BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem 2014; 5(1): 1-11 [PMID: 24600510 DOI: 10.4331/wjbc.v5.i1.1]
URL: https://www.wjgnet.com/1949-8454/full/v5/i1/1.htm
Number Citing Articles
1
Chi-Hsiu Liu, Ye Sun, Jie Li, Yan Gong, Katherine T. Tian, Lucy P. Evans, Peyton C. Morss, Thomas W. Fredrick, Nicholas J. Saba, Jing Chen. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization Proceedings of the National Academy of Sciences 2015; 112(39): 12163 doi: 10.1073/pnas.1508426112
2
T Metin, E Dinç, A Görür, S Erdoğan, S Ertekin, A A Sarı, L Tamer, Y Çelik. Evaluation of the plasma microRNA levels in stage 3 premature retinopathy with plus disease: preliminary studyEye 2018; 32(2): 415 doi: 10.1038/eye.2017.193
3
Zhongjie Fu, Ye Sun, Bertan Cakir, Yohei Tomita, Shuo Huang, Zhongxiao Wang, Chi-Hsiu Liu, Steve S. Cho, William Britton, Timothy S. Kern, David A. Antonetti, Ann Hellström, Lois E.H. Smith. Targeting Neurovascular Interaction in Retinal DisordersInternational Journal of Molecular Sciences 2020; 21(4): 1503 doi: 10.3390/ijms21041503
4
Zhen Liang, Kai P. Gao, Yi X. Wang, Zi C. Liu, Li Tian, Xin Z. Yang, Jing Y. Ding, Wei T. Wu, Wen H. Yang, Yi L. Li, Ze B. Zhang, Ri H. Zhai. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathyAmerican Journal of Physiology-Endocrinology and Metabolism 2018; 315(3): E374 doi: 10.1152/ajpendo.00021.2018
5
Chun Yang, Houda Tahiri, Chenrongrong Cai, Muqing Gu, Carmen Gagnon, Pierre Hardy. microRNA‐181a inhibits ocular neovascularization by interfering with vascular endothelial growth factor expressionCardiovascular Therapeutics 2018; 36(3) doi: 10.1111/1755-5922.12329
6
Jiang-Hui Wang, Damien Ling, Leilei Tu, Peter van Wijngaarden, Gregory J. Dusting, Guei-Sheung Liu. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?Pharmacology & Therapeutics 2017; 173: 1 doi: 10.1016/j.pharmthera.2017.01.003
7
Long Jiang, Tadkamol Krongbaramee, Xinhai Lin, Min Zhu, Yaqin Zhu, Liu Hong. microRNA‐126 inhibits vascular cell adhesion molecule‐1 and interleukin‐1beta in human dental pulp cellsJournal of Clinical Laboratory Analysis 2022; 36(5) doi: 10.1002/jcla.24371
8
Dipayan Roy, Anupama Modi, Manoj Khokhar, Shrimanjunath Sankanagoudar, Dharamveer Yadav, Shailja Sharma, Purvi Purohit, Praveen Sharma. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical UpdateCurrent Diabetes Reviews 2021; 17(2): 122 doi: 10.2174/1573399816666200503035035
9
Bridget Martinez, PhilipV Peplow. MicroRNAs in laser-induced choroidal neovascularization in mice and rats: their expression and potential therapeutic targetsNeural Regeneration Research 2021; 16(4): 621 doi: 10.4103/1673-5374.295271
10
Michel Desjarlais, Jose Carlos Rivera, Isabelle Lahaie, Gaël Cagnone, Maëlle Wirt, Samy Omri, Sylvain Chemtob, Jing Chen. MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy modelPLOS ONE 2019; 14(6): e0218282 doi: 10.1371/journal.pone.0218282
11
Prachi Pimple, Apurva Sawant, Sujit Nair, Sujata P. Sawarkar. Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment Critical Reviews™ in Therapeutic Drug Carrier Systems 2024; 41(2): 1 doi: 10.1615/CritRevTherDrugCarrierSyst.2023044057
12
Lulu Yan, Sangmi Lee, Douglas R. Lazzaro, Jacob Aranda, Maria B. Grant, Brahim Chaqour. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident MicrogliaJournal of Biological Chemistry 2015; 290(38): 23264 doi: 10.1074/jbc.M115.646950
13
Pengcheng Wu, Dongyan Zhang, Yuanyuan Geng, Rui Li, Yanan Zhang. Circular RNA-ZNF609 regulates corneal neovascularization by acting as a sponge of miR-184Experimental Eye Research 2020; 192: 107937 doi: 10.1016/j.exer.2020.107937
14
Pakiza Ruknudin, Ali Riza Nazari, Maelle Wirth, Isabelle Lahaie, Emmanuel Bajon, Alain Rivard, Sylvain Chemtob, Michel Desjarlais. Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced RetinopathyInternational Journal of Molecular Sciences 2023; 24(17): 13185 doi: 10.3390/ijms241713185
15
Xiaoling Shi, Nuo Dong, Qi Qiu, Shanhua Li, Jiaxing Zhang. Salidroside Prevents Hypoxia-Induced Human Retinal Microvascular Endothelial Cell Damage Via miR-138/ROBO4 AxisInvestigative Opthalmology & Visual Science 2021; 62(9): 25 doi: 10.1167/iovs.62.9.25
16
Johanna M. Walz, Thomas Wecker, Pei Pei Zhang, Bertan Cakir, Bjoern Gruening, Hansjuergen Agostini, Tristan Reuer, Franziska Ludwig, Stefaniya Boneva, Lothar Faerber, Clemens Lange, Guenther R. Schlunck, Andreas Stahl. Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cellsExperimental Eye Research 2019; 181: 98 doi: 10.1016/j.exer.2019.01.006
