1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Yin Y, Ahmed N, Hassan MF, Guo K, Shakir Y, Zang J, Lyu J. Effect of Nano-selenium on Biological Mechanism of Goblet Cells of the Small Intestine Within Laying Hen. Biol Trace Elem Res 2024; 202:1699-1710. [PMID: 37454307 DOI: 10.1007/s12011-023-03770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.
Collapse
Affiliation(s)
- Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Mohammad Farooque Hassan
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Jia Zang
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China.
| | - Jue Lyu
- Department of Laboratory Medicine, Wuxi No.2 Peoples Hospital, Jiangnan University Medical Center, Jiangsu, 214002, China.
| |
Collapse
|
3
|
Kamianowska M, Rybi-Szumińska A, Kamianowska A, Maciejczyk M, Sołomianko K, Koput A, Wasilewska A. The Urinary Concentration of Trefoil Factor 3 (TFF3) in the Term and Preterm Neonates. J Clin Med 2023; 12:4936. [PMID: 37568337 PMCID: PMC10419516 DOI: 10.3390/jcm12154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Distinguishing between a pathologic state and renal development is important in neonatology. Because the assessment of serum creatinine in neonates is not reliable, better biomarkers are needed. Trefoil factor 3 (TFF3) is proposed as a biomarker of kidney injury. The study aimed to assess its urinary concentration in healthy term and stable preterm neonates. MATERIAL AND METHODS The study included 80 term and 20 preterm neonates born in the Department of Perinatology of the University Clinical Hospital in Bialystok. Urine was obtained from the term neonates on the 1st day of life and from the preterm neonates on the 1st, 8th, 15th and 22nd day of life. The urinary concentration of TFF3 was determined using a commercially available immunoassay and was normalized for the urinary creatinine concentration (cr.). RESULTS The values of TFF3/cr. were higher in the preterm than in the term neonates (p < 0.05) (median (Q1-Q3): 1486.85 (614.92-3559.18) and 317.29 (68.07-671.40) ng/mg cr.). They did not differ in the subsequent days of the preterm neonates' lives. The ROC curve for TFF3/cr. in the preterm and term neonates showed AUC = 0.751 (cut-off value = 1684.25 ng/mg cr.). CONCLUSIONS Prematurity is associated with higher urinary excretion of TFF3. Male gender is associated with an increased urinary TFF3 excretion in term neonates.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Agnieszka Rybi-Szumińska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Aleksandra Kamianowska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomic, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Katarzyna Sołomianko
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Alicja Koput
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| |
Collapse
|
4
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
5
|
Huang A, Yang Y, Shi JY, Li YK, Xu JX, Cheng Y, Gu J. Mucinous adenocarcinoma: A unique clinicopathological subtype in colorectal cancer. World J Gastrointest Surg 2021; 13:1567-1583. [PMID: 35070064 PMCID: PMC8727185 DOI: 10.4240/wjgs.v13.i12.1567] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mucinous adenocarcinoma (MAC) is a unique clinicopathological subtype of colorectal cancer, which is characterized by extracellular mucinous components that comprise at least 50% of the tumor tissue. The clinical characteristics, molecular features, response to chemo-/radiotherapy, and prognosis of MAC are different from that of non-MAC (NMAC). MAC is more common in the proximal colon, with larger volume, higher T-stage, a higher proportion of positive lymph nodes, poorer tumor differentiation, and a higher proportion of peritoneal implants compared to NMAC. Although biopsy is the main diagnostic method for MAC, magnetic resonance imaging is superior in accuracy, especially for rectal carcinoma. The aberrant expression of mucins, including MUC1, MUC2 and MUC5AC, is a notable feature of MAC, which may be related to tumor invasion, metastasis, inhibition of apoptosis, and chemo-/radiotherapy resistance. The genetic origin of MAC is mainly related to BRAF mutation, microsatellite instability, and the CpG island methylator phenotype pathway. In addition, the poor prognosis of rectal MAC has been confirmed by various studies, and that of colonic MAC is still controversial. In this review, we summarize the epidemiology, clinicopathological characteristics, molecular features, methods of diagnosis, and treatments of MAC in order to provide references for further fundamental and clinical research.
