1
|
Abdi Dezfouli R, Zargar Balajam N, Shirazi S, Heshmat R, Shafiee G. The effect of Sarcomeal® oral supplementation plus vitamin D3 on muscle parameters and metabolic factors in diabetic sarcopenia patients: study protocol of a randomized controlled clinical trial. Trials 2024; 25:848. [PMID: 39716287 PMCID: PMC11667863 DOI: 10.1186/s13063-024-08700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Diabetes is a significant risk factor for sarcopenia, a muscle dystrophy affecting older individuals. Sarcopenia management typically involves resistance exercise and oral supplements. Given the limitations of resistance training for many elderly individuals, oral supplements play a crucial role in treatment. This study is a protocol for evaluating the efficacy of the Sarcomeal® supplement, a mixture of whey protein, creatine, branch-chained amino acids (BCAAs), glutamine, and hydroxyl-methyl-butyrate (HMB) in diabetic people who also have sarcopenia. METHODS AND ANALYSIS: This study is a randomized clinical trial, in which sixty diabetic sarcopenia patients who meet the inclusion criteria will be randomly assigned to the control or the intervention group with a 1:1 allocation. The intervention group will receive one Sarcomeal® supplement sachet plus 1000 IU of vitamin D daily and both groups will be recommended to consume protein-rich food, be educated about the disease, and perform light exercises for 12 weeks. Anthropometric measurements, body composition analysis, muscle strength assessments, and blood tests will be conducted at the trial's start and end. DISCUSSION It is hypothesized that the Sarcomeal® supplement plus vitamin D may be beneficial for the management of diabetic sarcopenia by reducing inflammation, oxidative stress, and glucose metabolism. The outcome of this trial will provide a basis for prescribing sarcomeal to patients with diabetic sarcopenia. ETHICS AND DISSEMINATION This protocol is registered at the Iranian Registry of Clinical Trials (IRCT20230831059311N1) and also is approved by the ethics committee of Tehran University of Medical Sciences (September 2023, IR.TUMS.EMRI.REC.1402.071). TRIAL REGISTRATION Iranian Registry of Clinical Trials (ID: IRCT20230831059311N1).
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zargar Balajam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shirazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang F, Li W. Vitamin D and Sarcopenia in the Senior People: A Review of Mechanisms and Comprehensive Prevention and Treatment Strategies. Ther Clin Risk Manag 2024; 20:577-595. [PMID: 39253031 PMCID: PMC11382659 DOI: 10.2147/tcrm.s471191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
This article reviews the mechanisms and prevention strategies associated with vitamin D and sarcopenia in older adults. As a geriatric syndrome, sarcopenia is defined by a notable decline in skeletal muscle mass and strength, which increases the risk of adverse health outcomes such as falls and fractures. Vitamin D, an essential fat-soluble vitamin, is pivotal in skeletal muscle health. It affects muscle function through various mechanisms, including regulating calcium and phosphorus metabolism, promoting muscle protein synthesis, and modulation of muscle cell proliferation and differentiation. A deficiency in vitamin D has been identified as a significant risk factor for the development of sarcopenia in older adults. Many studies have demonstrated that low serum vitamin D levels are significantly associated with an increased risk of sarcopenia. While there is inconsistency in the findings, most studies support the importance of vitamin D in maintaining skeletal muscle health. Vitamin D influences the onset and progression of sarcopenia through various pathways, including the promotion of muscle protein synthesis, the regulation of mitochondrial function, and the modulation of immune and inflammatory responses. Regarding the prevention and treatment of sarcopenia, a combination of nutritional, exercise, and pharmacological interventions is recommended. Further research should be conducted to elucidate the molecular mechanism of vitamin D in sarcopenia, to study genes related to sarcopenia, to perform large-scale clinical trials, to investigate special populations, and to examine the combined application of vitamin D with other nutrients or drugs. A comprehensive investigation of the interconnection between vitamin D and sarcopenia will furnish a novel scientific foundation and productive strategies for preventing and treating sarcopenia. This, in turn, will enhance the senior people's quality of life and health.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Araiza-Calahorra A, Mackie AR, Sarkar A. Oral tribology of dairy protein-rich emulsions and emulsion-filled gels affected by colloidal processing and composition. Curr Res Food Sci 2024; 9:100806. [PMID: 39149526 PMCID: PMC11324994 DOI: 10.1016/j.crfs.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Designing nutritious food for the elderly population often requires significant quantities of leucine-rich whey proteins to combat malnutrition, yet high-protein formulations can cause mouth dryness and increased oral friction. This study investigated how various colloidal processing methods and compositions impact the in vitro oral tribological properties of protein-rich emulsions and emulsion-filled gels. Oil-in-water emulsions with oil fractions from 1 wt% to 20 wt% were prepared, alongside emulsion-filled gels containing whey protein isolate (WPI), hydrolysed whey protein (HWP), or a blend of both (10 wt% protein content). Two processing approaches were employed: creating emulsions with an initial 10 w% protein content (M1) and initially forming emulsions with 0.1 wt% protein content, then enriching to a final 10 wt% concentration (M2). The hypothesis was that formulations with HWP or method 2 (M2) would offer lubrication benefits by inducing droplet coalescence, aiding in the formation of a lubricating boundary tribofilm. Surprisingly, the tribological behavior of high-protein emulsions showed minimal dependence on oil droplet volume fraction. However, both HWP-based emulsions and those processed with M2 for WPI exhibited significant friction reduction, which may be attributed to the presence of coalesced oil droplets, supporting our hypothesis. Substituting 50 wt% of WPI with HWP in emulsion-filled gel boli resulted in very low friction coefficients in the boundary lubrication regime, suggesting oil droplet release from the gel matrix. These findings provide insights into designing high-protein foods with improved mouthfeel for the elderly population, necessitating further validation through sensory studies.
