BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem 2014; 5(1): 58-67 [PMID: 24600514 DOI: 10.4331/wjbc.v5.i1.58]
URL: https://www.wjgnet.com/1949-8454/full/v5/i1/58.htm
Number Citing Articles
1
Derek A. Terrar. Calcium SignalingAdvances in Experimental Medicine and Biology 2020; 1131: 395 doi: 10.1007/978-3-030-12457-1_16
2
Robert N. Mahon, Richard Hafner. Immune Cell Regulatory Pathways Unexplored as Host-Directed Therapeutic Targets forMycobacterium tuberculosis: An Opportunity to Apply Precision Medicine Innovations to Infectious DiseasesClinical Infectious Diseases 2015; 61(suppl 3): S200 doi: 10.1093/cid/civ621
3
Valeria Gasperi, Matteo Sibilano, Isabella Savini, Maria Catani. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical ApplicationsInternational Journal of Molecular Sciences 2019; 20(4): 974 doi: 10.3390/ijms20040974
4
Liangren Zhang, Jianbo Yue, Li-He Zhang. Cyclic Adenosine 5′-Diphosphoribose (cADPR) Mimics Used as Molecular Probes in Cell SignalingThe Chemical Record 2015; 15(2): 511 doi: 10.1002/tcr.201402072
5
Joanna M. Swarbrick, Andrew M. Riley, Stephen J. Mills, Barry V.L. Potter. Designer small molecules to target calcium signallingBiochemical Society Transactions 2015; 43(3): 417 doi: 10.1042/BST20140293
6
Donald M. Bryant, Kimberly Johnson, Tia DiTommaso, Timothy Tickle, Matthew Brian Couger, Duygu Payzin-Dogru, Tae J. Lee, Nicholas D. Leigh, Tzu-Hsing Kuo, Francis G. Davis, Joel Bateman, Sevara Bryant, Anna R. Guzikowski, Stephanie L. Tsai, Steven Coyne, William W. Ye, Robert M. Freeman, Leonid Peshkin, Clifford J. Tabin, Aviv Regev, Brian J. Haas, Jessica L. Whited. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration FactorsCell Reports 2017; 18(3): 762 doi: 10.1016/j.celrep.2016.12.063
7
Yong-Xiao Wang, Jorge Reyes-García, Annarita Di Mise, Yun-Min Zheng. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertensionJournal of General Physiology 2023; 155(3) doi: 10.1085/jgp.202213100
8
Fabiana Di Gianvincenzo, Cecil Krarup Andersen, Troels Filtenborg, Meaghan Mackie, Madeleine Ernst, Jazmín Ramos Madrigal, Jesper V. Olsen, Jørgen Wadum, Enrico Cappellini. Proteomic identification of beer brewing products in the ground layer of Danish Golden Age paintingsScience Advances 2023; 9(21) doi: 10.1126/sciadv.ade7686
9
Ross Grant, Jade Berg, Richard Mestayer, Nady Braidy, James Bennett, Susan Broom, James Watson. A Pilot Study Investigating Changes in the Human Plasma and Urine NAD+ Metabolome During a 6 Hour Intravenous Infusion of NAD+Frontiers in Aging Neuroscience 2019; 11 doi: 10.3389/fnagi.2019.00257
10
Evangelos Terpos, Kimon Stamatelopoulos, Nikolaos Makris, Georgios Georgiopoulos, Ioannis Ntanasis-Stathopoulos, Maria Gavriatopoulou, Ageliki Laina, Evangelos Eleutherakis-Papaiakovou, Despina Fotiou, Nikolaos Kanellias, Panagiotis Malandrakis, Dimitris Delialis, Ioanna Andreadou, Efstathios Kastritis, Meletios A. Dimopoulos. Daratumumab May Attenuate Cardiac Dysfunction Related to Carfilzomib in Patients with Relapsed/Refractory Multiple Myeloma: A Prospective StudyCancers 2021; 13(20): 5057 doi: 10.3390/cancers13205057
11
Kodappully S. Siveen, Kirti S. Prabhu, Aeijaz S. Parray, Maysaloun Merhi, Abdelilah Arredouani, Mohamed Chikri, Shahab Uddin, Said Dermime, Ramzi M. Mohammad, Martin Steinhoff, Ibrahim A. Janahi, Fouad Azizi. Evaluation of cationic channel TRPV2 as a novel biomarker and therapeutic target in Leukemia-Implications concerning the resolution of pulmonary inflammationScientific Reports 2019; 9(1) doi: 10.1038/s41598-018-37469-8
