1
|
Wilcox N, Tyrer JP, Dennis J, Yang X, Perry JRB, Gardner EJ, Easton DF. Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank. Genet Epidemiol 2025; 49:e22609. [PMID: 39749474 DOI: 10.1002/gepi.22609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
In large cohort studies the number of unaffected individuals outnumbers the number of affected individuals, and the power can be low to detect associations for outcomes with low prevalence. We consider how including recorded family history in regression models increases the power to detect associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo simulations that including a family history of the disease, with a weighting of 0.5 compared with true cases, increases the power to detect associations. This is a powerful approach for detecting variants with moderate effects, but for larger effect sizes a weighting of > 0.5 can be more powerful. We illustrate this both for common variants and for exome sequencing data for over 400,000 individuals in UK Biobank to evaluate the association between the burden of protein-truncating variants in genes and risk for four cancer types.
Collapse
Affiliation(s)
- Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Rincon-Torroella J, Dal Molin M, Mog B, Han G, Watson E, Wyhs N, Ishiyama S, Ahmedna T, Minn I, Azad NS, Bettegowda C, Papadopoulos N, Kinzler KW, Zhou S, Vogelstein B, Gabrielson K, Sur S. ME3BP-7 is a targeted cytotoxic agent that rapidly kills pancreatic cancer cells expressing high levels of monocarboxylate transporter MCT1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550207. [PMID: 37546808 PMCID: PMC10401962 DOI: 10.1101/2023.07.23.550207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.
Collapse
|
3
|
Ghasemi F, Farkhondeh T, Samarghandian S, Ghasempour A, Shakibaie M. Oncogenic Alterations of Metabolism Associated with Resistance to Chemotherapy. Curr Mol Med 2024; 24:856-866. [PMID: 37350008 DOI: 10.2174/1566524023666230622104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 06/24/2023]
Abstract
Metabolic reprogramming in cancer cells is a strategy to meet high proliferation rates, invasion, and metastasis. Also, several researchers indicated that the cellular metabolism changed during the resistance to chemotherapy. Since glycolytic enzymes play a prominent role in these alterations, the ability to reduce resistance to chemotherapy drugs is promising for cancer patients. Oscillating gene expression of these enzymes was involved in the proliferation, invasion, and metastasis of cancer cells. This review discussed the roles of some glycolytic enzymes associated with cancer progression and resistance to chemotherapy in the various cancer types.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Sardari A, Usefi H. Machine learning-based meta-analysis of colorectal cancer and inflammatory bowel disease. PLoS One 2023; 18:e0290192. [PMID: 38134011 PMCID: PMC10745176 DOI: 10.1371/journal.pone.0290192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is a major global health concern, resulting in numerous cancer-related deaths. CRC detection, treatment, and prevention can be improved by identifying genes and biomarkers. Despite extensive research, the underlying mechanisms of CRC remain elusive, and previously identified biomarkers have not yielded satisfactory insights. This shortfall may be attributed to the predominance of univariate analysis methods, which overlook potential combinations of variants and genes contributing to disease development. Here, we address this knowledge gap by presenting a novel multivariate machine-learning strategy to pinpoint genes associated with CRC. Additionally, we applied our analysis pipeline to Inflammatory Bowel Disease (IBD), as IBD patients face substantial CRC risk. The importance of the identified genes was substantiated by rigorous validation across numerous independent datasets. Several of the discovered genes have been previously linked to CRC, while others represent novel findings warranting further investigation. A Python implementation of our pipeline can be accessed publicly at https://github.com/AriaSar/CRCIBD-ML.
Collapse
Affiliation(s)
- Aria Sardari
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hamid Usefi
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Mathematics & Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
Wu WS, Cheng CC, Lee YH, Wei JL, Chen RF, Lin CF, You RI, Chen YC, Shih HM, Hu CT, Chang HH, Lee MC, Chen YC. Preclinical trial of targeting the Hic-5-mediated pathway to prevent the progression of hepatocellular carcinoma. Am J Cancer Res 2023; 13:4903-4917. [PMID: 37970347 PMCID: PMC10636688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 11/17/2023] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) was ascribed to metastasis. Targeted therapy aiming at the molecules along the metastatic pathway is a promising therapeutic strategy. Among them, hydrogen peroxide inducible clone-5 (Hic-5) is highlighted. Hic-5, discovered as a reactive oxygen species (ROS)-inducible gene, was identified to be an adaptor protein in focal adhesion and a critical signaling mediator upregulated in various cancers including HCC. Moreover, Hic-5 may regulate epithelial-mesenchymal transition (EMT) transcription factor Snail and its downstream mesenchymal genes including fibronectin and matrix metalloproteinase-9 required for migration and invasion of HCC. However, the comprehensive Hic-5-mediated pathway was not established and whether Hic-5 can be a target for preventing HCC progression has not been validated in vivo. Using whole-transcriptome mRNA sequencing, we found reactive oxygen species modulator (ROMO) and ZNF395 were upregulated by Hic-5 in a patient-derived HCC cell line, HCC372. Whereas ROMO was involved in Hic-5-mediated ROS signaling, ZNF395 locates downstream of Snail for mesenchymal genes expression required for cell migration. Also, ZNF395 but not ROMO was upregulated by Hic-5 for migration in another patient-derived HCC cell line, HCC374. Further, by in vivo knock down of Hic-5 using the Stable Nucleic Acids Lipid nanoparticles (SNALP)-carried Hic-5 siRNA, progression of HCC372 and HCC374 in SCID mice was prevented, coupled with the decrease of the downstream mesenchymal genes. Our study provides the preclinical evidence that targeting Hic-5 is potentially able to prevent the progression of HCCs with Hic-5 overexpression.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi UniversityHualien 97004, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
| | - Yi-Hsuan Lee
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
| | - Jia-Ling Wei
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi UniversityHualien 97004, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi UniversityHualien 97004, Taiwan
| | - Yen-Chang Chen
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
- Department of Pathology, School of Medicine, Tzu Chi UniversityHualien 97004, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia SinicaTaipei 11529, Taiwan
| | - Chi-Tan Hu
- Division of Gastroenterology, Department of Medicine, Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi UniversityHualien 97004, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 97004, Taiwan
- School of Medicine, Tzu Chi UniversityHualien 97004, Taiwan
| |
Collapse
|
6
|
Mobeen SA, Saxena P, Jain AK, Deval R, Riazunnisa K, Pradhan D. Integrated bioinformatics approach to unwind key genes and pathways involved in colorectal cancer. J Cancer Res Ther 2023; 19:1766-1774. [PMID: 38376276 DOI: 10.4103/jcrt.jcrt_620_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/13/2021] [Indexed: 02/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the fifth leading cause of death in India. Until now, the exact pathogenesis concerning CRC signaling pathways is largely unknown; however, the diseased condition is believed to deteriorate with lifestyle, aging, and inherited genetic disorders. Hence, the identification of hub genes and therapeutic targets is of great importance for disease monitoring. OBJECTIVE Identification of hub genes and targets for identification of candidate hub genes for CRC diagnosis and monitoring. MATERIALS AND METHODS The present study applied gene expression analysis by integrating two profile datasets (GSE20916 and GSE33113) from NCBI-GEO database to elucidate the potential key candidate genes and pathways in CRC. Differentially expressed genes (DEGs) between CRC (195 CRC tissues) and healthy control (46 normal mucosal tissue) were sorted using GEO2R tool. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed using Cluster Profiler in Rv. 3.6.1. Moreover, protein-protein interactions (PPI), module detection, and hub gene identification were accomplished and visualized through the Search Tool for the Retrieval of Interacting Genes, Molecular Complex Detection (MCODE) plug-in of Cytoscape v3.8.0. Further hub genes were imported into ToppGene webserver for pathway analysis and prognostic expression analysis was conducted using Gene Expression Profiling Interactive Analysis webserver. RESULTS A total of 2221 DEGs, including 1286 up-regulated and 935down-regulated genes mainly enriched in signaling pathways of NOD-like receptor, FoxO, AMPK signalling and leishmaniasis. Three key modules were detected from PPI network using MCODE. Besides, top 20 high prioritized hub genes were selected. Further, prognostic expression analysis revealed ten of the hub genes, namely IL1B, CD44, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MMP9, CREB1, STAT1, vascular endothelial growth factor (VEGFA), CDC5 L, Ataxia-telangiectasia mutated (ATM + and CDH1 to be differently expressed in normal and cancer patients. CONCLUSION The present study proposed five novel therapeutic targets, i.e., ATM, GAPDH, CREB1, VEGFA, and CDH1 genes that might provide new insights into molecular oncogenesis of CRC.