Collapse
Affiliation(s)
- Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan R Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Shalit A, Gerontiti E, Boutzios G, Korakianiti E, Kanouta F, Vasileiou V, Psaltopoulou T, Paschou SA. Nutrition of aging people with diabetes mellitus: Focus on sarcopenia. Maturitas 2024; 185:107975. [PMID: 38522145 DOI: 10.1016/j.maturitas.2024.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
As populations age, chronic diseases accumulate, and new health conditions emerge. One noteworthy pair that warrants further evaluation is diabetes mellitus and sarcopenia, given that the latter occurs in 28 % of the population aged over 50 who have diabetes mellitus. The management of both entails nutritional interventions, making the development of unified dietary recommendations an alluring strategy. This review aims to elucidate the current recommendations for the combined management of sarcopenia and diabetes, while featuring elements that require further research. The goal of nutritional management is to improve muscle mass and strength while regulating metabolic risk and glucose levels. To ensure muscle synthesis in the elderly, recommendations align at daily calorie intake that exceeds 30 kcal/kg, with adjustments based on comorbidities. Additionally, a protein intake of at least 1-1.2 g/kg/d is essential, emphasizing both daily and per-meal intake, and can be achieved through diet or branched-amino-acids supplements. Specific considerations for diabetes include restricted protein intake in diabetic nephropathy and exploring the potential link between branched amino acids and insulin resistance. Further recommendations that both promote metabolic health and have demonstrated at least a potential to increase muscle strength include prioritizing polyunsaturated fatty acids as a fat source and maintaining adequate levels of vitamin D. Clinicians should consult their patients on dietary optimization, but evidence is insufficient to recommend additional supplementation. Lastly, an emerging challenge of diabetes and sarcopenia is sarcopenic obesity, which requires the combination of a hypocaloric diet with increased protein intake.
Collapse
Affiliation(s)
- Almog Shalit
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Gerontiti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Boutzios
- Endocrine Unit, Department of Pathophysiology, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Fotini Kanouta
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | | | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Elgizawy EI, Amer GS, Ali EA, Alqalashy FS, Ibrahim MM, Latif AAA, Shaban AM. Comparing the efficacy of concomitant treatment of resistance exercise and creatine monohydrate versus multiple individual therapies in age related sarcopenia. Sci Rep 2024; 14:9798. [PMID: 38684784 PMCID: PMC11058861 DOI: 10.1038/s41598-024-59884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.
Collapse
Affiliation(s)
- Eman I Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt.
| | - Ghada S Amer
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Fatma S Alqalashy
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Marwa M Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Asmaa A Abdel Latif
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Anwar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt
| |
Collapse
|
6
|
Wu J, Chi H, Kok S, Chua JM, Huang XX, Zhang S, Mah S, Foo LX, Peh HY, Lee HB, Tay P, Tong C, Ladlad J, Tan CH, Khoo N, Aw D, Chong CX, Ho LM, Sivarajah SS, Ng J, Tan WJ, Foo FJ, Teh BT, Koh FH. Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery. Ann Coloproctol 2024; 40:3-12. [PMID: 37004990 PMCID: PMC10915526 DOI: 10.3393/ac.2022.01207.0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 04/04/2023] Open
Abstract
Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.
Collapse
Affiliation(s)
- Jingting Wu
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Hannah Chi
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Shawn Kok
- Department of Radiology, Sengkang General Hospital, Singapore
| | - Jason M.W. Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Xi-Xiao Huang
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Shipin Zhang
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | - Shimin Mah
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Li-Xin Foo
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Hui-Yee Peh
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Hui-Bing Lee
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Phoebe Tay
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Cherie Tong
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Jasmine Ladlad
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | - Darius Aw
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | | | - Jialin Ng
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | - Fung-Joon Foo
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Bin-Tean Teh
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | | |
Collapse
|
7
|
Li H, Guan K, Wang R, Zhu A, Ma Y. Synergistic effects of MFG-E8 and whey protein on mitigating d-galactose-induced sarcopenia through PI3K/AKT/PGC-1α and MAPK/ERK signaling pathways. J Dairy Sci 2024; 107:9-23. [PMID: 37678791 DOI: 10.3168/jds.2023-23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
Milk fat globule epidermal growth factor 8 (MFG-E8) and whey protein have emerged as promising bionutrient supplements for enhancing skeletal muscle mass and function. In the present study, aging-related sarcopenia rat model was employed to elucidate the effects of the combined administration of MFG-E8 and whey protein on the catabolism and anabolism of gastrocnemius protein. Combined intervention led to notable enhancements in the antioxidative stress status and mitochondrial biogenesis capacity of gastrocnemius muscle fibers in the aging rats, concomitant with a significant inhibition of lipid accumulation. Moreover, the synergistic effect of MFG-E8 and whey protein was found to exert modulatory effects on key signaling pathways, including PI3K/Akt/PGC-1α pathway and MAPK/ERK signaling pathways in the gastrocnemius muscle of the aging rats. Specifically, this combined intervention was observed to promote mitochondrial biogenesis and regulate the expression of protein anabolism and catabolism-related regulators, thereby facilitating the alleviation of mitochondrial oxidative stress and enhancing biogenesis in gastrocnemius tissues. The findings of our study provide compelling evidence for the potential of MFG-E8 as a promising dietary supplement with antisarcopenic properties to ameliorate muscle protein metabolism disorders and mitigate mitochondrial-mediated myoblast apoptosis induced by oxidative stress.