12
Marcos J. Ramos-Benitez, Caleb Ruiz-Jimenez, Jose J. Rosado-Franco, Willy D. Ramos-Pérez, Loyda B. Mendez, Antonio Osuna, Ana M. Espino, Ira J. Blader. Fh15 Blocks the Lipopolysaccharide-Induced Cytokine Storm While Modulating Peritoneal Macrophage Migration and CD38 Expression within Spleen Macrophages in a Mouse Model of Septic ShockmSphere 2018; 3(6) doi: 10.1128/mSphere.00548-18
13
Qi Li, Chenyi Wu, Zhenlong Liu, Huiqing Zhang, Yuna Du, Yuxiang Liu, Kuangyu Song, Qiaofa Shi, Rong Li. Increased TLR4 Expression Aggravates Sepsis by Promoting IFN-γExpression in CD38−/−MiceJournal of Immunology Research 2019; 2019: 1 doi: 10.1155/2019/3737890
14
Sarah-Marie Saatori, Tanner J. Perez, Steven M. Graham. Variable-Temperature NMR Spectroscopy, Conformational Analysis, and Thermodynamic Parameters of Cyclic Adenosine 5′-Diphosphate Ribose Agonists and AntagonistsThe Journal of Organic Chemistry 2018; 83(5): 2554 doi: 10.1021/acs.joc.7b02749
15
Qian-Yi Peng, Mei-Lin Ai, Li-Na Zhang, Yu Zou, Xin-Hua Ma, Yu-Hang Ai. Blocking NAD+/CD38/cADPR/Ca2+ pathway in sepsis prevents organ damageJournal of Surgical Research 2016; 201(2): 480 doi: 10.1016/j.jss.2015.11.029
16
Wei Chen, Jingjing Huang, Yueqiang Hu, Seyed Esmaeil Khoshnam, Alireza Sarkaki. Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic StrokeTranslational Stroke Research 2020; 11(6): 1214 doi: 10.1007/s12975-020-00828-7
17
Long Gao, Xiaohong Du, Jiabin Li, F. Xiao-Feng Qin. Evolving roles of CD38 metabolism in solid tumour microenvironmentBritish Journal of Cancer 2023; 128(4): 492 doi: 10.1038/s41416-022-02052-6
18
Hongxing Wang, Kehua Fang, Weining Yan, Xiaotian Chang. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38Journal of Innate Immunity 2022; 14(2): 148 doi: 10.1159/000516642
19
Anne Roulston, Gordon C. Shore. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncologyMolecular & Cellular Oncology 2016; 3(1): e1052180 doi: 10.1080/23723556.2015.1052180
20
Leopoldo Santos-Argumedo. Encyclopedia of Signaling Molecules2016; : 1 doi: 10.1007/978-1-4614-6438-9_278-1
21
Ramoji Kosuru, Magdalena Chrzanowska. Integration of Rap1 and Calcium SignalingInternational Journal of Molecular Sciences 2020; 21(5): 1616 doi: 10.3390/ijms21051616
22
Yoonjeong Jeon, Yun Lim, Jiwoo Yeom, Eun-Kyoung Kim. Comparative metabolic profiling of posterior parietal cortex, amygdala, and hippocampus in conditioned fear memoryMolecular Brain 2021; 14(1) doi: 10.1186/s13041-021-00863-x
23
Leopoldo Santos-Argumedo. Encyclopedia of Signaling Molecules2018; : 869 doi: 10.1007/978-3-319-67199-4_278
24
Tatjana Ruskovska, David A. Bernlohr. The Role of NAD+ in Metabolic Regulation of Adipose Tissue: Implications for Obesity-Induced Insulin ResistanceBiomedicines 2023; 11(9): 2560 doi: 10.3390/biomedicines11092560
25
Maria Gerasimenko, Stanislav M. Cherepanov, Kazumi Furuhara, Olga Lopatina, Alla B. Salmina, Anna A. Shabalova, Chiharu Tsuji, Shigeru Yokoyama, Katsuhiko Ishihara, Charles Brenner, Haruhiro Higashida. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorderScientific Reports 2020; 10(1) doi: 10.1038/s41598-019-57236-7
26
