1
|
Kotsifa E, Saffioti F, Mavroeidis VK. Cholangiocarcinoma: The era of liquid biopsy. World J Gastroenterol 2025; 31:104170. [PMID: 40124277 PMCID: PMC11924015 DOI: 10.3748/wjg.v31.i11.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and heterogeneous malignancy arising from the epithelial cells of the biliary tract. The limitations of the current methods in the diagnosis of CCA highlight the urgent need for new, accurate tools for early cancer detection, better prognostication and patient monitoring. Liquid biopsy (LB) is a modern and non-invasive technique comprising a diverse group of methodologies aiming to detect tumour biomarkers from body fluids. These biomarkers include circulating tumour cells, cell-free DNA, circulating tumour DNA, RNA and extracellular vesicles. The aim of this review is to explore the current and potential future applications of LB in CCA management, with a focus on diagnosis, prognostication and monitoring. We examine both its significant potential and the inevitable limitations associated with this technology. We conclude that LB holds considerable promise, but further research is necessary to fully integrate it into precision oncology for CCA.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- The Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens 11527, Greece
| | - Francesca Saffioti
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
- University College London Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and University College London, London NW3 2QG, United Kingdom
- Division of Clinical and Molecular Hepatology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98124, Italy
| | - Vasileios K Mavroeidis
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of HPB Surgery, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
2
|
Macias RIR, Kanzaki H, Berasain C, Avila MA, Marin JJG, Hoshida Y. The Search for Risk, Diagnostic, and Prognostic Biomarkers of Cholangiocarcinoma and Their Biological and Clinicopathologic Significance. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:422-436. [PMID: 39103092 PMCID: PMC11841489 DOI: 10.1016/j.ajpath.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinomas (CCAs) are a heterogeneous group of malignant tumors that originate from the biliary tract. They are usually diagnosed in advanced stages, leading to a poor prognosis for affected patients. As CCA often arises as a sporadic cancer in individuals lacking specific risk factors or with heterogeneous backgrounds, and there are no defined high-risk groups, the implementation of effective surveillance programs for CCA is problematic. The identification and validation of new biomarkers useful for risk stratification, diagnosis, prognosis, and prediction of treatment response remains an unmet need for patients with CCA, even though numerous studies have been conducted lately to try to discover and validate CCA biomarkers. In this review, we overview the available information about the different types of biomarkers that have been investigated in recent years using minimally invasive biospecimens (blood, serum/plasma, bile, and urine) and their potential usefulness in diagnosis, prognosis, and risk stratification. It is widely accepted that early detection of CCA will impact patients' outcomes, by improving survival rates, quality of life, and the possibility of less invasive and/or curative treatments; however, challenges to its translation and clinical application for patients with CCA need to be resolved.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain.
| | - Hiroaki Kanzaki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Berasain
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Xie XH, Chen MM, Xu SX, Mei J, Yang Q, Wang C, Lyu H, Gong Q, Liu Z. Isolating Astrocyte-Derived Extracellular Vesicles From Urine. Int J Nanomedicine 2025; 20:2475-2484. [PMID: 40027875 PMCID: PMC11872092 DOI: 10.2147/ijn.s492381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Brain-derived extracellular vesicles (BDEVs) can cross the blood-brain barrier and enter the periphery. Therefore, quantifying and analyzing peripherally circulating BDEVs offer a promising approach to directly obtain a window into central nervous system (CNS) pathobiology in vivo. Rapidly evolving CNS diseases require high-frequency sampling, but daily venipuncture of human subjects is highly invasive and usually unfeasible. Methods To address this challenge, here we present a novel method for isolating astrocyte-derived extracellular vesicles from urine (uADEVs), combining urine concentration, ultracentrifugation to isolate total EVs, and then glutamate-aspartate transporter (GLAST) EV isolation using an anti-GLAST antibody. Results The identity of these GLAST+EVs as uADEVs was confirmed by transmission electron microscopy, nanoparticle tracking analysis, western blotting, and assessment of astrocyte-related neurotrophins. Conclusions Leveraging the convenience and availability of urine samples, the non-invasive uADEV approach provides a novel tool that allows high-frequency sampling to investigate rapidly evolving CNS diseases.
Collapse
Affiliation(s)
- Xin-hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Mian-mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shu-xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Junhua Mei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Qing Yang
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Honggang Lyu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
5
|
Ala U, Fagoonee S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front Mol Biosci 2024; 11:1388294. [PMID: 38903178 PMCID: PMC11187294 DOI: 10.3389/fmolb.2024.1388294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a persistent inflammatory liver condition that affects the bile ducts and is commonly diagnosed in young individuals. Despite efforts to incorporate various clinical, biochemical and molecular parameters for diagnosing PSC, it remains challenging, and no biomarkers characteristic of the disease have been identified hitherto. PSC is linked with an uncertain prognosis, and there is a pressing need to explore multiomics databases to establish a new biomarker panel for the early detection of PSC's gradual progression into Cholangiocarcinoma (CCA) and for the development of effective therapeutic interventions. Apart from non-coding RNAs, other components of the Ribonucleoprotein (RNP) complex, such as RNA-Binding Proteins (RBPs), also hold great promise as biomarkers due to their versatile expression in pathological conditions. In the present review, an update on the RBP transcripts that show dysregulated expression in PSC and CCA is provided. Moreover, by utilizing a bioinformatic data mining approach, we give insight into those RBP transcripts that also exhibit differential expression in liver and gall bladder, as well as in body fluids, and are promising as biomarkers for diagnosing and predicting the prognosis of PSC. Expression data were bioinformatically extracted from public repositories usingTCGA Bile Duct Cancer dataset for CCA and specific NCBI GEO datasets for both PSC and CCA; more specifically, RBPs annotations were obtained from RBP World database. Interestingly, our comprehensive analysis shows an elevated expression of the non-canonical RBPs, FANCD2, as well as the microtubule dynamics regulator, ASPM, transcripts in the body fluids of patients with PSC and CCA compared with their respective controls, with the same trend in expression being observed in gall bladder and liver cancer tissues. Consequently, the manipulation of tissue expression of RBP transcripts might be considered as a strategy to mitigate the onset of CCA in PSC patients, and warrants further experimental investigation. The analysis performed herein may be helpful in the identification of non-invasive biomarkers for the early detection of PSC and for predicting its progression into CCA. In conclusion, future clinical research should investigate in more depth the full potential of RBP transcripts as biomarkers for human pathologies.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, Turin, Italy
| |
Collapse
|
6
|
Andrade R, Ribeiro IP, Carreira IM, Tralhão JG. The Diagnostic and Prognostic Potentials of Non-Coding RNA in Cholangiocarcinoma. Int J Mol Sci 2024; 25:6002. [PMID: 38892191 PMCID: PMC11172565 DOI: 10.3390/ijms25116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare biliary tract tumor with high malignancy. CCA is the second most common primary hepatobiliary cancer after hepatocarcinoma. Despite its rarity, the incidence of CCA is steadily increasing globally. Most patients with CCA are asymptomatic in the early stages, resulting in a late-stage diagnosis and poor prognosis. Finding reliable biomarkers is essential to improve CCA's early diagnosis and survival rate. Non-coding RNAs (ncRNAs) are non-protein coding RNAs produced by genomic transcription. This includes microRNAs, long non-coding RNAs, and circular RNAs. ncRNAs have multiple functions in regulating gene expression and are crucial for maintaining normal cell function and developing diseases. Many studies have shown that aberrantly expressed ncRNAs can regulate the occurrence and development of CCA. ncRNAs can be easily extracted and detected through tumor tissue and liquid biopsies, representing a potential tool for diagnosing and prognosis CCA. This review will provide a detailed update on the diagnostic and prognostic potentials of lncRNAs and cirRNAs as biomarkers in CCA.