Collapse
Affiliation(s)
- He Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Aihua Zhu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| |
Collapse
|
8
|
Han S, Seo KH, Gyu Lee H, Kim H. Effect of Cucumis melo L. peel extract supplemented postbiotics on reprograming gut microbiota and sarcopenia in hindlimb-immobilized mice. Food Res Int 2023; 173:113476. [PMID: 37803799 DOI: 10.1016/j.foodres.2023.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Postbiotics made from lactic acid bacteria may ameliorate sarcopenia via the metabolic reprogramming of gut dysbiosis. This study investigated the anti-sarcopenic effect of postbiotics (WDK) produced from polyphenol-rich melon peel extract (Cucumis melo L. var. makuwa, KEE) and whey with Lentilactobacillus kefiri DH5 (DH5) in C2C12 skeletal muscle cells and hindlimb-immobilized mice. WDK significantly ameliorated palmitate-induced atrophy of C2C12 cells, restoring myotube length and diameter. It also upregulated the expression of myogenic genes including Atrogin-1, Igf-1, and MyoD. Hindlimb-immobilized C57BL/6J mice were randomly divided and orally administered 10 mL/kg body weight of saline (CON), Whey, Whey + DH5 (WD), DH5 + KEE, Whey + DH5 + KEE postbiotic (WDK) for three weeks (n = 10/group). Interestingly, WDK significantly improved muscle function in hindlimb-immobilized mice by restoring both the grip strength and the mass of the soleus muscle, which was closely related to the upregulation of the myoD gene. WDK increased microbial diversity and modulated the distribution of intestinal bacteria, particularly those involved in protein synthesis and the production of butyrate. There was a significant correlation between myogenic biomarkers and butyrate producing gut microbiota. Restoration of muscle mass and function following postbiotic WDK is strongly related to the regulation of myogenic genes by in part remodulating gut microbiota. In conclusion, these findings suggest that polyphenol- and whey-based postbiotics WDK may have potential as an effective manner to combat the progression of sarcopenia.
Collapse
Affiliation(s)
- Sanghoon Han
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon Gyu Lee
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea.
| |
Collapse
|
9
|
Cheah KJ, Cheah LJ. Benefits and side effects of protein supplementation and exercise in sarcopenic obesity: A scoping review. Nutr J 2023; 22:52. [PMID: 37872544 PMCID: PMC10591413 DOI: 10.1186/s12937-023-00880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Protein supplements have been widely used among those who are struggling with sarcopenic obesity among older adults. However, despite their popularity, there is still a lack of concrete evidence on both the potential benefits and side effects of protein supplementation and exercise on sarcopenic obesity (SO). OBJECTIVE Thus, we aimed to determine the impacts of protein supplementation and exercise in older adults with sarcopenic obesity. METHOD A systematic database search was conducted for randomised controlled trials, quasi experimental study and pre-post study design addressing the effects of protein supplementation in improving sarcopenic obesity among older adults. This scoping review was conducted based on PRISMA-Scr guidelines across PubMed, Embase, Web of Science and Cochrane Library databases. To assess record eligibility, two independent reviewers performed a rigorous systematic screening process. RESULTS Of the 1,811 citations identified, 7 papers met the inclusion criteria. Six studies were randomised controlled trials and one study was a pre-post test study design. The majority of studies discussed the use of both protein supplements and exercise training. The included studies prescribed protein intake ranging from 1.0 to 1.8 g/kg/BW/day for the intervention group, while the duration of exercise performed ranged from 2 to 3 times per week, with each session lasting for 1 hour. Whey protein supplementation has been shown to be effective in improving sarcopenic conditions and weight status in SO individuals. The combination of exercise training especially resistance training and the used of protein supplement provided additional benefits in terms of lean muscle mass as well as biomarkers. The study also revealed a lack of consistency in exercise design among interventions for sarcopenic obesity. CONCLUSION Overall, it appears to be a promising option for SO individuals to improve their sarcopenic condition and weight status through the combination of resistance exercise and whey protein supplementation. However, it also highlights the need for caution when it comes to high amounts of protein intake prescription. Future research is warranted to investigate the optimal exercise design for this population, given the limited research conducted in this specific area.
