1
|
Walgama C, Raj N. Silver nanoparticles in electrochemical immunosensing and the emergence of silver-gold galvanic exchange detection. Chem Commun (Camb) 2023; 59:11161-11173. [PMID: 37603415 DOI: 10.1039/d3cc02561f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Nanoparticle-based electrochemical immunosensors demonstrate high sensitivity toward biomarker detection due to the large surface area of the nanoparticles and their ability to amplify the signal of the target molecule. Additionally, they have a fast response time, relatively lower cost, and can be easily miniaturized for point-of-care applications. Among noble metals, silver nanoparticles (AgNPs) have been extensively used in electrochemical sensors due to their unique properties, such as catalytic activity and excellent electrical conductivity. This Feature Article describes six approaches for incorporating AgNPs in electrochemical platforms, featuring the most recent developments in the silver-gold galvanic exchange-based detection strategy. With a few exceptions, many of these detection methods use AgNP oxidation into Ag+ ions, followed by electrodeposition of Ag+ ions onto the working electrode as zero-valent Ag metal and a final stripping step using a voltammetric technique. Combining these steps provides desirable low detection limits and good sensitivity for various biomarkers. A few other methods involved the reduction of Ag+ ions and depositing them as Ag metal onto the electrode using a reagent mixture so that the striping analysis could be performed. Typically, this reagent mixture includes Ag+ ions, a reducing agent, or an enzyme substrate. Besides, AgNPs have also been directly used to modify the surface of electrodes to facilitate kinetically favored redox-mediated electrochemical reactions. In addition to Ag detection methods, this report will also provide recent examples to illustrate how the size and shape of AgNPs impact the detection limits and sensitivity of an electrochemical assay. Finally, we discuss recent developments in lab-on-a-chip type immunosensors designed explicitly for Ag-based metalloimmunoassay detection, and we envision that this article will provide a comprehensive summary of the operational principles and new insights into such immunoassay systems.
Collapse
Affiliation(s)
- Charuksha Walgama
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA.
| | - Nikhil Raj
- Amgen Inc, 1 Amgen Center Dr, Thousand Oaks, CA 91320, USA
| |
Collapse
|
2
|
Ag nanoparticles outperform Au nanoparticles for the use as label in electrochemical point-of-care sensors. Anal Bioanal Chem 2021; 414:475-483. [PMID: 33787969 PMCID: PMC8748320 DOI: 10.1007/s00216-021-03288-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/04/2023]
Abstract
Electrochemical immunosensors enable rapid analyte quantification in small sample volumes, and have been demonstrated to provide high sensitivity and selectivity, simple miniaturization, and easy sensor production strategies. As a point-of-care (POC) format, user-friendliness is equally important and most often not combinable with high sensitivity. As such, we demonstrate here that a sequence of metal oxidation and reduction, followed by stripping via differential pulse voltammetry (DPV), provides lowest limits of detection within a 2-min automatic measurement. In exchanging gold nanoparticles (AuNPs), which dominate in the development of POC sensors, with silver nanoparticles (AgNPs), not only better sensitivity was obtained, but more importantly, the assay protocol could be simplified to match POC requirements. Specifically, we studied both nanoparticles as reporter labels in a sandwich immunoassay with the blood protein biomarker NT-proBNP. For both kinds of nanoparticles, the dose-response curves easily covered the ng∙mL−1 range. The mean standard deviation of all measurements of 17% (n ≥ 4) and a limit of detection of 26 ng∙mL−1 were achieved using AuNPs, but their detection requires addition of HCl, which is impossible in a POC format. In contrast, since AgNPs are electrochemically less stable, they enabled a simplified assay protocol and provided even lower LODs of 4.0 ng∙mL−1 in buffer and 4.7 ng∙mL−1 in human serum while maintaining the same or even better assay reliability, storage stability, and easy antibody immobilization protocols. Thus, in direct comparison, AgNPs clearly outperform AuNPs in desirable POC electrochemical assays and should gain much more attention in the future development of such biosensors.