Collapse
Affiliation(s)
- Rita Andrade
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Guilherme Tralhão
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Wang J, Shi R, Yin Y, Luo H, Cao Y, Lyu Y, Luo H, Zeng X, Wang D. Clinical significance of small extracellular vesicles in cholangiocarcinoma. Front Oncol 2024; 14:1334592. [PMID: 38665948 PMCID: PMC11043544 DOI: 10.3389/fonc.2024.1334592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cholangiocarcinoma is an aggressive and heterogeneous malignancy originating from the bile duct epithelium. It is associated with poor prognosis and high mortality. The global incidence of cholangiocarcinoma is rising, and there is an urgent need for effective early diagnosis and treatment strategies to reduce the burden of this devastating tumor. Small extracellular vesicles, including exosomes and microparticles, are nanoscale vesicles formed by membranes that are released both normally and pathologically from cells, mediating the intercellular transfer of substances and information. Recent studies have demonstrated the involvement of small extracellular vesicles in numerous biological processes, as well as the proliferation, invasion, and metastasis of tumor cells. The present review summarizes the tumorigenic roles of small extracellular vesicles in the cholangiocarcinoma microenvironment. Owing to their unique composition, accessibility, and stability in biological fluids, small extracellular vesicles have emerged as ideal biomarkers for use in liquid biopsies for diagnosing and outcome prediction of cholangiocarcinoma. Specific tissue tropism, theoretical biocompatibility, low clearance, and strong biological barrier penetration of small extracellular vesicles make them suitable drug carriers for cancer therapy. Furthermore, the potential value of small extracellular vesicle-based therapies for cholangiocarcinoma is also reviewed.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Yin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yun Lyu
- Departmant of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
8
|
Qiu C, Xiang YK, Da XB, Zhang HL, Kong XY, Hou NZ, Zhang C, Tian FZ, Yang YL. Phospholipase A2 enzymes PLA2G2A and PLA2G12B as potential diagnostic and prognostic biomarkers in cholangiocarcinoma. World J Gastrointest Surg 2024; 16:289-306. [PMID: 38463362 PMCID: PMC10921223 DOI: 10.4240/wjgs.v16.i2.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.
Collapse
Affiliation(s)
- Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Kai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuan-Bo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Lei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiang-Yu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nian-Zong Hou
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fu-Zhou Tian
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, Sichuan Province, China
| | - Yu-Long Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Ferro A, Saccu G, Mattivi S, Gaido A, Herrera Sanchez MB, Haque S, Silengo L, Altruda F, Durazzo M, Fagoonee S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024; 14:277. [PMID: 38540698 PMCID: PMC10967855 DOI: 10.3390/biom14030277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, EVs have emerged as promising vehicles for coding and non-coding RNAs (ncRNAs), which have demonstrated remarkable potential as biomarkers for various diseases, including chronic liver diseases (CLDs). EVs are small, membrane-bound particles released by cells, carrying an arsenal of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA species, such as piRNAs, circRNAs, and tsRNAs. These ncRNAs act as key regulators of gene expression, splicing, and translation, providing a comprehensive molecular snapshot of the cells of origin. The non-invasive nature of EV sampling, typically via blood or serum collection, makes them highly attractive candidates for clinical biomarker applications. Moreover, EV-encapsulated ncRNAs offer unique advantages over traditional cell-free ncRNAs due to their enhanced stability within the EVs, hence allowing for their detection in circulation for extended periods and enabling more sensitive and reliable biomarker measurements. Numerous studies have investigated the potential of EV-enclosed ncRNAs as biomarkers for CLD. MiRNAs, in particular, have gained significant attention due to their ability to rapidly respond to changes in cellular stress and inflammation, hallmarks of CLD pathogenesis. Elevated levels of specific miRNAs have been consistently associated with various CLD subtypes, including metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and chronic hepatitis B and C. LncRNAs have also emerged as promising biomarkers for CLD. These transcripts are involved in a wide range of cellular processes, including liver regeneration, fibrosis, and cancer progression. Studies have shown that lncRNA expression profiles can distinguish between different CLD subtypes, providing valuable insights into disease progression and therapeutic response. Promising EV-enclosed ncRNA biomarkers for CLD included miR-122 (elevated levels of miR-122 are associated with MASLD progression and liver fibrosis), miR-21 (increased expression of miR-21 is linked to liver inflammation and fibrosis in CLD patients), miR-192 (elevated levels of miR-192 are associated with more advanced stages of CLD, including cirrhosis and HCC), LncRNA HOTAIR (increased HOTAIR expression is associated with MASLD progression and MASH development), and LncRNA H19 (dysregulation of H19 expression is linked to liver fibrosis and HCC progression). In the present review, we focus on the EV-enclosed ncRNAs as promising tools for the diagnosis and monitoring of CLD of various etiologies.
Collapse
Affiliation(s)
- Arianna Ferro
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Gabriele Saccu
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Simone Mattivi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy;
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Lorenzo Silengo
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Fiorella Altruda
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
10
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
11
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
13
|
Batool SM, Yekula A, Khanna P, Hsia T, Gamblin AS, Ekanayake E, Escobedo AK, You DG, Castro CM, Im H, Kilic T, Garlin MA, Skog J, Dinulescu DM, Dudley J, Agrawal N, Cheng J, Abtin F, Aberle DR, Chia D, Elashoff D, Grognan T, Krysan K, Oh SS, Strom C, Tu M, Wei F, Xian RR, Skates SJ, Zhang DY, Trinh T, Watson M, Aft R, Rawal S, Agarwal A, Kesmodel SB, Yang C, Shen C, Hochberg FH, Wong DTW, Patel AA, Papadopoulos N, Bettegowda C, Cote RJ, Srivastava S, Lee H, Carter BS, Balaj L. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep Med 2023; 4:101198. [PMID: 37716353 PMCID: PMC10591039 DOI: 10.1016/j.xcrm.2023.101198] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.