Collapse
Affiliation(s)
- Syeda Anjum Mobeen
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | - Pallavi Saxena
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khateef Riazunnisa
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | | |
Collapse
|
7
|
Zhang J, Shi G, Pang J, Zhu X, Feng Q, Na J, Ma W, Liu D, Songyang Z. Crotonylation of GAPDH regulates human embryonic stem cell endodermal lineage differentiation and metabolic switch. Stem Cell Res Ther 2023; 14:63. [PMID: 37013624 PMCID: PMC10071711 DOI: 10.1186/s13287-023-03290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Post-translational modifications of proteins are crucial to the regulation of their activity and function. As a newly discovered acylation modification, crotonylation of non-histone proteins remains largely unexplored, particularly in human embryonic stem cells (hESCs). METHODS We investigated the role of crotonylation in hESC differentiation by introduce crotonate into the culture medium of GFP tagged LTR7 primed H9 cell and extended pluripotent stem cell lines. RNA-seq assay was used to determine the hESC transcriptional features. Through morphological changes, qPCR of pluripotent and germ layer-specific gene markers and flow cytometry analysis, we determined that the induced crotonylation resulted in hESC differentiating into the endodermal lineage. We performed targeted metabolomic analysis and seahorse metabolic measurement to investigate the metabolism features after crotonate induction. Then high-resolution tandem mass spectrometry (LC-MS/MS) revealed the target proteins in hESCs. In addition, the role of crotonylated glycolytic enzymes (GAPDH and ENOA) was evaluated by in vitro crotonylation and enzymatic activity assays. Finally, we used knocked-down hESCs by shRNA, wild GAPDH and GAPDH mutants to explore potential role of GAPDH crotonylation in regulating human embryonic stem cell differentiation and metabolic switch. RESULT We found that induced crotonylation in hESCs resulted in hESCs of different pluripotency states differentiating into the endodermal lineage. Increased protein crotonylation in hESCs was accompanied by transcriptomic shifts and decreased glycolysis. Large-scale crotonylation profiling of non-histone proteins revealed that metabolic enzymes were major targets of inducible crotonylation in hESCs. We further discovered GAPDH as a key glycolytic enzyme regulated by crotonylation during endodermal differentiation from hESCs. CONCLUSIONS Crotonylation of GAPDH decreased its enzymatic activity thereby leading to reduced glycolysis during endodermal differentiation from hESCs.
Collapse
Affiliation(s)
- Jingran Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Junjie Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xing Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingcai Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Bioland Laboratory, Guangzhou, 510320, China.
| |
Collapse
|
8
|
Wu WS, Chen RF, Cheng CC, Wei JL, Lin CF, You RI, Chen YC, Lee MC, Chen YC. Suppressing of Src-Hic-5-JNK-AKT Signaling Reduced GAPDH Expression for Preventing the Progression of HuCCT1 Cholangiocarcinoma. Pharmaceutics 2022; 14:pharmaceutics14122698. [PMID: 36559193 PMCID: PMC9784408 DOI: 10.3390/pharmaceutics14122698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm of the bile ducts, being the second most common type of cancer in the liver, and most patients are diagnosed at a late stage with poor prognosis. Targeted therapy aiming at receptors tyrosine kinases (RTKs) such as c-Met or EGFR have been developed but with unsatisfactory outcomes. In our recent report, we found several oncogenic molecules downstream of RTKs, including hydrogen peroxide clone-5 (Hic-5), Src, AKT and JNK, were elevated in tissues of a significant portion of metastatic CCAs. By inhibitor studies and a knockdown approach, these molecules were found to be within the same signal cascade responsible for the migration of HuCCT1 cells, a conventionally used CCA cell line. Herein, we also found Src inhibitor dasatinib and Hic-5 siRNA corporately suppressed HuCCT1 cell invasion. Moreover, dasatinib inhibited the progression of the HuCCT1 tumor on SCID mice skin coupled with decreasing the expression of Hic-5 and EGFR and the activities of Src, AKT and JNK. In addition, we found a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and several cytoskeletal molecules such as tubulin and cofilin were dramatically decreased after a long-term treatment of the HuCCT1 tumor with a high dose of dasatinib. Specifically, GAPDH was shown to be a downstream effector of the Hic-5/Src/AKT cascade involved in HuCCT1 cell migration. On the other hand, TFK1, another CCA cell line without Hic-5 expression, exhibited very low motility, whereas an ectopic Hic-5 expression enhanced the activation of Src and AKT and marginally increased TFK1 migration. In the future, it is tempting to investigate whether cotargeting Src, Hic-5 and/or GAPDH is efficient for preventing CCA progression in future clinical trials.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Jia-Ling Wei
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yen-Chang Chen
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Pathology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Zhu Y, Tang Q, Cao W, Zhou N, Jin X, Song Z, Zu L, Xu S. Identification of a novel oxidative stress-related prognostic model in lung adenocarcinoma. Front Pharmacol 2022; 13:1030062. [PMID: 36467027 PMCID: PMC9715759 DOI: 10.3389/fphar.2022.1030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 03/23/2024] Open
Abstract
Background: Oxidative stress (OxS) participates in a variety of biological processes, and is considered to be related to the occurrence and progression of many tumors; however, the potential diagnostic value of OxS in lung cancer remains unclear. Methods: The clinicopathological and transcriptome data for lung adenocarcinoma (LUAD) were collected from TCGA and GEO database. LASSO regression was used to construct a prognostic risk model. The prognostic significance of the OxS-related genes was explored using a Kaplan-Meier plotter database. The prediction performance of the risk model was shown in both the TCGA and GSE68465 cohorts. The qRT-PCR was performed to explore the expression of genes. CCK-8, Edu and transwell assays were conducted to analyze the role of CAT on cell proliferation migration and invasion in lung cancer. Immune infiltration was evaluated by CIBERSORT and mutational landscape was displayed in the TCGA database. Moreover, the relationship between risk score with drug sensitivity was investigated by pRRophetic. Results: We identified a prognosis related risk model based on a four OxS gene signature in LUAD, including CYP2D6, FM O 3, CAT, and GAPDH. The survival analysis and ROC curve indicated good predictive power of the model in both the TCGA and GEO cohorts. LUAD patients in the high-risk group had a shorter OS compared to the low-risk group. QRT-PCR result showed that the expression of four genes was consistent with previous analysis in cell lines. Moreover, overexpression of CAT could decrease the proliferation, invasion and migration of lung cancer cells. The Cox regression analysis showed that the risk score could be used as an independent prognostic factor for OS. LUAD patients in the high-risk score group exhibited a higher tumor mutation burden and risk score were closely related to tumor associated immune cell infiltration, as well as the expression of immune checkpoint molecules. Both the high- and low-risk groups have significant differences in sensitivity to some common chemotherapy drugs, such as Paclitaxel, Docetaxel, and Vinblastine, which may contribute to clinical treatment decisions. Conclusion: We established a robust OxS-related prognostic model, which may contribute to individualized immunotherapeutic strategies in LUAD.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanying Tang