Collapse
Affiliation(s)
- An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing-Yi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu-Kun Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing-Xuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| |
Collapse
|
6
|
Luchan J, Choi C, Carrier RL. Reactive oxygen species limit intestinal mucosa-bacteria homeostasis in vitro. Sci Rep 2021; 11:23727. [PMID: 34887444 PMCID: PMC8660821 DOI: 10.1038/s41598-021-02080-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Interactions between epithelial and immune cells with the gut microbiota have wide-ranging effects on many aspects of human health. Therefore, there is value in developing in vitro models capable of performing highly controlled studies of such interactions. However, several critical factors that enable long term homeostasis between bacterial and mammalian cultures have yet to be established. In this study, we explored a model consisting of epithelial and immune cells, as well as four different bacterial species (Bacteroides fragilis KLE1958, Escherichia coli MG1655, Lactobacillus rhamnosus KLE2101, or Ruminococcus gnavus KLE1940), over a 50 hour culture period. Interestingly, both obligate and facultative anaerobes grew to similar extents in aerobic culture environments during the co-culture period, likely due to measured microaerobic oxygen levels near the apical surface of the epithelia. It was demonstrated that bacteria elicited reactive oxygen species (ROS) production, and that the resulting oxidative damage heavily contributed to observed epithelial barrier damage in these static cultures. Introduction of a ROS scavenger significantly mitigated oxidative damage, improving cell monolayer integrity and reducing lipid peroxidation, although not to control (bacteria-free culture) levels. These results indicate that monitoring and mitigating ROS accumulation and oxidative damage can enable longer term bacteria-intestinal epithelial cultures, while also highlighting the significance of additional factors that impact homeostasis in mammalian cell-bacteria systems.
Collapse
Affiliation(s)
- Joshua Luchan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Christian Choi
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Shastri MD, Chong WC, Vemuri R, Martoni CJ, Adhikari S, Bhullar H, Kunde D, Tristram SG, Eri RD. Streptococcus Thermophilus UASt-09 Upregulates Goblet Cell Activity in Colonic Epithelial Cells to a Greater Degree than other Probiotic Strains. Microorganisms 2020; 8:E1758. [PMID: 33182355 PMCID: PMC7695341 DOI: 10.3390/microorganisms8111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Probiotics have been widely used in maintaining gastrointestinal health, despite their actual mechanism remaining obscure. There are several hypotheses behind the beneficial effects of probiotics including the regulation of intestinal barrier function and improvement in immune responses in the gastrointestinal system. Multiple probiotics have been introduced in the market as effective dietary supplements in improving gastrointestinal integrity, but there are no or few studies that demonstrate their underlying mechanism. In the current study, we investigated and compared the efficacy of four probiotics (based on different bacterial species) in refining gastrointestinal health by improving mucus biosynthesis and intestinal immune response under in-vitro conditions. By analyzing the gene expression of mucus biosynthesis and intestinal immune response markers, we found that probiotic Streptococcus thermophilus UASt-09 showed promising potential in refining mucosal barrier and gastrointestinal health in human colonic epithelial cells, as compared to other commercial probiotics.