Collapse
Affiliation(s)
| | - Anudeep Yekula
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prerna Khanna
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffaney Hsia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Gil You
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyungsoon Im
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tugba Kilic
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Johan Skog
- Exosome Diagnostics Inc., Waltham, MA, USA
| | | | - Jonathan Dudley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jordan Cheng
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - David Chia
- University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Scott S Oh
- University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Strom
- University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Tu
- Liquid Diagnostics LLC., Los Angeles, CA, USA
| | - Fang Wei
- University of California Los Angeles, Los Angeles, CA, USA
| | - Rena R Xian
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Skates
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Thi Trinh
- Yale University School of Medicine, New Haven, CT, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Aft
- Washington University School of Medicine, St. Louis, MO, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | | | | | | | - Cheng Shen
- California Institute of Technology, Pasadena, CA, USA
| | | | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
15
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Logozzi M, Orefice NS, Di Raimo R, Mizzoni D, Fais S. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers (Basel) 2023; 15:cancers15112878. [PMID: 37296842 DOI: 10.3390/cancers15112878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels' clinical relevance and well-known biomarkers' overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in influencing both the amount and the characteristics of the exosome released by tumor cells. In fact, acidity significantly increases exosome release by tumor cells, which correlates with the number of exosomes that circulate through the body of a tumor patient.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nicola Salvatore Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
17
|
Oliviero B, Dei Cas M, Zulueta A, Maiello R, Villa A, Martinelli C, Del Favero E, Falleni M, Montavoci L, Varchetta S, Mele D, Donadon M, Soldani C, Franceschini B, Maestri M, Piccolo G, Barabino M, Bianchi PP, Banales JM, Mantovani S, Mondelli MU, Caretti A. Ceramide present in cholangiocarcinoma-derived extracellular vesicle induces a pro-inflammatory state in monocytes. Sci Rep 2023; 13:7766. [PMID: 37173330 PMCID: PMC10182100 DOI: 10.1038/s41598-023-34676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Aida Zulueta
- Neurorehabilitation Unit of Milan Institute, Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Carla Martinelli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, Milan, Italy
| | - Linda Montavoci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Piccolo
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Matteo Barabino
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Paolo Pietro Bianchi
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Muraki R, Morita Y, Ida S, Kitajima R, Furuhashi S, Takeda M, Kikuchi H, Hiramatsu Y, Takanashi Y, Hamaya Y, Sugimoto K, Ito J, Kawata K, Kawasaki H, Sato T, Kahyo T, Setou M, Takeuchi H. Phosphatidylcholine in bile-derived small extracellular vesicles as a novel biomarker of cholangiocarcinoma. Cancer Med 2023. [PMID: 37096775 DOI: 10.1002/cam4.5973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Owing to the lack of definite diagnostic modalities, it is challenging to distinguish malignant cases of cholangiocarcinoma (CCA), which often causes biliary tract obstruction, from benign ones. Here, we investigated a novel lipid biomarker of CCA in bile-derived small extracellular vesicles (sEVs) and developed a simple detection method for clinical application. METHODS Bile samples from seven patients with malignant diseases (hilar CCA = 4, distal CCA = 3) and eight patients with benign diseases (gallstones = 6, primary sclerosing cholangitis = 1, autoimmune pancreatitis = 1) were collected through a nasal biliary drainage tube. sEVs were isolated via serial ultracentrifugation and characterized using nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting (with CD9, CD63, CD81, and TSG101). Comprehensive lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. Using a measurement kit, we further confirmed whether lipid concentrations could be used as a potential CCA marker. RESULTS Lipidomic analysis of bile sEVs in the two groups identified 209 significantly increased lipid species in the malignant group. When focusing on lipid class, phosphatidylcholine (PC) level was 4.98-fold higher in the malignant group than in the benign group (P = 0.037). The receiver operating characteristic (ROC) curve showed a sensitivity of 71.4%, a specificity of 100%, and an area under the curve (AUC) of 0.857 (95% confidence interval [CI]:0.643-1.000). Using a PC assay kit, the ROC curve showed a cutoff value of 16.1 μg/mL, a sensitivity of 71.4%, a specificity of 100%, and an AUC of 0.839 (95% CI: 0.620-1.000). CONCLUSION PC level in sEVs from human bile is a potential diagnostic marker for CCA and can be assessed by a commercially available assay kit.
Collapse
Affiliation(s)
- Ryuta Muraki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinya Ida
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryo Kitajima
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Furuhashi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Perioperative Functioning Care & Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun Ito
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Kawata
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
19
|
Saengboonmee C, Obchoei S, Sawanyawisuth K, Wongkham S. Revision of potential prognostic markers of cholangiocarcinoma for clinical practice. Expert Rev Anticancer Ther 2023; 23:517-530. [PMID: 37052887 DOI: 10.1080/14737140.2023.2203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an aggressive cancer arising from any part of the biliary system. Effective treatment of CCA remains limited, resulting in the poor overall prognosis of patients. The effective prognostic biomarkers for CCA remain lacking, and most are at the research level. AREAS COVERED The incidences of CCAs, classification, genetic and molecular characteristics, and distinct clinical outcomes in each subtype are introduced. The prognostic markers currently used in clinical practice are reviewed. Studies of biomarkers in defining the aggressiveness of CCA, identifying patients with a potential tumor recurrence, and predicting the survival time, are reviewed. Emerging biomarkers discovered from advanced high throughput technology over the past five years are updated and summarized. Finally, in-depth and critical revision on the prognostic biomarkers for CCA reported from various sources of specimens, e.g. tissues, blood, bile, etc. are discussed. CONCLUSION Many prognostic biomarkers for CCA have been proposed and hold promising clinical value. However, these markers are rarely used in the real clinical world due to several factors. Understanding the roles and importance of these prognostic markers may fundamentally impact the therapeutic management of CCA, and hopefully, improve the development of custom and patient-directed therapies for CCA.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
21
|
Bile metabolites as diagnostic biomarkers for perihilar cholangiocarcinoma. Sci Rep 2023; 13:3177. [PMID: 36823159 PMCID: PMC9950048 DOI: 10.1038/s41598-023-27603-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023] Open
Abstract
It is difficult to directly obtain pathological diagnosis of perihilar cholangiocarcinoma (pCCA). Analysis of bile in the pCCA microenvironment, based on metabolomics and statistical methods, can help in clinical diagnosis. Clinical information, bile samples, blood liver function, blood CA199, CEA, and other indicators were collected from 33 patients with pCCA and 16 patients with gallstones. Bile samples were analyzed using untargeted metabolomics methods. A combination of multivariate and univariate analyses were used to screen for potential differential metabolites Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and differential metabolite remodeling, we explored changes in the pCCA pathway and potential therapeutic targets. There were significant differences in patient blood TBIL, ALT, AST, TBA, CA19-9, and CEA indices (p < 0.05, |log2(fc)| ≥ 1) between two groups. A significant correlation was found between these different indicators by Spearman's analysis. The clinical parameters were correlated with mass-to-charge ratios of 305 (Positive Ion Mode, POS) and 246 (Negative Ion Mode, NEG) in the metabolic group (|r| ≥ 0.7, P ≤ 10-7). The result of this study indicated that bile untargeted metabolomics combined with statistical analysis techniques may be used for diagnose and treatment of pCCA.
Collapse
|
22
|
He MY, Yan FF, Cen KL, Shen P. Long survival after immunotherapy plus paclitaxel in advanced intrahepatic cholangiocarcinoma: A case report and review of literature. World J Clin Cases 2022; 10:11889-11897. [PMID: 36405269 PMCID: PMC9669850 DOI: 10.12998/wjcc.v10.i32.11889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary hepatic malignancy worldwide. However, currently available systemic therapies are of limited effectiveness, and the median overall survival of patients treated with first-line standard chemotherapy is less than one year. Immune checkpoint inhibitors have been used to treat solid tumors. Clinical studies recently explored the combination of chemotherapy and immunotherapy for CCA. However, the clinical significance of predictive biomarkers for chemo-immunotherapy in CCA remains unclear. It is also worth exploring whether a combination of chemotherapeutic agents can increase the sensitivity of CCA immunotherapy.
CASE SUMMARY This study reports a case of advanced iCCA in which clinical complete remission had been achieved using a programmed death 1 (PD-1) inhibitor and paclitaxel without known predictive biomarkers, but with BRCA1, KRAS, and NTRK3 mutations after rapid progression to first-line chemotherapy, and has remained in clinical complete remission for more than two years. This case suggests that chemo-immunotherapy is a potential therapeutic option for patients with iCCA and few known predictive biomarkers for immunotherapies as well as synergistic effect of the combination of paclitaxel and PD-1 monoclonal antibody.
CONCLUSION The combination of paclitaxel and PD-1 monoclonal antibodyr can be explored in patients with advanced iCCA.