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Weibo Cao
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Runx1 directly upregulates the transcriptional activity of P2X3R gene promoter Upregulation of Runx1-mediated P2X3R gene transcription underlies bone cancer pain Involvement of GDNF-Ret-ERK signaling in Runx1-mediated P2X3R gene transcription
Collapse
|
11
|
Azevedo-Silva J, Tavares-Valente D, Almeida A, Queirós O, Baltazar F, Ko YH, Pedersen PL, Preto A, Casal M. Cytoskeleton disruption by the metabolic inhibitor 3-bromopyruvate: implications in cancer therapy. Med Oncol 2022; 39:121. [PMID: 35716210 DOI: 10.1007/s12032-022-01712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
The small molecule 3-bromopyruvate (3BP), is an anticancer molecule that acts by hindering glycolysis and mitochondrial function leading to energy depletion and consequently, to cell death. In this work we have focused on understanding how the glycolytic inhibition affects cancer cell structural features. We showed that 3BP leads to a drastic decrease in the levels of β-actin and α-tubulin followed by disorganization and shrinkage of the cytoskeleton in breast cancer cells. 3BP inhibits cell migration and colony formation independently of the activity of metalloproteinases. To disclose if these structural alterations occurred prior to 3BP toxic effect, non-toxic concentrations of 3BP were used and we could observe that 3BP was able to inhibit energy production and induce loss of β-actin and α-tubulin proteins. This was accompanied with alterations in cytoskeleton organization and an increase in E-cadherin levels which may indicate a decrease in cancer cells aggressiveness. In this study we demonstrate that 3BP glycolytic inhibition of breast cancer cells is accompanied by cytoskeleton disruption and consequently loss of migration ability, suggesting that 3BP can potentially be explored for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- J Azevedo-Silva
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - D Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - A Almeida
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - O Queirós
- Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - F Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Y H Ko
- KoDiscovery, LLC, University of Maryland BioPark, Suites 502 E & F, 801 West Baltimore St., Baltimore, MD, 21201, USA
| | - P L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, 21205-2185, USA
| | - A Preto
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Casal
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
12
|
Bioinformatic Analysis of the Effect of Silver Nanoparticles on Colorectal Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6828837. [PMID: 35445138 PMCID: PMC9015850 DOI: 10.1155/2022/6828837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the most diagnosed cancer with the highest mortality rate each year globally. Although there are treatments for CRC, the development of resistance to therapies decreases the success of treatments. In vitro studies using the Caco-2 cell line have revealed the anticancer properties of silver nanoparticles (AgNPs) as a possible treatment for this disease. This study considered four researches that evaluated the proteomic profiles of cells of the Caco-2 line exposed to AgNPs. We performed a bioinformatics analysis to predict protein-protein interaction, hub genes, Gene Ontology (molecular function, biological process, and cellular components), KEGG pathways, analysis of expression, and immune cell infiltration. For these analyses, the STRING, DAVID, UALCAN, GEPIA2, and TISIDB databases were used. The results in Gene Ontology show that AgNPs cause a deregulation of genes related to cell-cell adhesion, the cytoplasm, the centriole, and carbon metabolism. Hub genes were identified, including GADPH, ENO1, EEF2, and ATP5A1, which showed differential expression in patients with adenocarcinoma of the colon and rectum. Additionally, the expression of the hub genes and immune cells was correlated. It was found that ATP5A1 and ENO1 were positively correlated with the infiltration of CD4+ T lymphocytes in colon adenocarcinoma and a negative correlation between GADPH and PDIA3 with the infiltration of NK cells and CD4+ T lymphocytes in rectal adenocarcinoma, respectively. In conclusion, the administration of AgNPs causes an alteration of biological processes, cellular components, metabolic pathways, deregulation of hub genes, and the activity of immune cells leading to a potential anticancer effect.
Collapse
|
13
|
Li Q, Chen Q, Yang X, Zhang Y, Lv L, Zhang Z, Zeng S, Lv J, Liu S, Fu B. Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive. J Nanobiotechnology 2022; 20:84. [PMID: 35177088 PMCID: PMC8851817 DOI: 10.1186/s12951-022-01241-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Immune checkpoint inhibitor-mediated immunotherapy cannot be carried out on a large scale clinically due to its low universality. In recent years, cyclic guanosine monophosphate synthase/interferon gene stimulating factor (cGAS/STING)-mediated innate immune signaling pathway-mediated immunotherapy has attracted more and more attention. In addition, metabolic inhibitors also show good effects on tumor treatment, but their application is often limited because of their large first pass effect or difficult administration. Methods The particle size and potential parameters were measured by DLS. In order to determine the optimal ratio of the two drugs, we calculated the CI value of different nanoparticles through MTT experiment, and simulated their synergistic effect through Gaussian software. Then the morphology and crystal form of the best proportion of drugs were studied by TEM and XRD. The anti-tumor mechanism of composite nanoparticles was confirmed by the determination of metabolic related indexes, Q-PCR and WB. The antitumor effect and immune activation effect were comprehensively evaluated by in vivo and in vitro experiments. Results Here, we found and synthesized BCP nanoparticles ((BPA + CPI) @ PLGA NPs) which can effectively reduce the metabolism of tumor cells and inhibit cell proliferation. At the same time, the release of mitochondrial DNA (mtDNA) caused by mitochondrial metabolism disorder further activated the cGAS/STING signal pathway in Hepa1–6 cells. We found that the drug-treated Hepa1–6 cells had obvious TBK1 phosphorylation and STING dimerization. Combined with STING agonist, it could effectively promote the activation of CD8 T cells and enhanced the therapeutic effect on liver cancer. Conclusion Our results showed that PLGA nanocarrier can successfully improve the dosage forms of two metabolic inhibitors and show the effect of synergistic therapy. BCP nanoparticles can also activate the innate immunity of tumor cells and significantly enhance tumor inhibition after combined with STING agonists. This study has high reference and transformation value for the combined treatment of immunosuppression and metabolic inhibition. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01241-y.
