For: | Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem 2014; 5(1): 1-11 [PMID: 24600510 DOI: 10.4331/wjbc.v5.i1.1] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v5/i1/1.htm |
Number | Citing Articles |
1 |
Chi-Hsiu Liu, Ye Sun, Jie Li, Yan Gong, Katherine T. Tian, Lucy P. Evans, Peyton C. Morss, Thomas W. Fredrick, Nicholas J. Saba, Jing Chen.
Endothelial
microRNA-150
is an intrinsic suppressor of pathologic ocular neovascularization
. Proceedings of the National Academy of Sciences 2015; 112(39): 12163 doi: 10.1073/pnas.1508426112
|
2 |
T Metin, E Dinç, A Görür, S Erdoğan, S Ertekin, A A Sarı, L Tamer, Y Çelik. Evaluation of the plasma microRNA levels in stage 3 premature retinopathy with plus disease: preliminary study. Eye 2018; 32(2): 415 doi: 10.1038/eye.2017.193
|
3 |
Zhongjie Fu, Ye Sun, Bertan Cakir, Yohei Tomita, Shuo Huang, Zhongxiao Wang, Chi-Hsiu Liu, Steve S. Cho, William Britton, Timothy S. Kern, David A. Antonetti, Ann Hellström, Lois E.H. Smith. Targeting Neurovascular Interaction in Retinal Disorders. International Journal of Molecular Sciences 2020; 21(4): 1503 doi: 10.3390/ijms21041503
|
4 |
Zhen Liang, Kai P. Gao, Yi X. Wang, Zi C. Liu, Li Tian, Xin Z. Yang, Jing Y. Ding, Wei T. Wu, Wen H. Yang, Yi L. Li, Ze B. Zhang, Ri H. Zhai. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy. American Journal of Physiology-Endocrinology and Metabolism 2018; 315(3): E374 doi: 10.1152/ajpendo.00021.2018
|
5 |
Chun Yang, Houda Tahiri, Chenrongrong Cai, Muqing Gu, Carmen Gagnon, Pierre Hardy. microRNA‐181a inhibits ocular neovascularization by interfering with vascular endothelial growth factor expression. Cardiovascular Therapeutics 2018; 36(3) doi: 10.1111/1755-5922.12329
|
6 |
Jiang-Hui Wang, Damien Ling, Leilei Tu, Peter van Wijngaarden, Gregory J. Dusting, Guei-Sheung Liu. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?. Pharmacology & Therapeutics 2017; 173: 1 doi: 10.1016/j.pharmthera.2017.01.003
|
7 |
Long Jiang, Tadkamol Krongbaramee, Xinhai Lin, Min Zhu, Yaqin Zhu, Liu Hong. microRNA‐126 inhibits vascular cell adhesion molecule‐1 and interleukin‐1beta in human dental pulp cells. Journal of Clinical Laboratory Analysis 2022; 36(5) doi: 10.1002/jcla.24371
|
8 |
Dipayan Roy, Anupama Modi, Manoj Khokhar, Shrimanjunath Sankanagoudar, Dharamveer Yadav, Shailja Sharma, Purvi Purohit, Praveen Sharma. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Current Diabetes Reviews 2021; 17(2): 122 doi: 10.2174/1573399816666200503035035
|
9 |
Bridget Martinez, PhilipV Peplow. MicroRNAs in laser-induced choroidal neovascularization in mice and rats: their expression and potential therapeutic targets. Neural Regeneration Research 2021; 16(4): 621 doi: 10.4103/1673-5374.295271
|
10 |
Michel Desjarlais, Jose Carlos Rivera, Isabelle Lahaie, Gaël Cagnone, Maëlle Wirt, Samy Omri, Sylvain Chemtob, Jing Chen. MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLOS ONE 2019; 14(6): e0218282 doi: 10.1371/journal.pone.0218282
|
11 |
Prachi Pimple, Apurva Sawant, Sujit Nair, Sujata P. Sawarkar.
Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment
. Critical Reviews™ in Therapeutic Drug Carrier Systems 2024; 41(2): 1 doi: 10.1615/CritRevTherDrugCarrierSyst.2023044057
|
12 |
Lulu Yan, Sangmi Lee, Douglas R. Lazzaro, Jacob Aranda, Maria B. Grant, Brahim Chaqour. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. Journal of Biological Chemistry 2015; 290(38): 23264 doi: 10.1074/jbc.M115.646950
|
13 |
Pengcheng Wu, Dongyan Zhang, Yuanyuan Geng, Rui Li, Yanan Zhang. Circular RNA-ZNF609 regulates corneal neovascularization by acting as a sponge of miR-184. Experimental Eye Research 2020; 192: 107937 doi: 10.1016/j.exer.2020.107937
|
14 |
Pakiza Ruknudin, Ali Riza Nazari, Maelle Wirth, Isabelle Lahaie, Emmanuel Bajon, Alain Rivard, Sylvain Chemtob, Michel Desjarlais. Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced Retinopathy. International Journal of Molecular Sciences 2023; 24(17): 13185 doi: 10.3390/ijms241713185
|
15 |
Xiaoling Shi, Nuo Dong, Qi Qiu, Shanhua Li, Jiaxing Zhang. Salidroside Prevents Hypoxia-Induced Human Retinal Microvascular Endothelial Cell Damage Via miR-138/ROBO4 Axis. Investigative Opthalmology & Visual Science 2021; 62(9): 25 doi: 10.1167/iovs.62.9.25
|
16 |
Johanna M. Walz, Thomas Wecker, Pei Pei Zhang, Bertan Cakir, Bjoern Gruening, Hansjuergen Agostini, Tristan Reuer, Franziska Ludwig, Stefaniya Boneva, Lothar Faerber, Clemens Lange, Guenther R. Schlunck, Andreas Stahl. Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cells. Experimental Eye Research 2019; 181: 98 doi: 10.1016/j.exer.2019.01.006