Collapse
Affiliation(s)
- Meng-Ye He
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Fei-Fei Yan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Kai-Li Cen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng Shen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
23
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
24
|
Zhu Q, Zhai S, Ge E, Li L, Jiao X, Xiong J, Zhu G, Xu Y, Qu J, Wang Z. Intrahepatic cholangiocarcinoma with gastric metastasis misdiagnosed as primary gastric cancer: A case report and literature review. Front Oncol 2022; 12:997735. [PMID: 36132146 PMCID: PMC9483163 DOI: 10.3389/fonc.2022.997735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
We describe a case of intrahepatic cholangiocarcinoma with gastric metastasis misdiagnosed as primary gastric cancer. In addition, combined with the literature, we summarized the clinical and imaging features of gastric metastasis of intrahepatic cholangiocarcinoma in order to improve the understanding of the preoperative diagnosis. Positron emission tomography/computed tomography (PET/CT) is accurate in evaluating the primary tumor, lymph node metastasis, and distant metastasis of patients. In addition, immunohistochemical staining can determine the primary site of metastatic adenocarcinoma. For patients who can not determine the location of the primary tumor, the rigorous preoperative examination is necessary, it can improve the accuracy of diagnosis and avoid excessive treatment of patients.
Collapse
Affiliation(s)
- Qingshun Zhu
- Department of Clinical Medical College, Weifang Medical University, Weifang, China
| | - Shengyong Zhai
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
| | - Enkang Ge
- Department of Clinical Medical College, Weifang Medical University, Weifang, China
| | - Lei Li
- Department of Clinical Medical College, Weifang Medical University, Weifang, China
| | - Xuguang Jiao
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
| | - Jinqiu Xiong
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
| | - Guangxu Zhu
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
| | - Yuanyuan Xu
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
| | - Jianjun Qu
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
- *Correspondence: Jianjun Qu, ; Zhengjiang Wang,
| | - Zhengjiang Wang
- Department of General Surgery, The first affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, China
- *Correspondence: Jianjun Qu, ; Zhengjiang Wang,
| |
Collapse
|
25
|
Li J, Chen Q, Guo L, Li J, Jin B, Wu X, Shi Y, Xu H, Zheng Y, Wang Y, Du S, Li Z, Lu X, Sang X, Mao Y. In situ Detecting Lipids as Potential Biomarkers for the Diagnosis and Prognosis of Intrahepatic Cholangiocarcinoma. Cancer Manag Res 2022; 14:2903-2912. [PMID: 36187448 PMCID: PMC9524278 DOI: 10.2147/cmar.s357000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To quantitatively analyze lipid molecules in tumors and adjacent tissues of intrahepatic cholangiocarcinoma (ICC), to establish diagnostic model and to examine lipid changes with clinical classification. Patients and Methods We measured the quantity of 202 lipid molecules in 100 tumor observation points and 100 adjacent observation points of patients who were diagnosed with ICC. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were handles, along with Student’s t-test to identify specific metabolites. Prediction accuracy was validated in the validation set. Another logistic regression model was also established on the training set and validated on the validation set. Results Distinct separation was obtained from PCA and OPLS-DA model. Ten differentiating metabolites were identified using PCA, OPLA-DA and Lasso regression: [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 474.2626], [m/z 661.4813], [m/z 750.5443], [m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939]. Using logical regression, a diagnostic equation: y = 3.4*[m/z 436.2834] - 3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] - 4.394*[m/z 863.5655] + 10.165 based on four metabolites successfully differentiated cancerous areas from adjacent normal areas. The AUROC of the model reached 0.993 (95% CI: 0.985–0.999) in the validation group. Compared with the adjacent non-tumor area, three characteristic metabolites FA (22:4), PA (P-18:0/0:0) and Glucosylceramide (d18:1/12:0) showed an increasing trend from stage I to stage II, while seven other metabolites LPA(16:0), PE(34:2), PE(36:4), PE(38:3), PE(40:6), PE(40:5) and LPE(16:0) showed a decreasing trend from stage I to stage II. Conclusion We successfully identified lipid molecules in differentiating tumor tissue and adjacent tissue of ICC, established a discrimination logistic model which could be used as a classifier to classify tumor and non-tumor regions based on analysis in tumor margins and provided information for biomarker changes in ICC, and proposed to related lipid changes with clinical classification.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Qiao Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Lei Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yue Shi
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yingyi Wang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Correspondence: Shunda Du; Zhili Li, Email ;
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
26
|
Gongye X, Tian M, Xia P, Qu C, Chen Z, Wang J, Zhu Q, Li Z, Yuan Y. Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor. J Control Release 2022; 350:11-25. [PMID: 35963466 DOI: 10.1016/j.jconrel.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is rapidly growing into a hot research field due to its unique advantages of minimal invasiveness, and extracellular vesicle (EVs) are also expected to become an important pillar in the diagnostic technology system as a newly discovered active substance carrier. More and more research has highlighted the important contribution of EVs in the progress of tumor. Molecular changes during disease progression could be detected in EVs. However, the diagnostic applications of EVs are not generally understood. Combined with the characteristics of hepatobiliary and pancreatic tumor, we summarized the recent developments in various omics analysis of EVs. Furtherly, we explored the role of EVs in the early diagnosis of hepatobiliary and pancreatic tumors by multi-omics analysis.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Chengmin Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Qian Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| |
Collapse
|
27
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
28
|
Devaraj E, Perumal E, Subramaniyan R, Mustapha N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology 2022; 76:275-285. [PMID: 34773651 DOI: 10.1002/hep.32239] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Elumalai Perumal
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raghunandhakumar Subramaniyan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Najimi Mustapha
- Laboratory of Pediatric Hepatology and Cell Therapy, IREC Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
29
|
Okuno M, Mukai T, Iwata K, Watanabe N, Tanaka T, Iwasa T, Shimojo K, Ohashi Y, Takagi A, Ito Y, Tezuka R, Iwata S, Iwasa Y, Kochi T, Ogiso T, Hayashi H, Sugiyama A, Nishigaki Y, Tomita E. Evaluation of the Cell Block Method Using Overnight-Stored Bile for Malignant Biliary Stricture Diagnosis. Cancers (Basel) 2022; 14:cancers14112701. [PMID: 35681681 PMCID: PMC9179241 DOI: 10.3390/cancers14112701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The specimen collection and subsequent pathological diagnosis of malignant biliary stricture (MBS) are difficult. This study aimed to determine whether the cell block (CB) method using overnight-stored bile is useful in the diagnosis of MBS. This trial was a single-arm prospective study involving a total of 59 patients with suspected MBS. The primary endpoint was cancer detectability and accuracy using the CB method, and a comparison with the detectability and accuracy achieved with bile cytology was made. The immunohistochemical sensitivity for maspin and p53 was also investigated in the CB and surgical specimens. We were able to collect bile from all 59 patients, and 45 of these patients were clinically diagnosed with MBS. The cancer detectability using the CB method (62.2%) was significantly higher than that using cytology (37.8%) (p = 0.0344). When CB was combined with biopsy, the rates of cancer detectability (75.6%) and accuracy (81.4%) increased. In eight patients who received surgical therapy, maspin- and p53-immunohistochemistry was applied to the surgical and CB specimens, and cancer cells in both specimens showed positive cytoplasmic and nuclear staining for maspin and nuclear staining for p53. The CB method is, thus, useful for detecting malignancy (UMIN000034707).
