conversely, experimental expression of Brk in Brk-negative cells increased cell survival whereas kinase-inactive Brk did not. Therefore, Brk enhances breast carcinoma cell survival in suspension, suggesting a role for Brk in supporting breast cancer cell dissemination.
Collapse
Affiliation(s)
- Amanda J Harvey
- Brunel Institute for Cancer Genetics and Pharmacogenomics, Biosciences, School of Health Sciences and Social Care, Brunel University, Kingston Lane, Uxbridge, Middlesex, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sekine Y, Yamamoto C, Ikeda O, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T. The protein content of an adaptor protein, STAP-2 is controlled by E3 ubiquitin ligase Cbl. Biochem Biophys Res Commun 2009; 384:187-92. [DOI: 10.1016/j.bbrc.2009.04.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/18/2009] [Indexed: 11/28/2022]
|