Collapse
Affiliation(s)
- Qian Li
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qiubing Chen
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue Yang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuelan Zhang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linyue Lv
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuyou Zhang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaowei Zeng
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxi Lv
- Department of Clinical Medicine, Fourth Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Bishi Fu
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Rashid M, Shah SG, Natu A, Verma T, Rauniyar S, Gera PB, Gupta S. RPS13, a potential universal reference gene for normalisation of gene expression in multiple human normal and cancer tissue samples. Mol Biol Rep 2021; 48:7967-7974. [PMID: 34657252 DOI: 10.1007/s11033-021-06828-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Reference genes are considered stable genes and are used for normalizing the gene expression profile across different cell types; as well as, in normal and diseased samples. However, these gene associates with different biological processes, and hence expression vary in different pathological conditions. Therefore, in the present study, eight different reference genes were used and compared to identify common reference gene usable for an array of different cell types and human cancers. METHODS AND RESULTS The expression stability of the eight reference genes across eleven normal and cancerous tissues was confirmed through real time-qPCR. Ribosomal protein S13 (RPS13) was found to be a common and stable reference gene across intra- and inter-comparison between various normal and tumor tissue types. Further, TCGA data analysis across and between normal and tumor tissue types also showed minimum deviation in expression of RPS13 gene out of eight routinely used reference genes. CONCLUSION RPS13 is the common stable reference gene in normalization for gene expression based analysis in cancer research.
Collapse
Affiliation(s)
- Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
15
|
Bose S, Das C, Banerjee A, Ghosh K, Chattopadhyay M, Chattopadhyay S, Barik A. An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples. PeerJ Comput Sci 2021; 7:e671. [PMID: 34616883 PMCID: PMC8459790 DOI: 10.7717/peerj-cs.671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Machine learning is one kind of machine intelligence technique that learns from data and detects inherent patterns from large, complex datasets. Due to this capability, machine learning techniques are widely used in medical applications, especially where large-scale genomic and proteomic data are used. Cancer classification based on bio-molecular profiling data is a very important topic for medical applications since it improves the diagnostic accuracy of cancer and enables a successful culmination of cancer treatments. Hence, machine learning techniques are widely used in cancer detection and prognosis. METHODS In this article, a new ensemble machine learning classification model named Multiple Filtering and Supervised Attribute Clustering algorithm based Ensemble Classification model (MFSAC-EC) is proposed which can handle class imbalance problem and high dimensionality of microarray datasets. This model first generates a number of bootstrapped datasets from the original training data where the oversampling procedure is applied to handle the class imbalance problem. The proposed MFSAC method is then applied to each of these bootstrapped datasets to generate sub-datasets, each of which contains a subset of the most relevant/informative attributes of the original dataset. The MFSAC method is a feature selection technique combining multiple filters with a new supervised attribute clustering algorithm. Then for every sub-dataset, a base classifier is constructed separately, and finally, the predictive accuracy of these base classifiers is combined using the majority voting technique forming the MFSAC-based ensemble classifier. Also, a number of most informative attributes are selected as important features based on their frequency of occurrence in these sub-datasets. RESULTS To assess the performance of the proposed MFSAC-EC model, it is applied on different high-dimensional microarray gene expression datasets for cancer sample classification. The proposed model is compared with well-known existing models to establish its effectiveness with respect to other models. From the experimental results, it has been found that the generalization performance/testing accuracy of the proposed classifier is significantly better compared to other well-known existing models. Apart from that, it has been also found that the proposed model can identify many important attributes/biomarker genes.
Collapse
Affiliation(s)
- Shilpi Bose
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| | - Chandra Das
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| | - Abhik Banerjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| | - Kuntal Ghosh
- Machine Intelligence Unit & Center for Soft Computing Research, Indian Statistical Institute, Kolkata, West Bengal, India
| | | | - Samiran Chattopadhyay
- Department of Information Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Aishwarya Barik
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Exploring polyps to colon carcinoma voyage: can blocking the crossroad halt the sequence? J Cancer Res Clin Oncol 2021; 147:2199-2207. [PMID: 34115239 DOI: 10.1007/s00432-021-03685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is an important public health concern leading to significant cancer associate mortality. A vast majority of colon cancer arises from polyp which later follows adenoma, adenocarcinoma, and carcinoma sequence. This whole process takes several years to complete and recent genomic and proteomic technologies are identifying several targets involved in each step of polyp to carcinoma transformation in a large number of studies. Current text presents interaction network of targets involved in polyp to carcinoma transformation. In addition, important targets involved in each step according to network biological parameters are also presented. The functional overrepresentation analysis of each step targets and common top biological processes and pathways involved in carcinoma indicate several insights about this whole mechanism. Interaction networks indicate TP53, AKT1, GAPDH, INS, EGFR, and ALB as the most important targets commonly involved in polyp to carcinoma sequence. Though several important pathways are known to be involved in CRC, the central common involvement of PI3K-AKT indicates its potential for devising CRC management strategies. The common and central targets and pathways involved in polyp to carcinoma progression can shed light on its mechanism and potential management strategies. The data-driven approach aims to add valuable inputs to the mechanism of the years-long polyp-carcinoma sequence.
Collapse
|
17
|
Byun WS, Bae ES, Park SC, Kim WK, Shin J, Lee SK. Antitumor Activity of Asperphenin B by Induction of Apoptosis and Regulation of Glyceraldehyde-3-phosphate Dehydrogenase in Human Colorectal Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:683-693. [PMID: 33398999 DOI: 10.1021/acs.jnatprod.0c01155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is a common and intractable malignancy with a high mortality risk. Conventional chemotherapeutics are effective for patients with early stage CRC, but the majority of deaths of CRC patients are linked to acquired drug resistance or metastasis occurrence. Asperphenin B (1), a lipopeptidyl benzophenone isolated from a marine-derived Aspergillus sp. fungus, reportedly possesses antiproliferative activity against cancer cells. However, its antitumor activity and the underlying molecular mechanisms remain unexplored. In this study, 1 induced G2/M phase cell cycle arrest and subsequent apoptotic cell death and inhibited tumor growth in a xenograft model. The 1-induced G2/M phase arrest was associated with the regulation of checkpoint proteins, including Chk1/2 and Cdc25c. The 1-induced apoptosis was correlated with an upregulation of p53 and cleaved caspases and a downregulation of survivin. Further experiments revealed that 1-mediated suppression of migration and invasion of metastatic HCT116 cells was partially associated with the downregulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The antimetastatic potential of 1 was also confirmed by E-cadherin upregulation and N-cadherin and Snail downregulation, which were in turn associated with the GAPDH regulation. These findings highlight the potential use of 1 as a novel candidate for treating metastatic CRC with the modulation of GAPDH function.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2021; 48:693-707. [PMID: 32311017 DOI: 10.1042/bst20191261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.
Collapse
|
19
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
20
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
21
|
Li T, Tan X, Yang R, Miao Y, Zhang M, Xi Y, Guo R, Zheng M, Li B. Discovery of novel glyceraldehyde-3-phosphate dehydrogenase inhibitor via docking-based virtual screening. Bioorg Chem 2020; 96:103620. [PMID: 32028064 DOI: 10.1016/j.bioorg.2020.103620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023]
Abstract
Glycolysis is enhanced in cancer cells. Cancer cells utilize glycolysis as their primary energy source, even under aerobic conditions. This is known as the Warburg effect. Thus, effective inhibition of the glycolytic pathway is a crucial component of cancer therapy. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in glycolysis and overexpresses in cancers. Therefore, targeting GAPDH to inhibit its role in glycolysis is important for GAPDH functional studies and the treatment of cancers. However, only a few GAPDH inhibitors have been reported. In our current study, we identified a GAPDH inhibitor, DC-5163, using docking-based virtual screening and biochemical and biophysical analysis. DC-5163 is a small molecule compound that inhibits GAPDH enzyme activity and cancer cell proliferation (normal cells were tolerant to it). It can inhibit glycolysis pathway partially, which was manifested by decreased glucose uptake and lactic acid production. And it also leaded to cell death through apoptotic pathways. This study reflects the pivotal role of GAPDH in cancer cells and demonstrates that DC-5163 is a useful inhibitor and can be of value in studying the role of GAPDH and the development of new clinical cancer treatments.