Collapse
Affiliation(s)
- Mitsuru Okuno
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
- Correspondence: ; Tel.: +81-58-251-1101
| | - Tsuyoshi Mukai
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Keisuke Iwata
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Naoki Watanabe
- Department of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (N.W.); (T.T.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (N.W.); (T.T.)
| | - Taisei Iwasa
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Kota Shimojo
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Yosuke Ohashi
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Akihiro Takagi
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Yuki Ito
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Ryuichi Tezuka
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Shota Iwata
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Yuhei Iwasa
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Takahiro Kochi
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Tomio Ogiso
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Hideki Hayashi
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Akihiko Sugiyama
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Youichi Nishigaki
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| | - Eiichi Tomita
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (T.M.); (K.I.); (T.I.); (K.S.); (Y.O.); (A.T.); (Y.I.); (R.T.); (S.I.); (Y.I.); (T.K.); (T.O.); (H.H.); (A.S.); (Y.N.); (E.T.)
| |
Collapse
|
30
|
Three Prognostic Biomarkers Correlate with Immune Checkpoint Blockade Response in Bladder Urothelial Carcinoma. Int J Genomics 2022; 2022:3342666. [PMID: 35664691 PMCID: PMC9162857 DOI: 10.1155/2022/3342666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aim We aim to develop a signature that could accurately predict prognosis and evaluate the response to immune checkpoint blockade (ICB) in bladder urothelial carcinoma (BLCA). Methods Based on comprehensive analysis of public database, we identified prognosis-related hub genes and investigated their predictive values for the ICB response in BLCA. Results Among 69 common DEGs, three genes (AURKA, BIRC5, and CKS1B) were associated with poor prognosis, and which were related to histological subtypes, TP53 mutation status, and the C2 (IFN-gamma dominant) subtype. Three genes and their related risk model can effectively predict the response of immunotherapy. Their related drugs were identified through analysis of drug bank database. Conclusions Three genes could predict prognosis and evaluate the response to ICB in BLCA.
Collapse
|
31
|
Wu Y, Hayat K, Hu Y, Yang J. Long Non-Coding RNAs as Molecular Biomarkers in Cholangiocarcinoma. Front Cell Dev Biol 2022; 10:890605. [PMID: 35573683 PMCID: PMC9093656 DOI: 10.3389/fcell.2022.890605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary system cancer that has the characteristics of strong invasiveness, poor prognosis, and few therapy choices. Furthermore, the absence of precise biomarkers for early identification and prognosis makes it hard to intervene in the early phase of initial diagnosis or recurring cholangiocarcinoma following surgery. Encouragingly, previous studies found that long non-coding RNA (lncRNA), a subgroup of RNA that is more than 200 nucleotides long, can affect cell proliferation, migration, apoptosis, and even drug resistance by altering numerous signaling pathways, thus reaching pro-cancer or anti-cancer outcomes. This review will take a retrospective view of the recent investigations on the work of lncRNAs in cholangiocarcinoma progression and the potential of lncRNAs serving as promising clinical biomarkers and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khizar Hayat
- Department of Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianfeng Yang,
| |
Collapse
|
32
|
Munugala N, Maithel SK, Shroff RT. Novel biomarkers and the future of targeted therapies in cholangiocarcinoma: a narrative review. Hepatobiliary Surg Nutr 2022; 11:253-266. [PMID: 35464290 PMCID: PMC9023822 DOI: 10.21037/hbsn-20-475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022]
Abstract
Background and Objectives Cholangiocarcinoma is a highly aggressive and heterogenous group of biliary malignancies arising from any site in the biliary tree, comprising 15% of all primary liver cancers. The nature of the disease and nonspecific presentation leads to late diagnosis and ultimately poor outcomes for patients. Combination gemcitabine and cisplatin has been the standard of care for cholangiocarcinoma (CCA) since 2010, with a median overall survival of 11.7 months. The five-year survival for CCA remains 5-10%, revealing a clear need for improved treatment options. Methods This targeted review highlights the role of next generation sequencing in CCA and the clinically relevant tumor biomarkers that have become the focus of therapeutic development. Key Content and Findings These tumor biomarkers or actionable mutations hold the potential to enable earlier diagnosis, provide prognostic information, and guide treatment decisions for patients with CCA. Specifically, the FGFR2 fusion and IDH1 mutation have shown considerable promise in development of targeted therapies. Clinical trials with inhibitors targeting FGFR2 fusion and IDH1 mutation have created expectations that these drugs will soon enter clinical practice. Other biomarkers including KRAS and B-raf protooncogenes, Her2/neu genes, and BRCA1 and 2 tumor-suppressor genes have also been touted as potential targets for future therapies, with early data showing promise for new drug development. Conclusion The discovery of these actionable mutations and identification of targeted therapies have challenged the notion of a "one-size fits all" for treatment of CCA, and generated optimism that these novel treatments will soon be available for patients with CCA.
Collapse
Affiliation(s)
| | - Shishir K. Maithel
- Division of Surgical Oncology, Emory University, Winship Cancer Institute, Atlanta, GA, USA
| | - Rachna T. Shroff
- Division of Hematology and Oncology, Department of GI Medical Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
33
|
Khosla D, Zaheer S, Gupta R, Madan R, Goyal S, Kumar N, Kapoor R. Role of intraluminal brachytherapy in palliation of biliary obstruction in cholangiocarcinoma: A brief review. World J Gastrointest Endosc 2022; 14:106-112. [PMID: 35432743 PMCID: PMC8984530 DOI: 10.4253/wjge.v14.i3.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Surgery is the only curative treatment for cholangiocarcinoma. However, most patients present with advanced disease, and hence are unresectable. Thus, the intent of treatment shifts from curative to palliative in the majority of cases. Biliary drainage with intraluminal brachytherapy is an effective means of relieving the malignant biliary obstruction. In this review, we discuss the role of brachytherapy in the palliation of obstructive symptoms in extrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| | - Samreen Zaheer
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| | - Rahul Gupta
- Department of Gastroenterology and Hepatology, Shalby Multispeciality Hospital, Mohali 160062, Punjab, India
| | - Renu Madan
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| | - Shikha Goyal
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| | - Narendra Kumar
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, U.T., India
| |
Collapse
|
34
|
Zhao K, Li X, Shi Y, Lu Y, Qiu P, Deng Z, Yao W, Wang J. Exosomes in the tumor microenvironment of cholangiocarcinoma: current status and future perspectives. J Transl Med 2022; 20:117. [PMID: 35255950 PMCID: PMC8900430 DOI: 10.1186/s12967-022-03294-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Cholangiocarcinoma (CCA) refers to an aggressive malignancy with a high fatality rate and poor prognosis. Globally, the morbidity of CCA is increasing for the past few decades, which has progressed into a disease that gravely endangers human health. Exosomes belong to a class of extracellular vesicles (EVs) with diameters ranging from 40 to 150 nm that can be discharged by all living cells. As communication messengers of the intercellular network, exosomes carry a diverse range of cargoes such as proteins, nucleic acids, lipids, and metabolic substances, which are capable of conveying biological information across different cell types to mediate various physiological activities or pathological changes. Increasing studies have demonstrated that exosomes in the tumor microenvironment participate in regulating tumorigenesis and progression via multiple approaches in the tumor microenvironment. Here, we reviewed the current research progress of exosomes in the context of cancer and particularly highlighted their functions in modulating the development of CCA. Furthermore, the potential values of exosomes as diagnostic and therapeutic targets in CCA were overviewed as well.