Collapse
Affiliation(s)
- Khang Jin Cheah
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia.
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia.
| | - Lin Jia Cheah
- Department of Health, North West Regional Hospital, Cooee, Tasmania, 7320, Australia
| |
Collapse
|
10
|
Nasimi N, Sohrabi Z, Nunes EA, Sadeghi E, Jamshidi S, Gholami Z, Akbarzadeh M, Faghih S, Akhlaghi M, Phillips SM. Whey Protein Supplementation with or without Vitamin D on Sarcopenia-Related Measures: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:762-773. [PMID: 37196876 PMCID: PMC10334153 DOI: 10.1016/j.advnut.2023.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
The effects of supplementation with whey protein alone or with vitamin D on sarcopenia-related outcomes in older adults are unclear. We aimed to assess the effect of whey protein supplementation alone or with vitamin D on lean mass (LM), strength, and function in older adults with or without sarcopenia or frailty. We searched PubMed, Web of Science, and SCOPUS databases. Randomized controlled trials (RCT) that investigated the effect of whey protein supplementation with or without vitamin D on sarcopenia outcomes in healthy and sarcopenic or frail older adults were included. Standardized mean differences (SMDs) were calculated for LM, muscle strength, and physical function data. The analysis showed that whey protein supplementation had no effect on LM and muscle strength; nevertheless, a significant improvement was found in physical function (SMD = 0.561; 95% confidence interval [CIs]: 0.256, 0.865, n = 33), particularly gait speed (GS). On the contrary, whey protein supplementation significantly improved LM (SMD = 0.982; 95% CI: 0.228, 1.736; n = 11), appendicular lean mass and physical function (SMD = 1.211; 95% CI: 0.588, 1.834; n = 16), and GS in sarcopenic/frail older adults. By contrast, co-supplementation with vitamin D enhanced LM gains (SMD =0.993; 95% CI: 0.112, 1.874; n = 11), muscle strength (SMD =2.005; 95% CI: 0.975, 3.035; n = 11), and physical function (SMD = 3.038; 95% CI: 2.196, 3.879; n = 18) significantly. Muscle strength and physical function improvements after whey protein supplementation plus vitamin D were observed without resistance exercise (RE) and short study duration subgroups. Moreover, the combination of whey protein and vitamin D with RE did not enhance the effect of RE. Whey protein supplementation improved LM and function in sarcopenic/frail older adults but had no positive effect in healthy older persons. By contrast, our meta-analysis showed that co-supplementation with whey protein and vitamin D is effective, particularly in healthy older adults, which is likely owing, we propose, to the correction of vitamin D insufficiency or deficiency. The trial was registered at https://inplasy.com as INPLASY202240167.
Collapse
Affiliation(s)
- Nasrin Nasimi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Erfan Sadeghi
- Research Consultation Center (RCC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Gholami
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Akbarzadeh
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Zhu X, Wang J, Lu Y, Zhao Y, Zhang N, Wu W, Zhang Y, Fu Y. Potential of Food Protein-Derived Bioactive Peptides against Sarcopenia: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5419-5437. [PMID: 36988097 DOI: 10.1021/acs.jafc.2c09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sarcopenia is an age-related progressive muscle disorder characterized by accelerated loss of muscle mass, strength, and function, which are important causes of physiological dysfunctions in the elderly. At present, the main alleviating method includes protein supplements to stimulate synthesis of muscle proteins. Food protein-derived peptides containing abundant branched-chain amino acids have a remarkable effect on the improvement of sarcopenia. Understanding the underlying molecular mechanism and clarifying the structure-activity relationship is essential for the mitigation of sarcopenia. This present review recaps the epidemiology, pathogenesis, diagnosis, and treatment of sarcopenia, which facilitates a comprehensive understanding of sarcopenia. Moreover, the latest research progress on food-derived antisarcopenic peptides is reviewed, including their antisarcopenic activity, molecular mechanism as well as structural characteristics. Food-derived bioactive peptides can indeed alleviate/mitigate sarcopenia. These antisarcopenic peptides play a pivotal role mainly by activating the PI3K/Akt/mTOR and MAPK pathways and inhibiting the ubiquitin-proteasome system and AMPK pathway, thus promoting the synthesis of muscle proteins and inhibiting their degradation. Antisarcopenic peptides alleviate sarcopenia via specific peptides, which may be absorbed into the circulation and exhibit their bioactivity in intact forms. The present review provides a theoretical reference for mitigation and prevention of sarcopenia by food protein-derived bioactive peptides.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Li H, Guan K, Liu M, Liu D, Wang W, Zhu A. Novel antioxidant peptides from MFGM protein Hydrolysates: Separation, identification and effects on Dexamethasone-induced mitochondrial dysfunction. Food Chem 2023; 403:134473. [DOI: 10.1016/j.foodchem.2022.134473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
13
|
Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass. Nutrients 2022; 14:nu14235095. [PMID: 36501125 PMCID: PMC9736680 DOI: 10.3390/nu14235095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction: A significant reduction in fat-free mass (FFM) following bariatric surgery (BS) has been reported, and adequate protein intake is recommended for FFM preservation. Current guidelines of nutritional management after BS recommend complex protein (CP) compounds. However, Roux-en-Y-gastric bypass (RYGB) has a negative impact on CP digestion, leading to protein malabsorption. At present, there is no data regarding the impact of early supplementation with short peptide-based (SPB) or hydroxy methylbutyrate (HMB)-enriched formulas on the evolution of the FFM after the BS. Aim: The aim of this study is to evaluate the effect of nutritional products based on CP, HBM-enriched, or SPB formulas on the FFM of patients that undergo RYGB. Material and methods: This is a prospective interventional study, including three groups of patients (according to the type of protein product) as candidates for BS, recruited between December 2021 and April 2022, matched by age, gender, and BMI. All patients underwent evaluations at baseline and one month post-BS, including: medical history, physical and anthropometric evaluation, bioimpedance, and biochemical analysis. Results: A total of 60 patients were recruited: 63% women, mean age 43.13 ± 9.4 years, and BMI 43.57 ± 4.1 kg/m2. The % of FFM loss from total weight loss (TWL) was significantly lower in the SPB group than CP and HMB groups despite the major %TWL in this group (40.60 ± 17.27 in CP, 34.57 ± 13.15 in HMB, and 19.14 ± 9.38 in SPB, p < 0.001). TWL% was 9.98 ± 1.82 vs. 9.83 ± 2.71 vs. 13.56 ± 4.30, p < 0.001, respectively. Conclusion: In our study, the SPB supplementation prevented almost 50% FFM lost from the TWL than the CP- or HMB-enriched compounds at one month post-BS. These results are significant in the setting of muscle mass preservation after the BS, and have the potential to change the current guidelines for the management of nutritional supplementation after BS.
Collapse
|
14
|
Nutrition in the prevention and management of sarcopenia - A special focus on Asian Indians. Osteoporos Sarcopenia 2022; 8:135-144. [PMID: 36605171 PMCID: PMC9805983 DOI: 10.1016/j.afos.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, characterized by loss of muscle mass and strength, is common in advanced old age but can be accelerated by chronic disease, malnutrition and physical inactivity. Early initiation of intervention to achieve and maintain a higher peak muscle mass and strength may allow for prevention or delay of sarcopenia and facilitate independent living even in old age. In this context, malnutrition, a significant contributor to sarcopenia, is often overlooked among the Indian population. Maintenance of an optimal energy and protein balance with adequate physical activity level is essential to preserve physical function in the aging population. However, research on the role of micronutrients in muscle maintenance, is still in its infancy. This narrative review, therefore, aims to explore the current status of International and Indian research on the role of nutrition in sarcopenia mitigation and the way forward.
Collapse
|
15
|
Ling CJ, Chen XF, Xu JY, Wang GP, Wang Y, Sun Y, Li YL, Wan ZX, Tong X, Hidayat K, Zhu WZ, Qin LQ, Yang J. Whey protein hydrolysates alleviated weight gain and improved muscle in middle-aged obese mice induced by a high-fat diet. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Wu X, Yu X, Zhu N, Xu M, Li Y. Beneficial effects of whey protein peptides on muscle loss in aging mice models. Front Nutr 2022; 9:897821. [PMID: 36159451 PMCID: PMC9500585 DOI: 10.3389/fnut.2022.897821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aging-related muscle loss is a hallmark of aging and is the cause of some negative outcomes. An optimized diet and supplements have a positive effect in slowing down the process of muscle loss. D-galactose(d-gal) has been used widely to develop aging model. This study explored the beneficial effects of whey protein peptides (WPPs) on sarcopenia in d-gal-induced aging mice. A total of 72 SPF male C57BL/6N mice were used in this study. Sixty mice were modeled by injected intraperitoneally with d-gal (100 mg/kg body weight for 6 weeks), and the other 12 mice were used as control, and injected with the same amount of normal saline. After 6 weeks, the modeled mice were randomly divided into the model control group, whey protein group (1.5 g/kg*bw), and three WPPs intervention groups (0.3 g/kg*bw, 1.5 g/kg*bw, 3.0 g/kg*bw), according to serum malondialdehyde (MDA) level. The test samples were orally given to mice by daily garaged. During the 30 days intervention period, the model control group, whey protein group, and WPPs group continued receiving intraperitoneal injections of d-gal, whereas the control group continued receiving intraperitoneal injections of normal saline. The results showed that WPPs could significantly improve the grip strength of aged mice. WPPs could significantly increase lean mass of aged mice and increase muscle weight of gastrocnemius and extensor digitorum longus. WPPs could significantly increase the level of insulin-like growth factor-1 (IGF-1) and reduce level of interleukin (IL)-1, IL-6, tumor necrosis factor-alpha (TNF-α) in serum. WPPs could affect the muscle fiber size in d-gal-induced aging mice. Its specific mechanism may be related to the activation of IGF-1/Akt/mTOR protein synthesis signaling pathway and reduction of the level of inflammation. These results indicate that WPPs can improve aging-related sarcopenia. Compared with whey protein, WPPs supplement seems a better form for sarcopenia.