Collapse
Affiliation(s)
- Ting Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Xiaoqin Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Yun Xi
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China.
| |
Collapse
|
22
|
Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes. Cancers (Basel) 2020; 12:cancers12010124. [PMID: 31947710 PMCID: PMC7016889 DOI: 10.3390/cancers12010124] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
A central characteristic of many types of cancer is altered energy metabolism processes such as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation. STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial activity. It seems that STAT proteins function as an integrative centre for different growth and survival signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that are involved in energy production in cancer cells.
Collapse
|
23
|
Sheng Y, Jiang Q, Dong X, Liu J, Liu L, Wang H, Wang L, Li H, Yang X, Dong J. 3-Bromopyruvate inhibits the malignant phenotype of malignantly transformed macrophages and dendritic cells induced by glioma stem cells in the glioma microenvironment via miR-449a/MCT1. Biomed Pharmacother 2019; 121:109610. [PMID: 31710894 DOI: 10.1016/j.biopha.2019.109610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Bromopyruvate (3-BrPA) is a glycolysis inhibitor that has been reported to have a strong anti-tumour effect in many human tumours. Several studies have reported that 3-BrPA could inhibit glioma progression; however, its role on the interstitial cells in the glioma microenvironment has not been investigated. In previous studies, we found that in the glioma microenvironment, glioma stem cells can induce the malignant transformation of macrophages and dendritic cells. In this study, we focused on the effects of 3-BrPA on malignantly transformed macrophages and dendritic cells. First, we found that 3-BrPA inhibited the proliferation of malignantly transformed macrophages and dendritic cells in a dose-dependent and time-dependent manner. Further study indicated that 3-BrPA significantly decreased extracellular lactate and inhibited the clone formation, migration and invasion of malignantly transformed macrophages and dendritic cells. Using an online database and a series of experiments, we demonstrated that 3-BrPA inhibits the malignant progression of malignantly transformed macrophages and dendritic cells via the miR-449a/MCT1 axis. These findings built experimental basis for new approach against glioma.
Collapse
Affiliation(s)
- Yujing Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Qianqian Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Jiachi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Haiyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Liping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Haoran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.
| |
Collapse
|
24
|
Abbaszadeh H, Valizadeh A, Mahdavinia M, Teimoori A, Pipelzadeh MH, Zeidooni L, Alboghobeish S. 3-Bromopyruvate potentiates TRAIL-induced apoptosis in human colon cancer cells through a reactive oxygen species- and caspase-dependent mitochondrial pathway. Can J Physiol Pharmacol 2019; 97:1176-1184. [PMID: 31491344 DOI: 10.1139/cjpp-2019-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer cytokine with minimal toxicity towards normal cells. Nevertheless, most primary cancers are often intrinsically TRAIL-resistant or can acquire resistance after TRAIL therapy. This study aimed to investigate the inhibitory effect of co-treatment of 3-bromopyruvate (3-BP) as a potent anticancer agent with TRAIL on colon cancer cells (HT-29). The results of present study indicated that combined treatment with 3-BP and TRAIL inhibited the proliferation of HT-29 cells to a greater extent (88.4%) compared with 3-BP (54%) or TRAIL (11%) treatment alone. In contrast, the combination of 3-BP and TRAIL had no significant inhibitory effect on the proliferation of normal cells (HEK-293) (8.4%). At a cellular mechanistic level, the present study showed that 3-BP sensitized human colon cancer cells to TRAIL-induced apoptosis via reactive oxygen species generation, upregulation of Bax, downregulation of Bcl-2 and survivin, release of cytochrome c into the cytosol, and activation of caspase-3. In normal cells, 3-BP, TRAIL, or combination of both had no significant effect on the reactive oxygen species levels, release of cytochrome c, and caspase-3 activity. Therefore, the combination of 3-BP and TRAIL can be a promising therapeutic strategy for treatment of colon cancer.
Collapse
Affiliation(s)
- Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hassan Pipelzadeh
- Department of Pharmacology, School of Pharmacy, Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Butera G, Mullappilly N, Masetto F, Palmieri M, Scupoli MT, Pacchiana R, Donadelli M. Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20092062. [PMID: 31027346 PMCID: PMC6539768 DOI: 10.3390/ijms20092062] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein–protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy.
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
26
|
Tumor Energy Metabolism and Potential of 3-Bromopyruvate as an Inhibitor of Aerobic Glycolysis: Implications in Tumor Treatment. Cancers (Basel) 2019; 11:cancers11030317. [PMID: 30845728 PMCID: PMC6468516 DOI: 10.3390/cancers11030317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor formation and growth depend on various biological metabolism processes that are distinctly different with normal tissues. Abnormal energy metabolism is one of the typical characteristics of tumors. It has been proven that most tumor cells highly rely on aerobic glycolysis to obtain energy rather than mitochondrial oxidative phosphorylation (OXPHOS) even in the presence of oxygen, a phenomenon called “Warburg effect”. Thus, inhibition of aerobic glycolysis becomes an attractive strategy to specifically kill tumor cells, while normal cells remain unaffected. In recent years, a small molecule alkylating agent, 3-bromopyruvate (3-BrPA), being an effective glycolytic inhibitor, has shown great potential as a promising antitumor drug. Not only it targets glycolysis process, but also inhibits mitochondrial OXPHOS in tumor cells. Excellent antitumor effects of 3-BrPA were observed in cultured cells and tumor-bearing animal models. In this review, we described the energy metabolic pathways of tumor cells, mechanism of action and cellular targets of 3-BrPA, antitumor effects, and the underlying mechanism of 3-BrPA alone or in combination with other antitumor drugs (e.g., cisplatin, doxorubicin, daunorubicin, 5-fluorouracil, etc.) in vitro and in vivo. In addition, few human case studies of 3-BrPA were also involved. Finally, the novel chemotherapeutic strategies of 3-BrPA, including wafer, liposomal nanoparticle, aerosol, and conjugate formulations, were also discussed for future clinical application.
Collapse
|
27
|
Jones AT, Narov K, Yang J, Sampson JR, Shen MH. Efficacy of Dual Inhibition of Glycolysis and Glutaminolysis for Therapy of Renal Lesions in Tsc2 +/- Mice. Neoplasia 2019; 21:230-238. [PMID: 30622053 PMCID: PMC6324218 DOI: 10.1016/j.neo.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Tuberous sclerosis is caused by mutations in the TSC1 or TSC2 gene and characterized by development of tumors in multiple organs including the kidneys. TSC-associated tumors exhibit somatic loss of the second allele of the TSC genes, leading to aberrant activation of the mechanistic target of rapamycin (mTOR) signaling pathway. Activation of mTOR complex 1 (mTORC1) causes addiction to glucose and glutamine in Tsc1−/−or Tsc2−/− mouse embryonic fibroblasts (MEFs). Blocking of glutamine anaplerosis in combination with glycolytic inhibition causes significant cell death in Tsc2−/− but not Tsc2+/+ MEFs. In this study, we tested efficacy of dual inhibition of glycolysis with 3-BrPA and glutaminolysis with CB-839 for renal tumors in Tsc2+/− mice. Following 2 months of treatment of Tsc2+/− mice from the age of 12 months, combination of 3-BrPA and CB-839 significantly reduced overall size and cellular areas of all renal lesions (cystic/papillary adenomas and solid carcinomas), but neither alone did. Combination of 3-BrPA and CB-839 inhibited mTORC1 and the proliferation of tumor cells but did not increase apoptosis. However, combination of 3-BrPA and CB-839 was not as efficacious as rapamycin alone or rapamycin in combination with either 3-BrPA or CB-839 for renal lesions of Tsc2+/− mice. Consistently, rapamycin alone or rapamycin in combination with either 3-BrPA or CB-839 had stronger inhibitory effects on mTORC1 and proliferation of tumor cells than combination of 3-BrPA and CB-839. We conclude that combination of 3-BRPA and CB-839 may not offer a better therapeutic strategy than rapamycin for TSC-associated tumors.