Collapse
|
35
|
Povero D, Tameda M, Eguchi A, Ren W, Kim J, Myers R, Goodman ZD, Harrison SA, Sanyal AJ, Bosch J, Ohno-Machado L, Feldstein AE. Protein and miRNA profile of circulating extracellular vesicles in patients with primary sclerosing cholangitis. Sci Rep 2022; 12:3027. [PMID: 35194091 PMCID: PMC8863778 DOI: 10.1038/s41598-022-06809-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic and heterogenous cholestatic liver disease characterized by chronic inflammation and fibrosis of the biliary tree. Currently, no effective therapies are available for this condition, whose incidence is rising. At present, specificity and sensitivity of current serum markers used to diagnose PSC are limited and often unreliable. In this study, we characterize circulating extracellular vesicles and provide supporting data on their potential use as novel surrogate biomarkers for PSC. EVs are membrane surrounded structures, 100–1000 nm in size, released by cells under various conditions and which carry a variety of bioactive molecules, including small non-coding RNAs, lipids and proteins. In recent years, a large body of evidence has pointed to diagnostic implications of EVs and relative cargo in various human diseases. We isolated EVs from serum of well-characterized patients with PSC or control subjects by differential centrifugation and size-exclusion chromatography. A complete characterization identified elevated levels of circulating EVs in PSC patients compared to healthy control subjects (2000 vs. 500 Calcein-FITC + EVs/μL). Tissue and cell specificity of circulating EVs was assessed by identification of liver-specific markers and cholangiocyte marker CK-19. Further molecular characterization identified 282 proteins that were differentially regulated in PSC-derived compared to healthy control-EVs. Among those, IL-13Ra1 was the most significantly and differentially expressed protein in PSC-derived EVs and correlated with the degree of liver fibrosis. In addition to protein profiling, we performed a miRNA-sequencing analysis which identified 11 among established, liver-specific (e.g., miR-122 and miR-192) and novel miRNAs. One of the newly identified miRNAs, miR-4645-3p, was significantly up-regulated fourfold in PSC-derived EVs compared to circulating EVs isolated from healthy controls. This study provides supporting evidence of the potential role of circulating EVs and associated protein and miRNA cargo as surrogate noninvasive and reliable biomarker for PSC.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Masahiko Tameda
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, San Diego, CA, 92103-8450, USA
| | - Akiko Eguchi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, San Diego, CA, 92103-8450, USA
| | - Wenhua Ren
- Genomics and Microarray Core, University of Colorado Denver, Aurora, CO, USA
| | - Jihoon Kim
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Jaime Bosch
- Department of Visceral Surgery and Medicine and Department for Biomedical Research, Inselspital, University of Bern, Bern, Switzerland.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)-CIBERehd, University of Barcelona, Barcelona, Spain
| | - Lucila Ohno-Machado
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA
| | - Ariel E Feldstein
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, San Diego, CA, 92103-8450, USA.
| |
Collapse
|
36
|
The Potential Application of Extracellular Vesicles from Liquid Biopsies for Determination of Pharmacogene Expression. Pharmaceuticals (Basel) 2022; 15:ph15020252. [PMID: 35215364 PMCID: PMC8879428 DOI: 10.3390/ph15020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pharmacogenomics (PGx) entails the study of heritability of drug response. This may include both variability in genes related to pharmacokinetics (drug absorption, distribution, metabolism and excretion) and pharmacodynamics (e.g., drug receptors or signaling pathways). Individualizing drug therapy taking into account the genetic profile of the patient has the potential to make drug therapy safer and more effective. Currently, this approach relies on the determination of genetic variants in pharmacogenes by genotyping. However, it is widely acknowledged that large variability in gene expression is attributed to non-structural genetic variants. Therefore, at least from a theoretical viewpoint individualizing drug therapy based upon expression of pharmacogenes rather than on genotype may be advantageous but has been difficult to implement in the clinical setting. Extracellular vesicles (EVs) are lipid encapsulated structures that contain cargo such as lipids, nucleic acids and proteins. Since their cargo is tissue- and cell-specific they can be used to determine the expression of pharmacogenes in the liver. In this review, we describe methods of EV isolation and the potential of EVs isolated from liquid biopsies as a tool to determine the expression of pharmacogenes for use in personalized medicine.
Collapse
|
37
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
38
|
Cappello F, Fais S. Extracellular vesicles in cancer pros and cons: the importance of the evidence-based medicine. Semin Cancer Biol 2022; 86:4-12. [DOI: 10.1016/j.semcancer.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
39
|
Beri N. Unmet needs in the treatment of intrahepatic cholangiocarcinoma harboring FGFR2 gene rearrangements. Future Oncol 2022; 18:1391-1402. [PMID: 35081733 DOI: 10.2217/fon-2021-1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrahepatic cholangiocarcinoma, a malignancy of the intrahepatic bile ducts, is the second most common primary liver malignancy and has been rising in incidence over the past several decades. Given its poor prognosis and diagnosis at a late stage, novel therapies are urgently needed to improve outcomes. Intrahepatic cholangiocarcinoma harbors a high rate of targetable mutations, spurring an increased interest in drug development in this disease. FGFR2 gene rearrangements occur in approximately 10-16% of these tumors and this underscores the importance of next generation sequencing in this population. There are now several FGFR inhibitors in development, and these agents may help improve outcomes for these patients. However, both primary and secondary resistance remain a challenge.
Collapse
Affiliation(s)
- Nina Beri
- Perlmutter Cancer Center, New York University Medical Center, NY 10016, USA
| |
Collapse
|
40
|
Manne A, Woods E, Tsung A, Mittra A. Biliary Tract Cancers: Treatment Updates and Future Directions in the Era of Precision Medicine and Immuno-Oncology. Front Oncol 2021; 11:768009. [PMID: 34868996 PMCID: PMC8634105 DOI: 10.3389/fonc.2021.768009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The effective management of biliary tract cancers (BTCs) has been hampered by limited options for systemic therapy. In recent years, the focus on precision medicine has made technologies such as next-generation sequencing (NGS) accessible to clinicians to identify targetable mutations in BTCs in tumor tissue (primarily) as well as blood, and to treat them with targeted therapies when possible. It has also expanded our understanding of functional pathways associated with genetic alterations and opened doors for identifying novel targets for treatment. Recent advances in the precision medicine approach allowed us to identify new molecular markers in BTCs, such as epigenetic changes (methylation and histone modification) and non-DNA markers such as messenger RNA, microRNA, and long non-coding RNA. It also made detecting these markers from non-traditional sources such as blood, urine, bile, and cytology (from fine-needle aspiration and biliary brushings) possible. As these tests become more accessible, we can see the integration of different molecular markers from all available sources to aid physicians in diagnosing, assessing prognosis, predicting tumor response, and screening BTCs. Currently, there are a handful of approved targeted therapies and only one class of immunotherapy agents (immune checkpoint inhibitors or ICIs) to treat BTCs. Early success with new targets, vascular endothelial growth factor receptor (VEGFR), HER2, protein kinase receptor, and Dickkopf-1 (DKK1); new drugs for known targets, fibroblast growth factor receptors (FGFRs) such as futabatinib, derazantinib, and erdafitinib; and ICIs such as durvalumab and tremelimumab is encouraging. Novel immunotherapy agents such as bispecific antibodies (bintrafusp alfa), arginase inhibitors, vaccines, and cellular therapy (chimeric antigen receptor-T cell or CAR-T, natural killer cells, tumor-infiltrating lymphocytes) have the potential to improve outcomes of BTCs in the coming years.