Collapse
|
3
|
Martín-Yerga D. Electrochemical Detection and Characterization of Nanoparticles with Printed Devices. BIOSENSORS 2019; 9:E47. [PMID: 30925772 PMCID: PMC6627282 DOI: 10.3390/bios9020047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Innovative methods to achieve the user-friendly, quick, and highly sensitive detection of nanomaterials are urgently needed. Nanomaterials have increased importance in commercial products, and there are concerns about the potential risk that they entail for the environment. In addition, detection of nanomaterials can be a highly valuable tool in many applications, such as biosensing. Electrochemical methods using disposable, low-cost, printed electrodes provide excellent analytical performance for the detection of a wide set of nanomaterials. In this review, the foundations and latest advances of several electrochemical strategies for the detection of nanoparticles using cost-effective printed devices are introduced. These strategies will equip the experimentalist with an extensive toolbox for the detection of nanoparticles of different chemical nature and possible applications ranging from quality control to environmental analysis and biosensing.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
4
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
5
|
Pani A, Thanh TD, Kim NH, Lee JH, Yun SI. Peanut skin extract mediated synthesis of gold nanoparticles, silver nanoparticles and gold-silver bionanocomposites for electrochemical Sudan IV sensing. IET Nanobiotechnol 2018; 10:431-437. [PMID: 27906146 DOI: 10.1049/iet-nbt.2016.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sustainable methods are needed for rapid and efficient detection of environmental and food pollutants. The Sudan group of dyes has been used extensively as adulterants in food and also are found to be polluting the soil and water bodies. There have been several methods for detection of Sudan dyes, but most of them are not practical enough for common use. In this study, the electrochemical detection efficiency and stability of gold nanoparticle (AuNPs), silver NPs and Au-Ag bionanocomposites, synthesised by peanut skin extract, modified glassy carbon electrode has been investigated. The synthesised nanomaterial samples were characterised, for their quality and quantity, using ultra-visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscope and field emission scanning electron microscope. The nanomaterial hybrid electrodes showed great efficiency and stability in the detection of Sudan IV compared with the other previous electrodes. The peak current of the Sudan IV oxidation and reduction was found to be proportional to its concentration, in the range of 10-80 µM, with a detection limit of 4 µM. The hybrid electrodes showed 90% stability in detection for 20 cycles.
Collapse
Affiliation(s)
- Alok Pani
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Tran Duy Thanh
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Nam Hoon Kim
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Joong Hee Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
6
|
Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018; 159:406-424. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Hitit University, Faculty of Arts and Sciences, Department of Chemistry, Corum, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey.
| |
Collapse
|
7
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Design of dual working electrodes for concentration process in metalloimmunoassay. Biomed Microdevices 2016; 18:86. [PMID: 27572238 DOI: 10.1007/s10544-016-0114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrochemical immunosensing, particularly through a metalloimmunoassay, is a promising approach for development of point-of-care (POC) diagnostics devices. This study investigated the structure of dual working electrodes (W1 and W2), used in a silver nanoparticles-labeled sandwich-type immunoassay and silver concentration process, paying special attention to the position of W1 relative to W2. The new structures of the dual working electrodes were fabricated for efficient silver concentration and evaluated experimentally, which showed that the duration of prereduction before current measurement decreased from 480 s to 300 s by transforming the position of W1 from 1 line to 2 lines or 6 parts. The experimental results were also compared with numerical simulations based on three-dimensional diffusion, and the prereduction step almost followed the three-dimensional diffusion equation. Using numerical simulations, the ideal structures of dual working electrodes were designed based on relationships between the structures and duration of prereduction or the LOD. In the case of 36 lines at an area ratio of W1 to W1 + W2 of 1 to 10, the prereduction duration decreased to 96 s. The dual working electrodes designed in this study promise to shorten the total analysis time and lower the LOD for POC diagnostics.
Collapse
|
9
|
Cunningham JC, Kogan MR, Tsai YJ, Luo L, Richards I, Crooks RM. Paper-Based Sensor for Electrochemical Detection of Silver Nanoparticle Labels by Galvanic Exchange. ACS Sens 2015. [DOI: 10.1021/acssensors.5b00051] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Josephine C. Cunningham
- Department
of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Molly R. Kogan
- Department
of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Yi-Ju Tsai
- Department
of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Long Luo
- Department
of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Ian Richards
- Interactives Executive Excellence LLC, 201 North Weston Lane, Austin, Texas 78733, United States
| | - Richard M. Crooks
- Department
of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Hori N, Chikae M, Kirimura H, Takamura Y. pH dependence of non-specific adsorption and detection solution in electrochemical metalloimmunoassay using antibody–silver nanoparticle conjugates. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Tchekwagep PMS, Nanseu-Njiki CP, Ngameni E, Danielsson R, Arnebrant T, Ruzgas T. Determination of Total Protein Concentration in Solution Using Gold Electrode Modified with Silver Nanoparticles. ELECTROANAL 2014. [DOI: 10.1002/elan.201400424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Boudebbouze S, Coleman AW, Tauran Y, Mkaouar H, Perret F, Garnier A, Brioude A, Kim B, Maguin E, Rhimi M. Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to gram positive and gram negative bacteria. Chem Commun (Camb) 2014; 49:7150-2. [PMID: 23831853 DOI: 10.1039/c3cc42838a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Silver nanoparticles capped with nine different sulphonated calix[n]arenes were tested for their anti-bacterial effects against B. subtilis and E. coli at an apparent concentration of 100 nM in calix[n]arene. The results show the para-sulphonato-calix[n]arenes are active against Gram positive bacteria and the derivatives having sulphonate groups at both para and alkyl terminal positions are active against Gram negative bacteria. The calix[6]arene derivative with only O-alkyl sulphonate groups shows bactericidal activity.