|
17 |
Maya Barben, Ana Bordonhos, Marijana Samardzija, Christian Grimm. Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology 2019; 1185: 413 doi: 10.1007/978-3-030-27378-1_68
|
18 |
Parviz Mammadzada, Juliette Bayle, Johann Gudmundsson, Anders Kvanta, Helder André. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. Journal of Clinical Medicine 2019; 8(12): 2217 doi: 10.3390/jcm8122217
|
19 |
Yuan-Yao Fan, Chi-Hsien Liu, An-Lun Wu, Hung-Chi Chen, Yi-Jen Hsueh, Kuan-Jen Chen, Chi-Chun Lai, Chung-Ying Huang, Wei-Chi Wu. MicroRNA-126 inhibits pathological retinal neovascularization via suppressing vascular endothelial growth factor expression in a rat model of retinopathy of prematurity. European Journal of Pharmacology 2021; 900: 174035 doi: 10.1016/j.ejphar.2021.174035
|
20 |
Maria F. Lopes-Virella, Gabriel Virella. Diabetes and Cardiovascular Disease. Contemporary Cardiology 2023; : 257 doi: 10.1007/978-3-031-13177-6_9
|
21 |
Khaled Elmasry, Riyaz Mohamed, Isha Sharma, Nehal M. Elsherbiny, Yutao Liu, Mohamed Al-Shabrawey, Amany Tawfik. Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018; 9(16): 12562 doi: 10.18632/oncotarget.24333
|
22 |
Maria Consiglia Trotta, Carlo Gesualdo, Chiara Bianca Maria Platania, Domenico De Robertis, Mauro Giordano, Francesca Simonelli, Michele D'Amico, Filippo Drago, Claudio Bucolo, Settimio Rossi. Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets?. Biochemical Pharmacology 2021; 186: 114473 doi: 10.1016/j.bcp.2021.114473
|
23 |
Fei Yu, Samantha Chapman, Dylan Luc Pham, Michael Lee Ko, Beiyan Zhou, Gladys Y-P Ko. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunction. BMJ Open Diabetes Research & Care 2020; 8(1): e001446 doi: 10.1136/bmjdrc-2020-001446
|
24 |
Chi-Hsiu Liu, Zhongxiao Wang, Ye Sun, John Paul SanGiovanni, Jing Chen. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy. Scientific Reports 2016; 6(1) doi: 10.1038/srep33947
|
25 |
Bridget Martinez, PhilipV Peplow. MicroRNAs as diagnostic and prognostic biomarkers of age-related macular degeneration: advances and limitations. Neural Regeneration Research 2021; 16(3): 440 doi: 10.4103/1673-5374.293131
|
26 |
Nooshin Tasharrofi, Fatemeh Kouhkan, Masoud Soleimani, Zahra‐Sheila Soheili, Mahboubeh Kabiri, Mohaddeseh Mahmoudi Saber, Farid Abedin Dorkoosh. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR‐374a. Journal of Cellular Biochemistry 2017; 118(12): 4854 doi: 10.1002/jcb.26160
|
27 |
Mahbobeh Satari, Esmat Aghadavod, Naghmeh Mirhosseini, Zatollah Asemi. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathy. Journal of Cellular Biochemistry 2019; 120(6): 9514 doi: 10.1002/jcb.28227
|
28 |
Chi-Hsiu Liu, Zhongxiao Wang, Shuo Huang, Ye Sun, Jing Chen. MicroRNA-145 Regulates Pathological Retinal Angiogenesis by Suppression of TMOD3. Molecular Therapy - Nucleic Acids 2019; 16: 335 doi: 10.1016/j.omtn.2019.03.001
|
29 |
Li Yu, Shuai Wu, Songtian Che, Yazhen Wu, Ning Han. Inhibitory role of miR-203 in the angiogenesis of mice with pathological retinal neovascularization disease through downregulation of SNAI2. Cellular Signalling 2020; 71: 109570 doi: 10.1016/j.cellsig.2020.109570
|
30 |
Elvis Genbo Xu, Jason T. Magnuson, Graciel Diamante, Edward Mager, Christina Pasparakis, Martin Grosell, Aaron P. Roberts, Daniel Schlenk. Changes in microRNA–mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with Deepwater Horizon Oil. Environmental Science & Technology 2018; 52(22): 13501 doi: 10.1021/acs.est.8b04169
|
31 |
Ali Rajool Dezfuly, Azadeh Safaee, Hossein Salehi. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles’ miRNAs on retinal regeneration: a review. Stem Cell Research & Therapy 2021; 12(1) doi: 10.1186/s13287-021-02588-z
|
32 |
Gladys Y.-P. Ko, Fei Yu, Kayla J. Bayless, Michael L. Ko. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression?. International Journal of Molecular Sciences 2022; 23(20): 12099 doi: 10.3390/ijms232012099
|
33 |
Diana R. Gutsaeva, Menaka Thounaojam, Shubhra Rajpurohit, Folami L. Powell, Pamela M. Martin, Stephanie Goei, Michael Duncan, Manuela Bartoli. STAT3-mediated activation of miR-21 is involved in down-regulation of TIMP3 and neovascularization in the ischemic retina. Oncotarget 2017; 8(61): 103568 doi: 10.18632/oncotarget.21592
|
34 |
Li Zhen, Wenjin Guo, Mengling Peng, Yanzhi Liu, Shucheng Zang, Hong Ji, Shize Li, Huanmin Yang. Identification of cold-responsive miRNAs in rats by deep sequencing. Journal of Thermal Biology 2017; 66: 114 doi: 10.1016/j.jtherbio.2017.03.005
|