Collapse
Affiliation(s)
- Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Edward Woods
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Arjun Mittra
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
41
|
Ney A, Garcia-Sampedro A, Goodchild G, Acedo P, Fusai G, Pereira SP. Biliary Strictures and Cholangiocarcinoma - Untangling a Diagnostic Conundrum. Front Oncol 2021; 11:699401. [PMID: 34660269 PMCID: PMC8515053 DOI: 10.3389/fonc.2021.699401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is an uncommon and highly aggressive biliary tract malignancy with few manifestations until late disease stages. Diagnosis is currently achieved through a combination of clinical, biochemical, radiological and histological techniques. A number of reported cancer biomarkers have the potential to be incorporated into diagnostic pathways, but all lack sufficient sensitivity and specificity limiting their possible use in screening and early diagnosis. The limitations of standard serum markers such as CA19-9, CA125 and CEA have driven researchers to identify multiple novel biomarkers, yet their clinical translation has been slow with a general requirement for further validation in larger patient cohorts. We review recent advances in the diagnostic pathway for suspected CCA as well as emerging diagnostic biomarkers for early detection, with a particular focus on non-invasive approaches.
Collapse
Affiliation(s)
- Alexander Ney
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - George Goodchild
- St. Bartholomew's hospital, Barts Health NHS Trust, London, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Fusai
- Division of Surgery and Interventional Science - University College London, London, United Kingdom
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
42
|
Yang J, Gao X, Xing X, Huang H, Tang Q, Ma S, Xu X, Liang C, Li M, Liao L, Tian W. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum. Int J Nanomedicine 2021; 16:6681-6692. [PMID: 34616151 PMCID: PMC8487857 DOI: 10.2147/ijn.s328325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/07/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Extracellular vesicles (EVs) are membrane-encapsulated nanoparticles that function as carriers and play a role in intercellular communication. There are a large number of EVs in the blood and serve as an indicator of pathophysiological conditions. Studies on the basics and application of EVs are hampered by the limitations of current protocols to isolate EVs from blood. However, current isolation methods are difficult to achieve a balance between yield and purity. Methods Firstly, we use Sepharose-4B to build a self-made size exclusion chromatography (SEC) column and perform separation and characteristics. Then, we use the SEC column to systematically compare the efficiency with the most common EV isolation methods: Ultracentrifugation (UC) and total exosomes isolation commercial kit (TEI). The EVs isolated through different methods were characterized the yield and size of EVs, analyzed their protein profiles, the morphology and purity were observed under the transmission electron microscope. To further improve the quality and purity, we combined SEC and UC methods and established a two-steps method to isolated EVs from serum. Results Self-made SEC column can well separate EVs from complex serum protein, and EVs enriched in the 8–13 fractions with good morphology and yield. By systematically compare SEC with the commonly used UC and TEI kit, SEC is outstanding in all aspects and balances both isolation purity and yield. However, using the SEC method alone still has certain limitations and residual impurities. The SEC+UC combined method can cleverly solve the shortcomings of SEC and optimize the quality and purity of EVs from serum, which is much better than using one method alone. Conclusion Our study presents the combination of size-exclusion chromatography and ultracentrifugation as a feasible and time-saving method to isolate high-quality and purity extracellular vesicles from serum.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
43
|
Zhang Z, Wang Z, Huang Y. A Bibliometric Analysis of 8,276 Publications During the Past 25 Years on Cholangiocarcinoma by Machine Learning. Front Oncol 2021; 11:687904. [PMID: 34557406 PMCID: PMC8453170 DOI: 10.3389/fonc.2021.687904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction Cholangiocarcinoma (CCA) is the second most common hepatic malignancy. Progress and developments have also been made in the field of CCA management along with increasing scientific publications during the past decades, which reflect topics of general interest and suggest the future direction of studies. The purpose of this bibliometric study is to summarize scientific publications during the past 25 years in the field of CCA using a machine learning method. Material and Methods Scientific publications focusing on CCA from 1995 to 2019 were searched in PubMed using the MeSH term "cholangiocarcinoma." Full associated data were downloaded in the format of PubMed and extracted in the R platform. Latent Dirichlet allocation (LDA) was adopted to identify the research topics from the abstract of each publication using Python. Results A total of 8,276 publications related to CCA from the last 25 years were found and included in this study. The most type of publications remained little changed, while the proportion of clinical trials remained relatively low (7.24% as the highest) and, more significantly, with a further downward trend during the recent years (1.42% in 2019). Neoplasm staging, hepatectomy, and survival rate were the most concerning terms among those who are diagnosis-related, treatment-related, and prognosis-related. The LDA analyses showed chemotherapy, hepatectomy, and stent as the highly concerned research topics of CCA treatment. Meanwhile, conversions from basic studies to clinical therapies were suggested by a poor connection between clusters of treatment management and basic research. Conclusion The number of publications of CCA has increased rapidly during the past 25 years. Survival analysis, differential diagnosis, and microRNA expression are the most concerned topics in CCA studies. Besides, there is an urgent need for high-quality clinical trials and conversions from basic studies to clinical therapies.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Shotton R, Lamarca A, Valle J, McNamara MG. Potential utility of liquid biopsies in the management of patients with biliary tract cancers: A review. World J Gastrointest Oncol 2021; 13:1073-1085. [PMID: 34616513 PMCID: PMC8465442 DOI: 10.4251/wjgo.v13.i9.1073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Biliary tract cancer, comprising gallbladder cancer, cholangiocarcinoma and ampullary cancer, represents a more uncommon entity outside high-endemic areas, though global incidence is rising. The majority of patients present at a late stage, and 5-year survival remains poor. Advanced stage disease is incurable, and though palliative chemotherapy has been shown to improve survival, further diagnostic and therapeutic options are required in order to improve patient outcomes. Although certain subtypes of biliary tract cancer are relatively rich in targetable mutations, attaining tumour tissue for histological diagnosis and treatment monitoring is challenging due to locoregional anatomical constraints and patient fitness. Liquid biopsies offer a safe and convenient alternative to invasive procedures and have great potential as diagnostic, predictive and prognostic biomarkers. In this review, the current standard of care for patients with biliary tract cancer, future treatment horizons and the possible utility of liquid biopsies within a variety of contexts will be discussed. Circulating tumour DNA, circulating microRNA and circulating tumour cells are discussed with an overview of their potential applications in management of biliary tract cancer. A summary is also provided of currently recruiting clinical trials incorporating liquid biopsies within biliary tract cancer research.
Collapse
Affiliation(s)
- Rohan Shotton
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Juan Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
45
|
Bourien H, Lamarca A, McNamara MG, Hubner RA, Valle JW, Edeline J. Druggable molecular alterations in bile duct cancer: potential and current therapeutic applications in clinical trials. Expert Opin Investig Drugs 2021; 30:975-983. [PMID: 34420429 DOI: 10.1080/13543784.2021.1964470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Cholangiocarcinomas (CCA) are rare tumors that are associated with a variety of molecular alterations. Many of these alterations are now actionable using drugs currently in development, and CCA may be a perfect example of application of a precision oncology approach. However, development of drugs in CCA faces the challenge of targeting rare alterations in a rare disease.Areas covered: In this review, we present the current data on targeted therapies in development for CCA, focusing on IDH1, FGFR2, BRAF, and HER2 alterations. We also discuss rationale for targeting other alterations, currently without specific development in CCA. We searched PubMed and google scholar in February 2021 for relevant articles and presentation in recent congress regarding the literature on molecular alterations, drugs in cholangiocarcinomas and biliary tract cancers.Expert opinion: Despite a strong rationale and promising early results, applying a precision oncology approach in CCA for everyday patients is still exposed to significant challenges: obtaining the molecular portrait of these tumors due to difficulties with biopsy access, complexities of drug development in subgroups of these relatively rare tumors, and sub-optimal access to drugs outside clinical trials.