Anthony J. Covarrubias, Abhijit Kale, Rosalba Perrone, Jose Alberto Lopez-Dominguez, Angela Oliveira Pisco, Herbert G. Kasler, Mark S. Schmidt, Indra Heckenbach, Ryan Kwok, Christopher D. Wiley, Hoi-Shan Wong, Eddy Gibbs, Shankar S. Iyer, Nathan Basisty, Qiuxia Wu, Ik-Jung Kim, Elena Silva, Kaitlyn Vitangcol, Kyong-Oh Shin, Yong-Moon Lee, Rebeccah Riley, Issam Ben-Sahra, Melanie Ott, Birgit Schilling, Morten Scheibye-Knudsen, Katsuhiko Ishihara, Stephen R. Quake, John Newman, Charles Brenner, Judith Campisi, Eric Verdin. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophagesNature Metabolism 2020; 2(11): 1265 doi: 10.1038/s42255-020-00305-3
27
Massimiliano Gasparrini, Leonardo Sorci, Nadia Raffaelli. Enzymology of extracellular NAD metabolismCellular and Molecular Life Sciences 2021; 78(7): 3317 doi: 10.1007/s00018-020-03742-1
28
Kehui Zhang, Lihong Huang, Yang Cai, Yi Zhong, Nanjun Chen, Fei Gao, Liang Zhang, Qi Li, Zhenming Liu, Rongxin Zhang, Liangren Zhang, Jianbo Yue. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infectionThe FEBS Journal 2023; 290(22): 5353 doi: 10.1111/febs.16920
29
E S Severin. New approaches to targeted drug delivery to tumour cellsRussian Chemical Reviews 2015; 84(1): 43 doi: 10.1070/RCR4468
30
Catherine Y Cheng, Julia Böhme, Amit Singhal. Metabolic energy sensors as targets for designing host-directed therapies for tuberculosisJournal of Leukocyte Biology 2018; 103(2): 215 doi: 10.1189/jlb.4MR0617-226R
31
Uroš Javornik, Janez Plavec, Baifan Wang, Steven M. Graham. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibriaCarbohydrate Research 2018; 455: 71 doi: 10.1016/j.carres.2017.11.006
32
Jocelyn C. Pérez-Lara, Enrique Espinosa, Leopoldo Santos-Argumedo, Héctor Romero-Ramírez, Gabriela López-Herrera, Fabio García-García, Claudia Sandoval-Montes, Vianney Ortiz-Navarrete, Mónica Flores-Muñoz, Juan C. Rodríguez-Alba. CD38 Correlates with an Immunosuppressive Treg Phenotype in Lupus-Prone MiceInternational Journal of Molecular Sciences 2021; 22(21): 11977 doi: 10.3390/ijms222111977
33
David B Ramsden, Rosemary H Waring, David J Barlow, Richard B Parsons. NicotinamideN-Methyltransferase in Health and CancerInternational Journal of Tryptophan Research 2017; 10: 117864691769173 doi: 10.1177/1178646917691739
34
Yue Liu, James Clement, Ross Grant, Perminder Sachdev, Nady Braidy. Quantitation of NAD+: Why do we need to measure it?Biochimica et Biophysica Acta (BBA) - General Subjects 2018; 1862(12): 2527 doi: 10.1016/j.bbagen.2018.07.023
35
David Pajuelo, Norberto Gonzalez‐Juarbe, Michael Niederweis. NAD hydrolysis by the tuberculosis necrotizing toxin induces lethal oxidative stress in macrophagesCellular Microbiology 2020; 22(1) doi: 10.1111/cmi.13115
36
Qian-Yi Peng, Yu Zou, Li-Na Zhang, Mei-Lin Ai, Wei Liu, Yu-Hang Ai. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in RatsChinese Medical Journal 2016; 129(14): 1725 doi: 10.4103/0366-6999.185854
37
Jae Woo Park, Se Eun Park, Wuhyun Koh, Won Hee Jang, Jong Han Choi, Eun Roh, Gil Myoung Kang, Seong Jun Kim, Hyo Sun Lim, Chae Beom Park, So Yeon Jeong, Sang Yun Moon, Chan Hee Lee, Sang Yeob Kim, Hyung Jin Choi, Se Hee Min, C. Justin Lee, Min-Seon Kim. Hypothalamic astrocyte NAD+ salvage pathway mediates the coupling of dietary fat overconsumption in a mouse model of obesityNature Communications 2024; 15(1) doi: 10.1038/s41467-024-46009-0
38
Leila Sadeghi, Reza Yekta, Gholamreza Dehghan. New mechanisms of phenytoin in calcium homeostasis: competitive inhibition of CD38 in hippocampal cellsDARU Journal of Pharmaceutical Sciences 2018; 26(2): 191 doi: 10.1007/s40199-018-0224-2
39
Rubén Zapata‐Pérez, Ronald J A Wanders, Clara D M van Karnebeek, Riekelt H Houtkooper. NAD + homeostasis in human health and disease EMBO Molecular Medicine 2021; 13(7) doi: 10.15252/emmm.202113943