Collapse
Affiliation(s)
- Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Peking University Research Center on Aging, Peking University, Beijing, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- *Correspondence: Meihong Xu
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Yong Li
| |
Collapse
|
17
|
López-Martínez MI, Miguel M, Garcés-Rimón M. Protein and Sport: Alternative Sources and Strategies for Bioactive and Sustainable Sports Nutrition. Front Nutr 2022; 9:926043. [PMID: 35782926 PMCID: PMC9247391 DOI: 10.3389/fnut.2022.926043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nutrition and sport play an important role in achieving a healthy lifestyle. In addition to the intake of nutrients derived from the normal diet, some sport disciplines require the consumption of supplements that contribute positively to improved athletic performance. Protein intake is important for many aspects related to health, and current evidence suggests that some athletes require increased amounts of this nutrient. On the other hand, society's demand for more environmentally friendly products, focus on the search for alternative food sources more sustainable. This review aims to summarize the latest research on novel strategies and sources for greener and functional supplementation in sport nutrition. Alternative protein sources such as insects, plants or mycoproteins have proven to be an interesting substrate due to their high added value in terms of bioactivity and sustainability. Protein hydrolysis has proven to be a very useful technology to revalue by-products, such as collagen, by producing bioactive peptides beneficial on athletes performance and sport-related complications. In addition, it has been observed that certain amino acids from plant sources, as citrulline or theanine, can have an ergogenic effect for this target population. Finally, the future perspectives of protein supplementation in sports nutrition are discussed. In summary, protein supplementation in sports nutrition is a very promising field of research, whose future perspective lies with the search for alternatives with greater bioactive potential and more sustainable than conventional sources.
Collapse
Affiliation(s)
- Manuel I. López-Martínez
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Marta Miguel
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
- *Correspondence: Marta Miguel
| | - Marta Garcés-Rimón
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
18
|
Effect of Whey Protein Supplementation on Weight and Body Composition Indicators: A Meta-Analysis of Randomized Clinical Trials. Clin Nutr ESPEN 2022; 50:74-83. [DOI: 10.1016/j.clnesp.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
19
|
Fan R, Hao Y, Du Q, Kang J, Xu M, Li Y. Beneficial Effects of Walnut Oligopeptides on Muscle Loss in Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice: Focusing on Mitochondrial Function. Nutrients 2022; 14:nu14102051. [PMID: 35631191 PMCID: PMC9143134 DOI: 10.3390/nu14102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Aging-related muscle loss is a hallmark of aging and is the cause of some negative outcomes. An optimized diet and supplements have a positive effect in slowing down the process of muscle loss. This study was designed to evaluate the beneficial effects of walnut oligopeptides (WOPs) on aging-related muscle loss and explore the possible underlying mechanism in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice. SAMP8 mice were randomly divided into four groups (n = 15/group), including one group which was the SAMP8 age control group and three groups those were WOP intervention groups. Meanwhile, Senescence Accelerated Resistant Mouse 1 (SAMR1) mice (n = 12), which had normal senescence rates, were used as model controls. During the six-month intervention period, the age control and normal control groups were given sterilized water, while the three WOP intervention groups were given WOP solution with low (110 mg/kg·bw), medium (220 mg/kg·bw) and high concentrations (440 mg/kg·bw), respectively. The results showed that WOPs could significantly increase muscle mass and improve physical performance (wire hang and catwalk behavioral tests) in aging mice. Moreover, WOPs could significantly reduce the levels of IL-1β, IL-6 and TNF-α in serum and gastrocnemius tissues and increase the mitochondrial DNA content, as well as the expression levels of AMPK, PGC-1α, NRF-1 and TFAM in the gastrocnemius muscle of aging mice, which was speculated to be the specific mechanism related to mitochondrial function improvement and inflammation reduction. These results indicate that WOPs can improve aging-related muscle loss, in term of both muscle mass and physical performance, and WOP supplements seems to be potentially effective in elderly individuals.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
| | - Yuntao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
| | - Qian Du
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
| | - Jiawei Kang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (M.X.); (Y.L.); Tel.: +86-010-8280-1177 (Y.L.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.H.); (Q.D.); (J.K.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (M.X.); (Y.L.); Tel.: +86-010-8280-1177 (Y.L.)