Collapse
|
13
|
|
14
|
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B. Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 2013; 4:35-63. [PMID: 23977421 PMCID: PMC3746278 DOI: 10.4331/wjbc.v4.i3.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health.
Collapse
|
15
|
Abstract
This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.
Collapse
Affiliation(s)
- Anthony P F Turner
- Biosensors & Bioelectronics Centre, IFM, Linköping University, S-58183, Linköping, Sweden.
| |
Collapse
|
16
|
Wilson P, Szymanski M, Porter R. Standardisation of metalloimmunoassay protocols for assessment of silver nanoparticle antibody conjugates. J Immunol Methods 2013; 387:303-7. [DOI: 10.1016/j.jim.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|
17
|
Szymanski MS, Porter RA. Preparation and quality control of silver nanoparticle-antibody conjugate for use in electrochemical immunoassays. J Immunol Methods 2012; 387:262-9. [PMID: 23153725 DOI: 10.1016/j.jim.2012.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Metal nanoparticle-antibody conjugates are often used as optical or electrochemical markers in applications like immunohistochemistry, lateral flow tests, biosensors and immunoassays. In order to serve that role, an antibody needs to be immobilized on the surface of the nanoparticle. This is easily done, as proteins bind to gold and silver nanoparticles spontaneously. However, this immobilization process might result in nanoparticle aggregation or the loss of the bioactivity of the conjugated antibodies. In this work the optimization of antibody immobilization on silver colloid in order to obtain conjugates with the best possible activity is investigated. The parameters investigated were the type of immobilization buffer, its molarity and pH, the nanoparticle/antibody ratio and also blocking and washing protocols to reduce non-specific binding. The functionality of the obtained conjugates was tested with electrochemical immunoassay. It was found out that the optimum environment for immobilization of an anti-myoglobin antibody on silver nanoparticles was 0.2M boric acid pH 6.5 with 10 μg of antibody loading per 1 mL of silver colloid. For an anti-troponin antibody it was 0.1M boric acid pH 7.5 also with 10 μg/mL of antibody loading. The main problem for silver conjugation was the tendency of silver nanoparticles to aggregate during the immobilization process, but by choosing the optimum conditions the aggregation problem was completely removed. Here it is demonstrated that by using the conjugates prepared with an optimized protocol an increase in the sensitivity of the assay 10 times can be achieved. The electrochemical immunoassay described here can be used as a test for quality control of conjugates and for the estimation of batch-to-batch variability.
Collapse
Affiliation(s)
- Mateusz S Szymanski
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | | |
Collapse
|
18
|
Eltzov E, Cosnier S, Marks RS. Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. Expert Rev Mol Diagn 2012; 11:533-46. [PMID: 21707461 DOI: 10.1586/erm.11.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemical and optical biosensors exist to monitor different fluids containing analytes of interest. Until today, these have been developed separately. Owing to the creation of new transducer configurations such as indium tin-coated glass fiber optics, these methods can now be used separately, in parallel and it is hoped that one day they will be able to be used simultaneously; thus, using the same probe to measure a single analyte using two different methods (electrochemical and optical) or two different analytes with either of the aforementioned methods sitting on the same probe. This article will highlight the importance, as well as the usefulness, of combining measurement methodologies in improving sensor response and sensitivity.
Collapse
Affiliation(s)
- Evgeni Eltzov
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
19
|
Giovanni M, Pumera M. Size Dependant Electrochemical Behavior of Silver Nanoparticles with Sizes of 10, 20, 40, 80 and 107 nm. ELECTROANAL 2012. [DOI: 10.1002/elan.201100690] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Hao N, Li H, long Y, Zhang L, Zhao X, Xu D, Chen HY. An electrochemical immunosensing method based on silver nanoparticles. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tang J, Tang D, Su B, Li Q, Qiu B, Chen G. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.02.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Giovanni M, Pumera M. Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2010.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Szymanski M, Porter R, Dep GV, Wang Y, Haggett BGD. Silver nanoparticles and magnetic beads with electrochemical measurement as a platform for immunosensing devices. Phys Chem Chem Phys 2011; 13:5383-7. [DOI: 10.1039/c1cp20187e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Immobilization of metallothionein to carbon paste electrode surface via anti-MT antibodies and its use for biosensing of silver. Biosens Bioelectron 2011; 26:2201-7. [DOI: 10.1016/j.bios.2010.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 11/19/2022]
|
25
|
Wu W, Yi P, He P, Jing T, Liao K, Yang K, Wang H. Nanosilver-doped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies. Anal Chim Acta 2010; 673:126-32. [DOI: 10.1016/j.aca.2010.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/29/2022]
|