40
Wenjie Wei, Yingying Lu, Baixia Hao, Kehui Zhang, Qian Wang, Andrew L. Miller, Liang-Ren Zhang, Li-He Zhang, Jianbo Yue. CD38 Is Required for Neural Differentiation of Mouse Embryonic Stem Cells by Modulating Reactive Oxygen SpeciesStem Cells 2015; 33(9): 2664 doi: 10.1002/stem.2057
41
John WR Kincaid, Nathan A Berger. NAD metabolism in aging and cancerExperimental Biology and Medicine 2020; 245(17): 1594 doi: 10.1177/1535370220929287
42
João Meireles Ribeiro, José Canales, Alicia Cabezas, Joaquim Rui Rodrigues, Rosa María Pinto, Iralis López-Villamizar, María Jesús Costas, José Carlos Cameselle. Specific cyclic ADP-ribose phosphohydrolase obtained by mutagenic engineering of Mn2+-dependent ADP-ribose/CDP-alcohol diphosphataseScientific Reports 2018; 8(1) doi: 10.1038/s41598-017-18393-9
43
Arnold Tan, Craig L. Doig. NAD+ Degrading Enzymes, Evidence for Roles During InfectionFrontiers in Molecular Biosciences 2021; 8 doi: 10.3389/fmolb.2021.697359
44
Dietrich E. Lorke, Anka Stegmeier‐Petroianu, Georg A. Petroianu. Biologic activity of cyclic and caged phosphates: a reviewJournal of Applied Toxicology 2017; 37(1): 13 doi: 10.1002/jat.3369
45
Joanna A. Ruszkiewicz, Alexander Bürkle, Aswin Mangerich. NAD+ in sulfur mustard toxicityToxicology Letters 2020; 324: 95 doi: 10.1016/j.toxlet.2020.01.024
46
Noymar Luque-Campos, Ricardo Riquelme, Luis Molina, Gisela Canedo-Marroquín, Ana María Vega-Letter, Patricia Luz-Crawford, Felipe A. Bustamante-Barrientos. Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degenerationFrontiers in Physiology 2023; 14 doi: 10.3389/fphys.2023.1217815
47
Ajai Chari, Markus Munder, Katja Weisel, Matthew Jenner, Ceri Bygrave, Maria Teresa Petrucci, Mario Boccadoro, Michele Cavo, Niels W. C. J. van de Donk, Mehmet Turgut, Fatih Demirkan, Ihsan Karadogan, Edward Libby, Robert Kleiman, Steven Kuppens, Rajesh Bandekar, Tobias Neff, Christoph Heuck, Ming Qi, Pamela L. Clemens, Hartmut Goldschmidt. Evaluation of Cardiac Repolarization in the Randomized Phase 2 Study of Intermediate- or High-Risk Smoldering Multiple Myeloma Patients Treated with Daratumumab MonotherapyAdvances in Therapy 2021; 38(2): 1328 doi: 10.1007/s12325-020-01601-w
48
Mingchao Zhang, Weihai Ying. NAD+Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic ImplicationsAntioxidants & Redox Signaling 2019; 30(6): 890 doi: 10.1089/ars.2017.7445
49
Silverio Ruggieri, Giuseppe Orsomando, Leonardo Sorci, Nadia Raffaelli. Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cuesBiochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2015; 1854(9): 1138 doi: 10.1016/j.bbapap.2015.02.021
50
Zayda L. Piedra-Quintero, Zachary Wilson, Porfirio Nava, Mireia Guerau-de-Arellano. CD38: An Immunomodulatory Molecule in Inflammation and AutoimmunityFrontiers in Immunology 2020; 11 doi: 10.3389/fimmu.2020.597959
51
Longfei Gao, Zhen Zhang, Jing Lu, Gang Pei. Mitochondria Are Dynamically Transferring Between Human Neural Cells and Alexander Disease-Associated GFAP Mutations Impair the Astrocytic TransferFrontiers in Cellular Neuroscience 2019; 13 doi: 10.3389/fncel.2019.00316
52
Kuniaki Moridera, Soshi Uchida, Shinya Tanaka, Kunitaka Menuki, Hajime Utsunomiya, Kunihiro Yamaoka, Koshiro Sonomoto, Yoshiya Tanaka, Akinori Sakai. Skeletal unloading reduces cluster of differentiation (CD) 38 expression in the bone marrow and osteoblasts of miceJournal of Orthopaedic Science 2020; 25(2): 331 doi: 10.1016/j.jos.2019.03.023
53
