For: | Bi X. Mechanism of DNA damage tolerance. World J Biol Chem 2015; 6(3): 48-56 [PMID: 26322163 DOI: 10.4331/wjbc.v6.i3.48] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v6/i3/48.htm |
Number | Citing Articles |
1 |
Diana Campos-Iglesias, Carlos López-Otín, José M.P. Freije. Cancer-Leading Proteases. 2020; : 73 doi: 10.1016/B978-0-12-818168-3.00004-8
|
2 |
Yahan Niu, Chang Liu, Rui Zhang, Ying Jing, Donghai Li. Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. Journal of Biosciences 2021; 46(4) doi: 10.1007/s12038-021-00224-9
|
3 |
Michael A. Trakselis, Matthew T. Cranford, Aurea M. Chu. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chemical Research in Toxicology 2017; 30(11): 1956 doi: 10.1021/acs.chemrestox.7b00190
|
4 |
Chinnadurai Mani, P. Hemachandra Reddy, Komaraiah Palle. DNA repair fidelity in stem cell maintenance, health, and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020; 1866(4): 165444 doi: 10.1016/j.bbadis.2019.03.017
|
5 |
|
6 |
Radha Charan Dash, Kyle Hadden. Protein–Protein Interactions in Translesion Synthesis. Molecules 2021; 26(18): 5544 doi: 10.3390/molecules26185544
|
7 |
Celia María Curieses Andrés, José Manuel Pérez de la Lastra, Celia Andrés Juan, Francisco J. Plou, Eduardo Pérez-Lebeña. Chemical Insights into Oxidative and Nitrative Modifications of DNA. International Journal of Molecular Sciences 2023; 24(20): 15240 doi: 10.3390/ijms242015240
|
8 |
Elise M. Wilkinson, Lisanne M. Spenkelink, Antoine M. van Oijen. Observing protein dynamics during DNA-lesion bypass by the replisome. Frontiers in Molecular Biosciences 2022; 9 doi: 10.3389/fmolb.2022.968424
|
9 |
Deena Jalal, Jisha Chalissery, Ahmed H. Hassan. Genome maintenance inSaccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Research 2017; : gkw1369 doi: 10.1093/nar/gkw1369
|
10 |
Ashlynn Ai Li Ler, Michael P. Carty. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Frontiers in Oncology 2022; 11 doi: 10.3389/fonc.2021.822500
|
11 |
Parnia Rahnamay Farnood, Romina Danesh Pazhooh, Zatollah Asemi, Bahman Yousefi. DNA damage response and repair in pancreatic cancer development and therapy. DNA Repair 2021; 103: 103116 doi: 10.1016/j.dnarep.2021.103116
|
12 |
Manni Wang, Siyuan Chen, Danyi Ao. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm 2021; 2(4): 654 doi: 10.1002/mco2.103
|
13 |
Seema M. Patel, Radha Charan Dash, M. Kyle Hadden. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opinion on Investigational Drugs 2021; 30(1): 13 doi: 10.1080/13543784.2021.1850692
|
14 |
Yehuda Brody, Robert J. Kimmerling, Yosef E. Maruvka, David Benjamin, Joshua J. Elacqua, Nicholas J. Haradhvala, Jaegil Kim, Kent W. Mouw, Kristjana Frangaj, Amnon Koren, Gad Getz, Scott R. Manalis, Paul C. Blainey. Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Research 2018; 28(12): 1901 doi: 10.1101/gr.238543.118
|
15 |
Takayuki Saitoh, Tsukasa Oda. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers 2021; 13(3): 504 doi: 10.3390/cancers13030504
|
16 |
Konjeti R. Sekhar, Michael L. Freeman. Nucleophosmin Plays a Role in Repairing DNA Damage and Is a Target for Cancer Treatment. Cancer Research 2023; 83(10): 1573 doi: 10.1158/0008-5472.CAN-22-3631
|
17 |
Chen Yang, Yifan Zhang, Yi Chen, Franziska Ragaller, Mingzhi Liu, Sara Corvigno, Hanna Dahlstrand, Joseph Carlson, Zihua Chen, Anders Näsman, Ahmed Waraky, Yingbo Lin, Olle Larsson, Felix Haglund, Komaraiah Palle. Nuclear IGF1R interact with PCNA to preserve DNA replication after DNA-damage in a variety of human cancers. PLOS ONE 2020; 15(7): e0236291 doi: 10.1371/journal.pone.0236291