Collapse
Affiliation(s)
- Ashley T Jones
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kalin Narov
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Jian Yang
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ming Hong Shen
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
28
|
Jahani M, Azadbakht M, Rasouli H, Yarani R, Rezazadeh D, Salari N, Mansouri K. L-arginine/5-fluorouracil combination treatment approaches cells selectively: Rescuing endothelial cells while killing MDA-MB-468 breast cancer cells. Food Chem Toxicol 2019; 123:399-411. [DOI: 10.1016/j.fct.2018.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
|
29
|
Nowak N, Kulma A, Gutowicz J. Up-regulation of Key Glycolysis Proteins in Cancer Development. Open Life Sci 2018; 13:569-581. [PMID: 33817128 PMCID: PMC7874691 DOI: 10.1515/biol-2018-0068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
In rapid proliferating cancer cells, there is a need for fast ATP and lactate production, therefore cancer cells turn off oxidative phosphorylation and turn on the so called "Warburg effect". This regulating the expression of genes involved in glycolysis. According to many studies, glucose transporter 1, which supplies glucose to the cell, is the most abundantly expressed transporter in cancer cells. Hexokinase 2, is one of four hexokinase isoenzymes, is also another highly expressed enzyme in cancer cells and it functions to enhance the glycolytic rate. The up-regulation of these two proteins has been established as an important factor in promoting development and metastasis in many types of cancer. Furthermore, other enzymes involved in glycolysis pathway such as phosphoglucose isomerase and glyceraldehyde 3-phosphate dehydrogenase, exhibit additional functions in promoting tumor growth in a non-glycolytic way. This review demonstrates the pivotal role of GLUT1, HK2, PGI and GAPDH in cancer development. In particular, we look at how the multifunctional proteins, PGI and GAPDH, affect cancer cell survival. We also present various clinical cancer cases in terms of the overexpression of selected proteins, which may be considered as a therapeutic target.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Anna Kulma
- Department of Biotechnology, Wrocław University, 51-148 Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| |
Collapse
|
30
|
Darabedian N, Chen TC, Molina H, Pratt MR, Schönthal AH. Bioorthogonal Profiling of a Cancer Cell Proteome Identifies a Large Set of 3-Bromopyruvate Targets beyond Glycolysis. ACS Chem Biol 2018; 13:3054-3058. [PMID: 30395437 DOI: 10.1021/acschembio.8b00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
3-Bromopyruvate (3BP) is a potential anticancer agent viewed as a glycolytic inhibitor that preferentially kills cancer cells through inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), resulting in severe energy depletion. We previously identified four cysteine residues in GAPDH that are alkylated by 3BP, resulting in its inactivation. However, we also showed that addition of excess pyruvate, the final product of glycolysis, was unable to rescue cells from 3BP treatment. This result indicates that GAPDH may not be the only relevant target and is consistent with the chemical reactivity of 3BP that should result in the modification of cysteine residues in many different proteins. To directly test this hypothesis, we first synthesized a probe of 3BP activity bearing an alkyne functionality, termed AO3BP, and then demonstrated that this probe could modify a variety of proteins in living cells. Subsequent competition of AO3BP labeling with pretreatment by 3BP identified 62 statistically significant proteins of various functions as targets of 3BP, confirming that 3BP labeling is indeed widespread. We conclude that 3BP's cytotoxic impact on cancer cells does not only result from selective inhibition of glycolysis but rather from a more widespread effect on cellular proteins that could be driven by the pharmacokinetics of the 3BP. These pleiotropic consequences should be considered when thinking about the potential toxicity of this highly reactive compound.
Collapse
Affiliation(s)
| | | | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, New York 10065, United States
| | | | | |
Collapse
|
31
|
Kuljittichanok D, Diskul-Na-Ayudthaya P, Weeraphan C, Chokchaichamnankit D, Chiablaem K, Lirdprapamongkol K, Svasti J, Srisomsap C. Effect of Derris scandens extract on a human hepatocellular carcinoma cell line. Oncol Lett 2018; 16:1943-1952. [PMID: 30034552 DOI: 10.3892/ol.2018.8824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/02/2017] [Indexed: 12/28/2022] Open
Abstract
The incidence rate of hepatocellular carcinoma (HCC) remains high in numerous countries, including Thailand. There are numerous different lines of HCC treatment; however, various side effects and the resistance of cancer cells during treatment remain issues. At present, traditionally used herb plants have been widely used as alternatives to cancer therapy. Derris scandens is a Thai traditional herb which is commonly found in Thailand and widely used as a traditional medicine for numerous different diseases. The cytotoxicity of D. scandens ethanolic extract on a HCC cell line (HCC-S102) was determined using an MTT assay. Following treatment with D. scandens ethanolic extract, the induction of apoptosis was determined by Annexin V and dead cell assays, and then confirmed by the upregulation of cleaved poly(ADP-ribose) polymerase. Furthermore, a proteomic approach was used in order to study protein alteration upon treatment with D. scandens ethanolic extract coupled with liquid chromatography-tandem mass spectrometry analysis for protein identification. The results suggested that D. scandens ethanolic extract resulted in cytotoxicity against HCC-S102 cells, as the half-maximal inhibitory concentration values were 36.0±1.0, 29.6±0.6, and 22.6±1.5 µg/ml at 24, 48 and 72 h, respectively. Apoptotic cells were induced following treatment with D. scandens. The comparative proteomic profiles of D. scandens ethanolic extract-treated and untreated cells revealed various protein targets for anticancer activity including heterogeneous nuclear ribonucleoprotein (hnRNP) K, hnRNP A2/B1, stomatin-like 2 and GAPDH. In the present study, the anticancer activity of D. scandens ethanolic extract was demonstrated to affect the cell proliferation of HCC-S102 via an apoptotic pathway. The alteration in these proteins provides a better understanding of the mechanism of action of D. scandens, which may be a promising anticancer agent for the treatment of patients with HCC in the future.
