Published online Apr 27, 2023. doi: 10.4240/wjgs.v15.i4.600
Peer-review started: October 30, 2022
First decision: January 3, 2023
Revised: January 5, 2023
Accepted: March 8, 2023
Article in press: March 8, 2023
Published online: April 27, 2023
Processing time: 175 Days and 4.6 Hours
Acute pancreatitis (AP) is a common clinical inflammatory disease of the digestive system, with an increasing trend worldwide, which is a pathophysiological process with complex etiology. At present, there are no consistent and effective therapies for treatment of AP, resulting in a high mortality rate.
miR-125b-5p, a bidirectional regulatory miRNA, is speculated to exhibit anti-tumor activity. However, exosome-derived miR-125b-5p in AP has not been reported.
We aimed to elucidate the molecular mechanism of exosome-derived miR-125b-5p promoting AP exacerbation from the perspective of the interaction between immune cells and acinar cells.
RNA-seq technology was used to screen differentially expressed miRNAs in AR42J cell lines, and bioinformatics analysis was used to predict downstream target genes of miR-125b-5p. The expression level of miR-125b-5p and insulin-like growth factor 2 (IGF2) in the activated AR42J cell line and AP pancreatic tissue were detected by quantitative real-time polymerase chain reaction and western blots. The changes in the pancreatic inflammatory response in a rat AP model were detected by histopathological methods. Western Blot was used to detect the expression of IGF2, PI3K/AKT signaling pathway proteins, and apoptosis and necrosis related proteins.
miR-125b-5p expression was upregulated in the activated AR42J cell line and AP pancreatic tissue, while that of IGF2 was downregulated. In addition, miR-125b-5p was found to act on macrophages to promote M1 type polarization and inhibit M2 type polarization, resulting in a massive release of inflammatory factors and reactive oxygen species accumulation. Further research found that miR-125b-5p could inhibit the expression of IGF2 in the PI3K/AKT signaling pathway. In vivo experiments revealed that miR-125b-5p can promote the progression of AP in a rat model.
miR-125b-5p acts on IGF2 in the PI3K/AKT signaling pathway and promotes M1 type polarization and inhibits M2 type polarization of macrophage by inhibiting IGF2 expression, resulting in a large release of pro-inflammatory factors and an inflammatory cascade amplification effect, thus aggravating AP.
It has potential clinical value to control the pathogenesis of excessive inflammatory responses in AP by inhibiting the inflammatory cascade between acinar cells and macrophages mediated by miR-125b-5p in the future, which can effectively reduce inflammatory damage and improve the prognosis of AP.