|
18 |
Yossma Waheed, Aditya Mojumdar, Mohammad Shafiq, Ario de Marco, Matteo De March. The fork remodeler helicase-like transcription factor in cancer development: all at once. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2024; 1870(7): 167280 doi: 10.1016/j.bbadis.2024.167280
|
19 |
|
20 |
E. A. Prieto González, Khawaja Husnain Haider. Stem cells: From Potential to Promise. 2021; : 107 doi: 10.1007/978-981-16-0301-3_5
|
21 |
Yogendra Singh Rajpurohit, Dhirendra Kumar Sharma, Mitu Lal, Ishu Soni. A perspective on tumor radiation resistance following high-LET radiation treatment. Journal of Cancer Research and Clinical Oncology 2024; 150(5) doi: 10.1007/s00432-024-05757-8
|
22 |
Elzbieta Poreba, Julia Durzynska. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. Mutation Research/Reviews in Mutation Research 2020; 784: 108307 doi: 10.1016/j.mrrev.2020.108307
|
23 |
Donghui Xia, Xuefei Zhu, Ying Wang, Peng Gong, Hong-Shu Su, Xingzhi Xu. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Bioscience Reports 2023; 43(10) doi: 10.1042/BSR20222591
|
24 |
Qilin Long, Zhichao Liu, Monika Gullerova. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Frontiers in Molecular Biosciences 2021; 8 doi: 10.3389/fmolb.2021.655786
|
25 |
Liangke Gou, Joshua S Bloom, Leonid Kruglyak. The Genetic Basis of Mutation Rate Variation in Yeast. Genetics 2019; 211(2): 731 doi: 10.1534/genetics.118.301609
|
26 |
Eva Vesela, Katarina Chroma, Zsofia Turi, Martin Mistrik. Common Chemical Inductors of Replication Stress: Focus on Cell‐Based Studies. Biomolecules 2017; 7(1): 19 doi: 10.3390/biom7010019
|
27 |
Marketa Tomkova, Jakub Tomek, Skirmantas Kriaucionis, Benjamin Schuster-Böckler. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biology 2018; 19(1) doi: 10.1186/s13059-018-1509-y
|
28 |
Martin Liptay, Joana S. Barbosa, Sven Rottenberg. Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Frontiers in Oncology 2020; 10 doi: 10.3389/fonc.2020.00670
|
29 |
Ricardo I. Peraza-Vega, Mahara Valverde, Emilio Rojas. miR-27b-3p a Negative Regulator of DSB-DNA Repair. Genes 2021; 12(9): 1333 doi: 10.3390/genes12091333
|
30 |
Hyogyung Shin, Yoori Kim. Regulation of loop extrusion on the interphase genome. Critical Reviews in Biochemistry and Molecular Biology 2023; 58(1): 1 doi: 10.1080/10409238.2023.2182273
|
31 |
Alison K Thurston, Catherine A Radebaugh, Adam R Almeida, Juan Lucas Argueso, Laurie A Stargell. Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 inSaccharomyces cerevisiae. Genetics 2018; 210(4): 1227 doi: 10.1534/genetics.118.301600
|
32 |
Xin Bi. Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins. World Journal of Biological Chemistry 2024; 15(1): 97938 doi: 10.4331/wjbc.v15.i1.97938
|
33 |
Mai A. Rahmoon, Reem A. Elghaish, Aya A. Ibrahim, Zina Alaswad, Mohamed Z. Gad, Sherif F. El-Khamisy, Menattallah Elserafy. High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes. Genes 2023; 14(1): 144 doi: 10.3390/genes14010144
|
34 |
Jegadheeswari Venkadakrishnan, Ganesh Lahane, Arti Dhar, Wei Xiao, Krishna Moorthi Bhat, Tej K. Pandita, Audesh Bhat. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Molecular and Cellular Biology 2023; 43(8): 401 doi: 10.1080/10985549.2023.2224199
|