| |
Collapse
|
20
|
Bu T, Zhang L, Liu L, Yu S, Zheng J, Wu J, Yang K. Evaluation of the anti-osteoporotic effect of a low-phenylalanine whey protein hydrolysate in an ovariectomized mice model. Food Funct 2022; 13:3957-3967. [PMID: 35293905 DOI: 10.1039/d1fo04030h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A phenylalanine (Phe)-restricted diet is indispensable to control the blood Phe for individuals with phenylketonuria (PKU), who are also confronted with progressive bone impairment. Thus, the development of a low-Phe protein substitute that could positively regulate bone metabolism is desired for their bone health. Our previous study reported the preparation of a low-Phe containing whey hydrolysate (LPH) from a selected whey protein hydrolysate (TAH). However, the effect of LPH on the bone status is unknown. In this study, we used an ovariectomized (OVX) mice model to evaluate the anti-osteoporotic potential of oral administration of whey protein concentrate (WPC, protein control), TAH, and LPH on bone physiology and bone metabolism. The results showed that after 12 weeks of treatment, the decreased bone mineral density, the deteriorated trabecular microarchitecture, and the reduced ultimate load due to ovariectomy were significantly attenuated by two whey protein hydrolysates (TAH and LPH); meanwhile, the body weight, uterine weight, bone composition, and the femoral elastic load of OVX mice had not been significantly affected by whey samples. In addition, LPH and TAH dual-regulated bone remodeling in OVX mice through triggering osteogenesis (promoted the expression of runt-related protein 2 (Runx2) and osteoformation markers) and inhibiting osteoresorption as well as inflammation. The modulated mitogen-activated protein kinase signaling and the inhibited nuclear factor κB signaling by LPH and TAH might relate to the dual-regulatory activities on bone. Overall, in the OVX mice model, LPH exerted higher osteoprotective potential than TAH of the same dose by activating the bone formation markers and inhibiting the inflammatory status. The current study demonstrated for the first time the potential use of a low-Phe whey hydrolysate, a protein substitute for PKU individuals, in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ling Zhang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
21
|
Noncoding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. J Nutr Biochem 2022; 104:108968. [DOI: 10.1016/j.jnutbio.2022.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
22
|
Paladii IV, Vrabie EG, Sprinchan KG, Bologa MK. Part 1: Classification, Composition, Properties, Derivatives, and Application. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Koh FH, Chua JMW, Tan JLJ, Foo FJ, Tan WJ, Sivarajah SS, Ho LML, Teh BT, Chew MH. Paradigm shift in gastrointestinal surgery − combating sarcopenia with prehabilitation: Multimodal review of clinical and scientific data. World J Gastrointest Surg 2021; 13:734-755. [PMID: 34512898 PMCID: PMC8394378 DOI: 10.4240/wjgs.v13.i8.734] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence has demonstrated the prognostic significance of sarcopenia in surgical patients as an independent predictor of postoperative complications and outcomes. These included an increased risk of total complications, major complications, re-admissions, infections, severe infections, 30 d mortality, longer hospital stay and increased hospitalization expenditures. A program to enhance recovery after surgery was meant to address these complications; however, compliance to the program since its introduction has been less than ideal. Over the last decade, the concept of prehabilitation, or “pre-surgery rehabilitation”, has been discussed. The presurgical period represents a window of opportunity to boost and optimize the health of an individual, providing a compensatory “buffer” for the imminent reduction in physiological reserve post-surgery. Initial results have been promising. We review the literature to critically review the utility of prehabilitation, not just in the clinical realm, but also in the scientific realm, with a resource management point-of-view.
Collapse
Affiliation(s)
- Frederick H Koh
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Jason MW Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Joselyn LJ Tan
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Fung-Joon Foo
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Winson J Tan
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | | | - Leonard Ming Li Ho
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Bin-Tean Teh
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Min-Hoe Chew
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| |
Collapse
|
24
|
Hernández-Olivas E, Muñoz-Pina S, Andrés A, Heredia A. Impact of Cooking Preparation on In Vitro Digestion of Eggs Simulating Some Gastrointestinal Alterations in Elders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4402-4411. [PMID: 33835800 PMCID: PMC8719756 DOI: 10.1021/acs.jafc.0c07418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 06/02/2023]
Abstract
This study aimed to in vitro assess the impact of the cooking process of eggs (hard-boiled, poached, and omelet) on nutrients digestibility and vitamins A and D3 bioaccessibility under elderly gastrointestinal (GI) conditions. Three elderly digestion models were mimicked: oral (E1); oral and gastric (E2); and oral, gastric, and intestinal (E3), and a healthy adult model (C). Proteolysis extent reduced after digestion of omelet under the E3 model (p < 0.05) (up to 37% of reduction). Thus, hard-boiled and poached were more recommendable to enhance protein digestibility in elders. Altered GI conditions negatively influence neither the absorbable lipid fraction nor the cholesterol stability. Finally, vitamin A bioaccessibility was not affected but D3 slightly decreased with the elderly (E3). Hence, the digestion of nutrients was dependent on the resulting matrix, poached being the greater supplier of protein and lipid end-digestion products. Poached and omelet, however, offer a high net supply of bioaccessible vitamin D3 for elders.