Collapse
Affiliation(s)
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Khajeelak Chiablaem
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
32
|
Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable Metabolic Pathways in Heart Failure and Cancer-Lessons From Cancer Cell Metabolism. Front Cardiovasc Med 2018; 5:71. [PMID: 29971237 PMCID: PMC6018530 DOI: 10.3389/fcvm.2018.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Walter Schiffer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
33
|
Malekpour H, Heidari MH, Vafaee R, Moravvej Farshi H, Khodadoostan M. Gene expression analysis of colon high-grade dysplasia revealed new molecular mechanism of disease. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:S111-S117. [PMID: 30774816 PMCID: PMC6347998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM The aim of this research was to find a clear molecular view of dysplasia via network analysis. BACKGROUND There are some evidence suggest the relationship between dysplasia and colorectal cancer. Understanding of high-grade dysplasia (HGD) could be beneficial for colon cancer management. METHODS Bioinformatics study of HGD versus healthy subjects was conducted to check the status of differentially expressed genes (DEGs). GSE31106, GPL1261, GSM770092-94 and GSM770101-6 were the sources from gene expression omnibus (GEO) that queried for protein-protein interaction (PPI) network analysis via Cytoscape and its algorithms. Hubs of network were enriched for biochemical pathways and were validated via clustering analysis. RESULTS Numbers of 46 hub nodes were determined and were included in 12 pathways. A main cluster including 76 nodes was identified containing 45 hubs. 33 hubs among 46 genes were involved in biochemical pathways. IL1B, IL6, TNF, and TRL4 were the most important critical genes. CONCLUSION Many different genes as hub nodes might influence the trigger and development of advance condition and also colon cancer.
Collapse
Affiliation(s)
- Habib Malekpour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Heidari
- Student Research Committee, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Khodadoostan
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Seki SM, Stevenson M, Rosen AM, Arandjelovic S, Gemta L, Bullock TNJ, Gaultier A. Lineage-Specific Metabolic Properties and Vulnerabilities of T Cells in the Demyelinating Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2017; 198:4607-4617. [PMID: 28507026 DOI: 10.4049/jimmunol.1600825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/14/2017] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis (MS) is a disease that is characterized by immune-mediated destruction of CNS myelin. Current MS therapies aim to block peripheral immune cells from entering the CNS. Although these treatments limit new inflammatory activity in the CNS, no treatment effectively prevents long-term disease progression and disability accumulation in MS patients. One explanation for this paradox is that current therapies are ineffective at targeting immune responses already present in the CNS. To this end, we sought to understand the metabolic properties of T cells that mediate ongoing inflammation in the demyelinating CNS. Using experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice, a well-studied model of MS, we showed that the CD4+ and CD8+ T cells that invade the EAE CNS are highly glycolytic. Elevated glycolytic rates in T cells isolated from the EAE CNS correlate with upregulated expression of glycolytic machinery and is essential for inflammatory responses to myelin. Surprisingly, we found that an inhibitor of GAPDH, 3-bromopyruvic acid (3-BrPa), blocks IFN-γ, but not IL-17A, production in immune cells isolated from the EAE CNS. Indeed, in vitro studies confirmed that the production of IFN-γ by differentiated Th1 cells is more sensitive to 3-BrPa than is the production of IL-17A by Th17 cells. Finally, in transfer models of EAE, 3-BrPa robustly attenuates the encephalitogenic potential of EAE-driving immune cells. To our knowledge, these data are among the first to demonstrate the metabolic properties of T cells in the demyelinating CNS in vivo.
Collapse
Affiliation(s)
- Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908.,Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908.,Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Max Stevenson
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Abagail M Rosen
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Sanja Arandjelovic
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908; and
| | - Lelisa Gemta
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Timothy N J Bullock
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908;
| |
Collapse
|
35
|
Chen TC, Yu J, Nouri Nigjeh E, Wang W, Myint PT, Zandi E, Hofman FM, Schönthal AH. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells. Cancer Lett 2017; 400:161-174. [PMID: 28450161 DOI: 10.1016/j.canlet.2017.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously published models on the role of supplemental antioxidants: Rather than quenching reactive oxygen species (ROS), supplemental NAC or GSH directly interact with 3-BP, thereby neutralizing the drug's cytotoxic potential before it can trigger ROS production. Altogether, our study introduces new aspects of the cytotoxic mechanism of 3-BP, and characterizes NEO218 as an analog able to overcome a key cellular defense mechanism towards this drug.
Collapse
Affiliation(s)
- Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jiali Yu
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Eslam Nouri Nigjeh
- Research Center for Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Phyo Thazin Myint
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ebrahim Zandi
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Florence M Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices. Sci Rep 2017; 7:46213. [PMID: 28387379 PMCID: PMC5384208 DOI: 10.1038/srep46213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/20/2023] Open
Abstract
Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.
Collapse
|
37
|
Liu K, Tang Z, Huang A, Chen P, Liu P, Yang J, Lu W, Liao J, Sun Y, Wen S, Hu Y, Huang P. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int J Oncol 2017; 50:252-262. [PMID: 27878251 DOI: 10.3892/ijo.2016.3774] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in multiple cellular functions including metabolism and gene transcription. Our previous study showed that GAPDH expression was elevated in colon cancer and further upregulated in liver metastatic tissues, suggesting a possilbe role of GAPDH in promoting cancer metastasis. The present study was designed to investigate the underlying mechanism, using multiple experimental approaches including genetic silencing of GAPDH expression by short hairpin RNA (shRNA) and biochemcial/molecular analyses of the key events involved in glycolytic metabolism and epithelial-mesenchymal transition (EMT). We showed that silencing of GAPDH expression resulted in a significant reduction of glycolysis in colon cancer cell lines, accompanied by a decrease in cell proliferation and an apparent change in cell morphology associated with alterations in actin expression and phalloidine staining patterns. Furthermore, GAPDH suppression also caused a downregulation of gene expression involved in cancer stem-like cells and EMT. CHIP assay and co-immunoprecipitation revealed that GAPDH physically interacted with the transcriptional factor Sp1 and enhance the expression of SNAIL, a major regulator of EMT. Suppression of GAPDH expression resulted in a signficant decrease in SNAIL expression, leading to inhibition of EMT and attenuation of colon cancer cell migration in vitro and reduced metastasis in vivo. Overall, the present study suggests that GAPDH plays an important role in cancer metastasis by affecting EMT through regulation of Sp1-mediated SNAIL expression.
Collapse
Affiliation(s)
- Kaiyan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Zhenjie Tang
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Amin Huang
- Department of Medical Oncology, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Ping Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Panpan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jianwei Liao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yicheng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
38
|
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, Sgarbi G, Baracca A, Pinton P, Riva G, Rampazzo E, Petrizza L, Prodi L, Milani D, Luppi M, Potenza L, De Pol A, Cocco L, Capitani S, Marmiroli S. Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget 2016; 7:5521-37. [PMID: 26575168 PMCID: PMC4868703 DOI: 10.18632/oncotarget.6315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways.
Collapse
Affiliation(s)
- Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Gibellini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Chiara Frasson
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Raffaella Bosco
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Giovanni Riva
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Enrico Rampazzo
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
39
|
Magangane P, Sookhayi R, Govender D, Naidoo R. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients. J Mol Histol 2016; 47:565-577. [PMID: 27696080 DOI: 10.1007/s10735-016-9695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.
Collapse
Affiliation(s)
- Pumza Magangane
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Raveendra Sookhayi
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
40
|
Marín-Hernández Á, Rodríguez-Zavala JS, Del Mazo-Monsalvo I, Rodríguez-Enríquez S, Moreno-Sánchez R, Saavedra E. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps. Front Physiol 2016; 7:412. [PMID: 27721794 PMCID: PMC5033973 DOI: 10.3389/fphys.2016.00412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the flux-controlling steps is a more potent mechanism than competitive and mixed-type inhibition to efficiently perturb cancer glycolysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Mexico City, Mexico
| |
Collapse
|
41
|
The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016; 48:349-62. [PMID: 27457582 DOI: 10.1007/s10863-016-9670-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Collapse
|
42
|
Huang A, Ju HQ, Liu K, Zhan G, Liu D, Wen S, Garcia-Manero G, Huang P, Hu Y. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer Lett 2016; 377:149-57. [PMID: 27132990 DOI: 10.1016/j.canlet.2016.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
Abstract
Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation.