Ilaria Schiavoni, Carolina Scagnolari, Alberto L. Horenstein, Pasqualina Leone, Alessandra Pierangeli, Fabio Malavasi, Clara M. Ausiello, Giorgio Fedele. CD38 modulates respiratory syncytial virus‐driven proinflammatory processes in human monocyte‐derived dendritic cellsImmunology 2018; 154(1): 122 doi: 10.1111/imm.12873
54
David J. Culp, Z. Zhang, R. L. Evans. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca2+ poolPflügers Archiv - European Journal of Physiology 2020; 472(3): 385 doi: 10.1007/s00424-020-02348-7
55
Hui Peng, C. Alston James, Darren R. Cullinan, Graham D. Hogg, Jacqueline L. Mudd, Chong Zuo, Rony Takchi, Katharine E. Caldwell, Jingxia Liu, David G. DeNardo, Ryan C. Fields, William E. Gillanders, S. Peter Goedegebuure, William G. Hawkins. Neoadjuvant FOLFIRINOX Therapy Is Associated with Increased Effector T Cells and Reduced Suppressor Cells in Patients with Pancreatic CancerClinical Cancer Research 2021; 27(24): 6761 doi: 10.1158/1078-0432.CCR-21-0998
56
Claudia C.S. Chini, Mariana G. Tarragó, Eduardo N. Chini. NAD and the aging process: Role in life, death and everything in betweenMolecular and Cellular Endocrinology 2017; 455: 62 doi: 10.1016/j.mce.2016.11.003
57
Maria Gerasimenko, Haruhiro Higashida. Remission of social behavior impairment by oral administration of a precursor of NAD in CD157, but not in CD38, knockout miceFrontiers in Immunology 2023; 14 doi: 10.3389/fimmu.2023.1166609
58
Laurence Weiss, Mathieu F. Chevalier, Lambert Assoumou, Jean-Louis Paul, Martine Alhenc-Gelas, Céline Didier, Saïd Taibi, Elena-Maria Manea, Pauline Campa, Pierre-Marie Girard, Dominique Costagliola. Rosuvastatin Is Effective to Decrease CD8 T-Cell Activation Only in HIV-Infected Patients With High Residual T-Cell Activation Under Antiretroviral TherapyJAIDS Journal of Acquired Immune Deficiency Syndromes 2016; 71(4): 390 doi: 10.1097/QAI.0000000000000879
59
Weiyi Xu, Le Li, Lilei Zhang. NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac DeathFrontiers in Physiology 2020; 11 doi: 10.3389/fphys.2020.00901
60
Stefano D’Errico, Emy Basso, Andrea Patrizia Falanga, Maria Marzano, Tullio Pozzan, Vincenzo Piccialli, Gennaro Piccialli, Giorgia Oliviero, Nicola Borbone. New Linear Precursors of cIDPR Derivatives as Stable Analogs of cADPR: A Potent Second Messenger with Ca2+-Modulating Activity Isolated from Sea Urchin EggsMarine Drugs 2019; 17(8): 476 doi: 10.3390/md17080476
61
Marya Morevati, Evandro Fei Fang, Maria L. Mace, Mehmet Kanbay, Eva Gravesen, Anders Nordholm, Søren Egstrand, Mads Hornum. Roles of NAD+ in Acute and Chronic Kidney DiseasesInternational Journal of Molecular Sciences 2022; 24(1): 137 doi: 10.3390/ijms24010137
62
Rubén Zapata‐Pérez, Alessandra Tammaro, Bauke V. Schomakers, Angelique M. L. Scantlebery, Simone Denis, Hyung L. Elfrink, Judith Giroud‐Gerbetant, Carles Cantó, Carmen López‐Leonardo, Rebecca L. McIntyre, Michel van Weeghel, Álvaro Sánchez‐Ferrer, Riekelt H. Houtkooper. Reduced nicotinamide mononucleotide is a new and potent NAD+precursor in mammalian cells and miceThe FASEB Journal 2021; 35(4) doi: 10.1096/fj.202001826R
63
Yuanzhi Liu, Linwei Zhang, Long Wang, Xiaoqin Tang, Shengli Wan, Qianqian Huang, Mei Ran, Hongping Shen, Yan Yang, Sawitree Chiampanichayakul, Singkome Tima, Songyot Anuchapreeda, Jianming Wu. Targeting CD38/ ADP-ribosyl cyclase as a novel therapeutic strategy for identification of three potent agonists for leukopenia treatmentPharmacological Research 2024; 200: 107068 doi: 10.1016/j.phrs.2024.107068