Collapse
|
25
|
Fabek H, Sanchez-Hernandez D, Ahmed M, Marinangeli CPF, House JD, Anderson GH. An examination of contributions of animal- and plant-based dietary patterns on the nutrient quality of diets of adult Canadians. Appl Physiol Nutr Metab 2021; 46:877-886. [PMID: 33566737 DOI: 10.1139/apnm-2020-1039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary guidance and Canada's 2019 Food Guide encourage increased consumption of plant-based foods as a source of dietary protein. However, there is an absence of recent data on protein and nutrient intakes and quality of Canadian dietary patterns that might occur with increased plant protein intakes. This study compared food sources and nutrient intakes of Canadian adults within groups of increasing plant protein-containing diets. The CCHS 2015 Public-Use Microdata File of single 24-hour dietary recalls of males and females ≥19 years (n = 6498) or ≥70 years (n = 1482) were examined. Respondents were allocated into 4 groups defined by their protein intake percentage coming from plant-based foods (i.e., group 1: 0-24.9%, group 2: 25-49.9%, group 3: 50-74.9%, group 4: 75-100%). Protein intake in adults averaged 63.3% animal and 36.7% plant protein. Where plant protein contributed >50% protein, higher intakes of carbohydrate, dietary fibre, folate, dietary folate equivalents, iron and magnesium (p < 0.001) but lower intakes of total and saturated fat, protein, vitamin D, vitamin B12, riboflavin and niacin (p < 0.0001) were reported. In contrast, group 1 had higher total and saturated fat, protein, vitamin B12, thiamin, niacin, and zinc, but lower carbohydrate, dietary fibre, and magnesium. Balancing plant- with animal-based protein foods leads to healthier dietary patterns with more favourable nutritional properties when compared with diets based on either high animal or high plant protein content. Novelty: Combinations of animal- and plant-based proteins improve nutrient quality of Canadian diets. The source of protein influences diet quality.
Collapse
Affiliation(s)
- Hrvoje Fabek
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Diana Sanchez-Hernandez
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mavra Ahmed
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
26
|
Amigo L, Hernández-Ledesma B. Introduction to the Special Issue: New Advances in the Research of Antioxidant Food Peptides. Foods 2020; 9:foods9121810. [PMID: 33297290 PMCID: PMC7762295 DOI: 10.3390/foods9121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
|
27
|
Montalcini T, Pujia A, Donini LM, Frittitta L, Galvano F, Natali A, Pironi L, Porrini M, Riso P, Rivellese AA, Russo D, Scapagnini G, Serafini M, Tagliabue A, De Lorenzo A. A Call to Action: Now Is the Time to Screen Elderly and Treat Osteosarcopenia, a Position Paper of the Italian College of Academic Nutritionists MED/49 (ICAN-49). Nutrients 2020; 12:E2662. [PMID: 32878316 PMCID: PMC7550989 DOI: 10.3390/nu12092662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a risk factor for the development of multiple chronic diseases, including cardiovascular disease, cancer and dementia. Life expectancy has increased in certain countries but this phenomenon is associated with a reduction of years of healthy life. Aging is associated with a number of physical and functional changes, especially sarcopenia. Sarcopenia is a clinical condition associated with a decrease in skeletal muscle and muscle strength, however, sarcopenia is a reversible condition. On the basis of the current scientific literature, sarcopenia could more appropriately capture an individual's vulnerability to negative health-related outcomes since it represents an early form of the chronic diseases. Recognition of this clinical condition can improve the management of older individuals in many different clinical settings. Despite the limitations of the indirect methods used to study body composition, the Italian College of the Academic Nutritionists ME/49 recommends that health authorities and health professionals around the world should make a greater effort to diagnose sarcopenia earlier and to manage it more effectively. In line with the development of cancer screening, the use of two diagnostic tools for sarcopenia (BIA and DXA) should be implemented.
Collapse
Affiliation(s)
- Tiziana Montalcini
- Department of Clinical and Experiment Medicine, University of Catanzaro Magna Grecia, Viale Europa, 88100 Catanzaro, Italy;
| | - Arturo Pujia
- Department of Clinical and Experiment Medicine, University of Catanzaro Magna Grecia, Viale Europa, 88100 Catanzaro, Italy;
| | - Lorenzo M. Donini
- Department of Experimental Medicine, University of la Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Lucia Frittitta
- Department of Clinical and Experiment Medicine, University of Catania, Via Santa Sofia, 86-95123 Catania, Italy;
| | - Fabio Galvano
- Department of Biomedical and Biotechnology Science, University of Catania, Via Santa Sofia, 86-95123 Catania, Italy;
| | - Andrea Natali
- Department of Clinical and Experiment Medicine, University of Pisa, Lungarno Antonio Pacinotti, 43, 56126 Pisa, Italy;
| | - Loris Pironi
- Department of Medical and Surgical Science, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy;
| | - Marisa Porrini
- Department of Food, Nutrition and Environment Science, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy; (M.P.); (P.R.)
| | - Patrizia Riso
- Department of Food, Nutrition and Environment Science, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy; (M.P.); (P.R.)
| | - Angela Albarosa Rivellese
- Department of Clinical and Experiment Medicine, University of Naples Federico II, Corso Umberto I, 40, 80138 Napoli, Italy;
| | - Diego Russo
- Department of Health Science, University of Catanzaro Magna Grecia, Viale Europa, 88100 Catanzaro, Italy;
| | - Giovanni Scapagnini
- Department of Medicine and Health Science, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| | - Mauro Serafini
- Department of Bioscience and food technology, University of Teramo, Via Renato Balzarini, 1, 64100 Teramo, Italy;
| | - Anna Tagliabue
- Department of Public Health, University of Pavia, Corso Str. Nuova, 65, 27100 Pavia, Italy;
| | - Antonino De Lorenzo
- Biomedicine and Prevention, University of Tor Vergata, Via Montpellier, 1, 00133 Roma, Italy;
| |
Collapse
|