Collapse
Affiliation(s)
- Amin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiyan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guilian Zhan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Daolu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
43
|
Ho N, Morrison J, Silva A, Coomber BL. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep 2016; 36:e00299. [PMID: 26740252 PMCID: PMC4759612 DOI: 10.1042/bsr20150267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation.
Collapse
Affiliation(s)
- Nelson Ho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jodi Morrison
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andreza Silva
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
44
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
45
|
Prati F, Bergamini C, Molina MT, Falchi F, Cavalli A, Kaiser M, Brun R, Fato R, Bolognesi ML. 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. J Med Chem 2015; 58:6422-34. [DOI: 10.1021/acs.jmedchem.5b00748] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Federica Prati
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Teresa Molina
- Instituto de Química Médica (IQM-CSIC), c/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Federico Falchi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marcel Kaiser
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Romana Fato
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
46
|
Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett 2015; 368:88-96. [PMID: 26254540 DOI: 10.1016/j.canlet.2015.07.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Sulfasalazine (SSZ) is an anti-inflammatory drug that has been demonstrated to induce apoptosis and tumor regression through inhibition of plasma membrane cystine transporter xc(-). Cysteine is a rate-limiting precursor for intracellular glutathione (GSH) synthesis, which is vital for compound detoxification and maintaining redox balance. Platinum-based chemotherapy is an important regimen used in clinics for various cancers including colorectal cancer (CRC). We hypothesized that targeting xc(-) transporter by SSZ may annihilate cellular detoxification through interruption of GSH synthesis and may enhance the anti-cancer activity of cisplatin (CDDP) by increasing drug transport. In the present study, we revealed that xCT, the active subunit of xc(-), is highly expressed in CRC cell lines and human colorectal carcinoma tissues compared with their normal counterparts. SSZ effectively depleted cellular GSH, leading to significant accumulation of reactive oxygen species and growth inhibition in CRC cells. In contrast, the normal epithelial cells of colon origin were less sensitive to SSZ, showing a moderate ROS elevation. Importantly, SSZ effectively enhanced the intracellular platinum level and cytotoxicity of CDDP in CRC cells. The synergistic effect of SSZ and CDDP was reversed by antioxidant N-acetyl-L-cysteine (NAC). Together, these results suggest that SSZ, a relatively non-toxic drug that targets cystine transporter, may, in combination with CDDP, have effective therapy for colorectal cancer.
Collapse
|
47
|
Ooi AT, Gomperts BN. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Clin Cancer Res 2015; 21:2440-4. [PMID: 25838393 DOI: 10.1158/1078-0432.ccr-14-1209] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be one of the main hallmarks of cancer. The aberrant expression pattern of key regulators in the glycolysis pathway in cancer cells corroborates with the hypothesis that most cancer cells utilize aerobic glycolysis as their main ATP production method instead of mitochondrial oxidative phosphorylation. Overexpression of SLC2A1 and LDHA, both important regulators of the glycolysis pathway, was detected in the premalignant lesions and tumors of lung cancer patients, suggesting the involvement of these proteins in early carcinogenesis and tumor progression in cancer. Preclinical studies demonstrated that inhibiting SLC2A1 or LDHA led to diminished tumor growth in vitro and in vivo. SLC2A1 and LDHA inhibitors, when administered in combination with other chemotherapeutic agents, showed synergistic antitumor effects by resensitizing chemoresistant cancer cells to the chemotherapies. These results indicate that disrupting SLC2A1, LDHA, or other regulators in cancer cell energetics is a very promising approach for new targeted therapies.
Collapse
Affiliation(s)
- Aik T Ooi
- Mattel Children's Hospital UCLA, Department of Pediatrics, UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- Mattel Children's Hospital UCLA, Department of Pediatrics, UCLA, Los Angeles, California. Pulmonary Medicine, UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California. Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, California.
| |
Collapse
|
48
|
Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS One 2015; 10:e0118663. [PMID: 25738776 PMCID: PMC4349452 DOI: 10.1371/journal.pone.0118663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM2 resulted in high PKM2 expression in tumors, providing a great advantage to tumor cells. However, this traditional view was challenged by two recent studies; one study claimed that this isoform switch does not occur during the Warburg effect; the other study asserted that the isoform switch is tissue-specific. Here, we re-analyzed the RNA sequencing data of 25 types of human tumors from The Cancer Genome Atlas Data Portal, and confirmed that PKM2 was the major isoform in the tumors and was highly elevated in addition to the entire PKM gene. We further demonstrated that the expression level of PKM1 significantly declined even though there was substantially increased expression of the entire PKM gene. The proportion of PKM1 in total transcript variants also significantly declined in tumors but the proportion of PKM2 did not change accordingly. Therefore, we conclude that the isoform switch of PKM1 does indeed occur, but it switches to other isoforms rather than PKM2. Considering the change in the expression levels of PKM1, PKM2 and the entire PKM gene, we propose that the upregulation of PKM2 is primarily due to elevated transcriptional levels of the entire PKM gene, instead of the isoform switch.
Collapse
|
49
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
50
|
Byrne FL, Poon IKH, Modesitt SC, Tomsig JL, Chow JDY, Healy ME, Baker WD, Atkins KA, Lancaster JM, Marchion DC, Moley KH, Ravichandran KS, Slack-Davis JK, Hoehn KL. Metabolic vulnerabilities in endometrial cancer. Cancer Res 2014; 74:5832-45. [PMID: 25205105 DOI: 10.1158/0008-5472.can-14-0254] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Women with metabolic disorders, including obesity and diabetes, have an increased risk of developing endometrial cancer. However, the metabolism of endometrial tumors themselves has been largely understudied. Comparing human endometrial tumors and cells with their nonmalignant counterparts, we found that upregulation of the glucose transporter GLUT6 was more closely associated with the cancer phenotype than other hallmark cancer genes, including hexokinase 2 and pyruvate kinase M2. Importantly, suppression of GLUT6 expression inhibited glycolysis and survival of endometrial cancer cells. Glycolysis and lipogenesis were also highly coupled with the cancer phenotype in patient samples and cells. To test whether targeting endometrial cancer metabolism could be exploited as a therapeutic strategy, we screened a panel of compounds known to target diverse metabolic pathways in endometrial cells. We identified that the glycolytic inhibitor, 3-bromopyruvate, is a powerful antagonist of lipogenesis through pyruvylation of CoA. We also provide evidence that 3-bromopyruvate promotes cell death via a necrotic mechanism that does not involve reactive oxygen species and that 3-bromopyruvate impaired the growth of endometrial cancer xenografts.
Collapse
Affiliation(s)
- Frances L Byrne
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ivan K H Poon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Susan C Modesitt
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Jose L Tomsig
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jenny D Y Chow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Marin E Healy
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - William D Baker
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Johnathan M Lancaster
- Departments of Women's Oncology and Experimental Therapeutics Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Douglas C Marchion
- Departments of Women's Oncology and Experimental Therapeutics Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Jill K Slack-Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. Cancer Center, University of Virginia, Charlottesville, Virginia
| | - Kyle L Hoehn
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia. Cancer Center, University of Virginia, Charlottesville, Virginia. Department of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|