Published online Sep 27, 2021. doi: 10.4240/wjgs.v13.i9.1039
Peer-review started: January 29, 2021
First decision: May 4, 2021
Revised: May 10, 2021
Accepted: August 4, 2021
Article in press: August 4, 2021
Published online: September 27, 2021
Processing time: 231 Days and 17.1 Hours
Sutures have been used to repair wounds since ancient times. However, the basic suture technique has not significantly changed. In Phase I of our project, we proposed a “double diabolo” suture design, using a theoretical physical study to show that this suture receives 50% less tension than conventional sutures, and so a correspondingly greater force must be applied to break it.
To determine whether these theoretical levels of resistance were met by the new type of suture.
An observational study was performed to compare three types of sutures, using a device that exerted force on the suture until the breaking point was reached. The tension produced by this traction was measured. The following variables were considered: Tearing stress on entry/exit points, edge separation stress, and suture break stress. The study sample consisted of 30 sutures with simple interrupted stitches (Group 1), 30 with continuous stitches (Group 2), and 30 with the “double diabolo” design (Group 3).
The mean degree of force required to reach the breaking point for each of these variables (tearing, separation, and final breaking) was highest in Group 3 (14.56, 18.28, and 21.39 kg), followed by Group 1 (7.36, 10.38, and 12.81 kg) and Group 2 (5.77, 7.7, and 8.71 kg). These differences were statistically significant (P < 0.001) in all cases.
The experimental results show that with the “double diabolo” suture, compared with conventional sutures, greater force must be applied to reach the breaking point (almost twice as much as in the simple interrupted suture and more than double that required for the continuous suture). If these results are confirmed in Phase III (the clinical phase) of our study, we believe the double diabolo technique should be adopted as the standard approach, especially when the suture must withstand significant tension (e.g., laparotomy closure, thoracotomy closure, diaphragm suture, or hernial orifice closure).
Core Tip: The aim of this project was to design and validate a new technique that imposes the least possible tension on the suture threads and entry/exit points, thus creating a suture that is more stable and resistant. We manufactured a device to apply a progressively increasing separation force to the suture surfaces, and to measure the tension exerted until the breaking point is reached. With this device we compared three groups: Simple interrupted stitches, continuous stitches, and our proposed technique.