Collapse
Affiliation(s)
- Héloïse Bourien
- Department Of Medical Oncology, Centre Eugène Marquis, Rennes, France, France
| | - Angela Lamarca
- Department Of Medical Oncology, The Christie Nhs Foundation Trust/Division Of Cancer Sciences, University Of Manchester, Manchester, UK
| | - Mairéad G McNamara
- Division Of Cancer Sciences, University Of Manchester/Department Of Medical Oncology, The Christie Nhs Foundation Trust, Manchester, UK
| | - Richard A Hubner
- Department Of Medical Oncology, The Christie Nhs Foundation Trust/Division Of Cancer Sciences, University Of Manchester, Manchester, UK
| | - Juan W Valle
- Division Of Cancer Sciences, University Of Manchester/Department Of Medical Oncology, The Christie Nhs Foundation Trust, Manchester, UK
| | - Julien Edeline
- Department Of Medical Oncology, Centre Eugène Marquis, Rennes, France, France
| |
Collapse
|
46
|
Zheng W, Ji D, Zhou Y, Yu L, Huang P, Zheng Y, Meng N, Wang H, Bai X, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Exosomal non-coding RNAs in Hepatobiliary Cancer: A Rising Star. Mol Cancer Ther 2021; 20:1777-1788. [PMID: 34376575 DOI: 10.1158/1535-7163.mct-21-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Hepatobiliary cancers are a heterogeneous group of malignancies with a dismal prognosis. Despite intensive research efforts focused on these tumors, methods for early diagnosis and effective targeted therapies are still lacking. Exosomes, released by most cells, exist in all kinds of body fluids and play an important role in cell-to-cell communication. They are small membranous vesicles containing biological molecules, such as noncoding RNAs (ncRNAs), which are not translated into proteins, but they exert effects on the regulation of gene transcription and translation. There is growing evidence for the essential roles of ncRNAs in exosomes in both physiological and pathological conditions of hepatobiliary cancers. They have been identified as sensitive diagnostic biomarkers as well as potential therapeutic targets. The present review discusses recent findings in the crosstalk between hepatobiliary cancers cells and the surrounding cells of the microenvironment and discuss their potential clinical usage.
Collapse
Affiliation(s)
- Wangyang Zheng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Daolin Ji
- Forth Affiliated Hospital of Harbin Medical University
| | - Yongxu Zhou
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Liang Yu
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Peng Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University
| | - Nanfeng Meng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Hang Wang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xue Bai
- Department of Renal Cancer and Melanoma/Cancer Center, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute/Massachusetts General Hospital
| | - ZiYue Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Wangming Chen
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Judy W P Yam
- Department of Pathology, University of Hong Kong
| | - Yi Xu
- Department of Pathology, University of Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
47
|
Sato K, Baiocchi L, Kennedy L, Zhang W, Ekser B, Glaser S, Francis H, Alpini G. Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13133307. [PMID: 34282753 PMCID: PMC8269372 DOI: 10.3390/cancers13133307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cholangiocarcinoma (CCA) is highly malignant biliary tract cancer, which is characterized by limited treatment options and poor prognosis. Basic science studies to seek therapies for CCA are also limited due to lack of gold-standard experimental models and heterogeneity of CCA resulting in various genetic alterations and origins of tumor cells. Recent studies have developed new experimental models and techniques that may facilitate CCA studies leading to the development of novel treatments. This review summarizes the update in current basic studies of CCA. Abstract Cholangiocarcinoma (CCA) is a type of biliary tract cancer emerging from the biliary tree. CCA is the second most common primary liver cancer after hepatocellular carcinoma and is highly aggressive resulting in poor prognosis and patient survival. Treatment options for CCA patients are limited since early diagnosis is challenging, and the efficacy of chemotherapy or radiotherapy is also limited because CCA is a heterogeneous malignancy. Basic research is important for CCA to establish novel diagnostic testing and more effective therapies. Previous studies have introduced new techniques and methodologies for animal models, in vitro models, and biomarkers. Recent experimental strategies include patient-derived xenograft, syngeneic mouse models, and CCA organoids to mimic heterogeneous CCA characteristics of each patient or three-dimensional cellular architecture in vitro. Recent studies have identified various novel CCA biomarkers, especially non-coding RNAs that were associated with poor prognosis or metastases in CCA patients. This review summarizes current advances and limitations in basic and translational studies of CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Correspondence: ; Tel.: +1-317-278-4227
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
48
|
Next-Generation Biomarkers for Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13133222. [PMID: 34203269 PMCID: PMC8269024 DOI: 10.3390/cancers13133222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Early and non-invasive diagnosis of cholangiocarcinoma (CCA) is still challenging, thus largely contributing to the increased mortality rates observed worldwide. Consequently, several efforts have been made in order to report novel biomarkers for CCA, that would aid on diagnosis and also to predict prognosis and therapy response. We herein aim to provide an in-depth and critical revision on the next-generation biomarkers for CCA that have been recently proposed. Abstract The increasing mortality rates of cholangiocarcinoma (CCA) registered during the last decades are, at least in part, a result of the lack of accurate non-invasive biomarkers for early disease diagnosis, making the identification of patients who might benefit from potentially curative approaches (i.e., surgery) extremely challenging. The obscure CCA pathogenesis and associated etiological factors, as well as the lack of symptoms in patients with early tumor stages, highly compromises CCA identification and to predict tumor development in at-risk populations. Currently, CCA diagnosis is accomplished by the combination of clinical/biochemical features, radiological imaging and non-specific serum tumor biomarkers, although a tumor biopsy is still needed to confirm disease diagnosis. Furthermore, prognostic and predictive biomarkers are still lacking and urgently needed. During the recent years, high-throughput omics-based approaches have identified novel circulating biomarkers (diagnostic and prognostic) that might be included in large, international validation studies in the near future. In this review, we summarize and discuss the most recent advances in the field of biomarker discovery in CCA, providing new insights and future research directions.
Collapse
|
49
|
Levels of Circulating PD-L1 Are Decreased in Patients with Resectable Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22126569. [PMID: 34207359 PMCID: PMC8233871 DOI: 10.3390/ijms22126569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor resection represents the only curative treatment option for patients with biliary tract cancers (BTCs), including intrahepatic cholangiocarcinoma (CCA), perihilar and extrahepatic CCA and gallbladder cancer. However, many patients develop early tumor recurrence and are unlikely to benefit from surgery. Therefore, markers to identify ideal surgical candidates are urgently needed. Circulating programmed cell death 1 ligand 1 (PD-L1) has recently been associated with different malignancies, including pancreatic cancer which closely resembles BTC in terms of patients’ prognosis and tumor biology. Here, we aim at evaluating a potential role of circulating PD-L1 as a novel biomarker for resectable BTC. Methods: Serum levels of PD-L1 were analyzed by ELISA in 73 BTC patients and 42 healthy controls. Results: Circulating levels of preoperative PD-L1 were significantly lower in patients with BTC compared to controls. Patients with low PD-L1 levels displayed a strong trend towards an impaired prognosis, and circulating PD-L1 was negatively correlated with experimental markers of promalignant tumor characteristics such as CCL1, CCL21, CCL25 and CCL26. For 37 out of 73 patients, postoperative PD-L1 levels were available. Interestingly, after tumor resection, circulating PD-L1 raised to almost normal levels. Notably, patients with further decreasing PD-L1 concentrations after surgery showed a trend towards an impaired postoperative outcome. Conclusion: Circulating PD-L1 levels were decreased in patients with resectable BTC. Lack of normalization of PD-L1 levels after surgery might identify patients at high risk for tumor recurrence or adverse outcome.
Collapse
|
50
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|