17
Maya Barben, Ana Bordonhos, Marijana Samardzija, Christian Grimm. Retinal Degenerative DiseasesAdvances in Experimental Medicine and Biology 2019; 1185: 413 doi: 10.1007/978-3-030-27378-1_68
18
Parviz Mammadzada, Juliette Bayle, Johann Gudmundsson, Anders Kvanta, Helder André. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic RetinopathyJournal of Clinical Medicine 2019; 8(12): 2217 doi: 10.3390/jcm8122217
19
Yuan-Yao Fan, Chi-Hsien Liu, An-Lun Wu, Hung-Chi Chen, Yi-Jen Hsueh, Kuan-Jen Chen, Chi-Chun Lai, Chung-Ying Huang, Wei-Chi Wu. MicroRNA-126 inhibits pathological retinal neovascularization via suppressing vascular endothelial growth factor expression in a rat model of retinopathy of prematurityEuropean Journal of Pharmacology 2021; 900: 174035 doi: 10.1016/j.ejphar.2021.174035
20
Maria F. Lopes-Virella, Gabriel Virella. Diabetes and Cardiovascular DiseaseContemporary Cardiology 2023; : 257 doi: 10.1007/978-3-031-13177-6_9
21
Khaled Elmasry, Riyaz Mohamed, Isha Sharma, Nehal M. Elsherbiny, Yutao Liu, Mohamed Al-Shabrawey, Amany Tawfik. Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degenerationOncotarget 2018; 9(16): 12562 doi: 10.18632/oncotarget.24333
22
Maria Consiglia Trotta, Carlo Gesualdo, Chiara Bianca Maria Platania, Domenico De Robertis, Mauro Giordano, Francesca Simonelli, Michele D'Amico, Filippo Drago, Claudio Bucolo, Settimio Rossi. Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets?Biochemical Pharmacology 2021; 186: 114473 doi: 10.1016/j.bcp.2021.114473
23
Fei Yu, Samantha Chapman, Dylan Luc Pham, Michael Lee Ko, Beiyan Zhou, Gladys Y-P Ko. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunctionBMJ Open Diabetes Research & Care 2020; 8(1): e001446 doi: 10.1136/bmjdrc-2020-001446
24
Chi-Hsiu Liu, Zhongxiao Wang, Ye Sun, John Paul SanGiovanni, Jing Chen. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathyScientific Reports 2016; 6(1) doi: 10.1038/srep33947
25
Bridget Martinez, PhilipV Peplow. MicroRNAs as diagnostic and prognostic biomarkers of age-related macular degeneration: advances and limitationsNeural Regeneration Research 2021; 16(3): 440 doi: 10.4103/1673-5374.293131
26
Nooshin Tasharrofi, Fatemeh Kouhkan, Masoud Soleimani, Zahra‐Sheila Soheili, Mahboubeh Kabiri, Mohaddeseh Mahmoudi Saber, Farid Abedin Dorkoosh. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR‐374aJournal of Cellular Biochemistry 2017; 118(12): 4854 doi: 10.1002/jcb.26160
27
Mahbobeh Satari, Esmat Aghadavod, Naghmeh Mirhosseini, Zatollah Asemi. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathyJournal of Cellular Biochemistry 2019; 120(6): 9514 doi: 10.1002/jcb.28227
28
Chi-Hsiu Liu, Zhongxiao Wang, Shuo Huang, Ye Sun, Jing Chen. MicroRNA-145 Regulates Pathological Retinal Angiogenesis by Suppression of TMOD3Molecular Therapy - Nucleic Acids 2019; 16: 335 doi: 10.1016/j.omtn.2019.03.001
29
Li Yu, Shuai Wu, Songtian Che, Yazhen Wu, Ning Han. Inhibitory role of miR-203 in the angiogenesis of mice with pathological retinal neovascularization disease through downregulation of SNAI2Cellular Signalling 2020; 71: 109570 doi: 10.1016/j.cellsig.2020.109570
30
Elvis Genbo Xu, Jason T. Magnuson, Graciel Diamante, Edward Mager, Christina Pasparakis, Martin Grosell, Aaron P. Roberts, Daniel Schlenk. Changes in microRNA–mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with Deepwater Horizon OilEnvironmental Science & Technology 2018; 52(22): 13501 doi: 10.1021/acs.est.8b04169
31
Ali Rajool Dezfuly, Azadeh Safaee, Hossein Salehi. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles’ miRNAs on retinal regeneration: a reviewStem Cell Research & Therapy 2021; 12(1) doi: 10.1186/s13287-021-02588-z
32
Gladys Y.-P. Ko, Fei Yu, Kayla J. Bayless, Michael L. Ko. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression?International Journal of Molecular Sciences 2022; 23(20): 12099 doi: 10.3390/ijms232012099
33
Diana R. Gutsaeva, Menaka Thounaojam, Shubhra Rajpurohit, Folami L. Powell, Pamela M. Martin, Stephanie Goei, Michael Duncan, Manuela Bartoli. STAT3-mediated activation of miR-21 is involved in down-regulation of TIMP3 and neovascularization in the ischemic retinaOncotarget 2017; 8(61): 103568 doi: 10.18632/oncotarget.21592
34
Li Zhen, Wenjin Guo, Mengling Peng, Yanzhi Liu, Shucheng Zang, Hong Ji, Shize Li, Huanmin Yang. Identification of cold-responsive miRNAs in rats by deep sequencingJournal of Thermal Biology 2017; 66: 114 doi: 10.1016/j.jtherbio.2017.03.005