Collapse
Affiliation(s)
- Madhur D. Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton 3800, Australia;
| | - Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - Santosh Adhikari
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Harinder Bhullar
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Dale Kunde
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Stephen G. Tristram
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Rajaraman D. Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| |
Collapse
|
8
|
Olli KE, Rapp C, O’Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, Frank DN, Ir D, Robertson CE, Evans CM, Aherne CM. Muc5ac Expression Protects the Colonic Barrier in Experimental Colitis. Inflamm Bowel Dis 2020; 26:1353-1367. [PMID: 32385500 PMCID: PMC7441107 DOI: 10.1093/ibd/izaa064] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The mucus gel layer (MGL) lining the colon is integral to exclusion of bacteria and maintaining intestinal homeostasis in health and disease. Some MGL defects allowing bacteria to directly contact the colonic surface are commonly observed in ulcerative colitis (UC). The major macromolecular component of the colonic MGL is the secreted gel-forming mucin MUC2, whose expression is essential for homeostasis in health. In UC, another gel-forming mucin, MUC5AC, is induced. In mice, Muc5ac is protective during intestinal helminth infection. Here we tested the expression and functional role of MUC5AC/Muc5ac in UC biopsies and murine colitis. METHODS We measured MUC5AC/Muc5ac expression in UC biopsies and in dextran sulfate sodium (DSS) colitis. We performed DSS colitis in mice deficient in Muc5ac (Muc5ac-/-) to model the potential functional role of Muc5ac in colitis. To assess MGL integrity, we quantified bacterial-epithelial interaction and translocation to mesenteric lymph nodes. Antibiotic treatment and 16S rRNA gene sequencing were performed to directly investigate the role of bacteria in murine colitis. RESULTS Colonic MUC5AC/Muc5ac mRNA expression increased significantly in active UC and murine colitis. Muc5ac-/- mice experienced worsened injury and inflammation in DSS colitis compared with control mice. This result was associated with increased bacterial-epithelial contact and translocation to the mesenteric lymph nodes. However, no change in microbial abundance or community composition was noted. Antibiotic treatment normalized colitis severity in Muc5ac-/- mice to that of antibiotic-treated control mice. CONCLUSIONS MUC5AC/Muc5ac induction in the acutely inflamed colon controls injury by reducing bacterial breach of the MGL.
Collapse
Affiliation(s)
- Kristine E Olli
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Caroline Rapp
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren O’Connell
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Colm B Collins
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin N McNamee
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, County Kildare, Ireland
| | - Owen Jensen
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen C Allison
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew S Goldberg
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark E Gerich
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles E Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher M Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carol M Aherne
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
9
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
10
|
Visseren T, Fuhler GM, Erler NS, Nossent YRA, Metselaar HJ, IJzermans JNM, Darwish Murad S, Peppelenbosch MP. Recurrence of primary sclerosing cholangitis after liver transplantation is associated with specific changes in the gut microbiome pretransplant - a pilot study. Transpl Int 2020; 33:1424-1436. [PMID: 33617049 PMCID: PMC7689804 DOI: 10.1111/tri.13692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/22/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a common indication for liver transplantation (LT). Up to 25% of patients experience recurrence of PSC (rPSC) after LT, which is associated with significant morbidity and mortality. To date, it is not possible to predict which patients are at risk for rPSC. The aetiology of PSC is complex and is speculated to involve translocation of intestinal bacteria to the liver, because of its frequent co‐occurrence with inflammatory bowel diseases (IBD). Here, we investigate whether the mucosal intestinal microbiome of PSC patients (n = 97) at time of first LT can identify those patients who will develop rPSC. 16S gene sequencing of bacterial DNA isolated from formalin‐fixed paraffin‐embedded biopsies showed that PSC patients with Crohn’s disease (n = 15) have a reduced microbial diversity and that inflammation of the mucosa is associated with beta‐diversity changes and feature differences. No differences in alpha‐ or beta diversity were observed between patients with rPSC (n = 14) and without rPSC (n = 83). However, many over‐represented bacterial features were detected in patients with rPSC, while surprisingly, those without recurrence of disease were characterized by an increased presence of the Gammaproteobacteria Shigella. This pilot study warrants further investigation into bacterial differences between rPSC and non‐rPSC patients.
Collapse
Affiliation(s)
- Thijmen Visseren
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gwenny Manel Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole Stephanie Erler
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yoena Roos Anna Nossent
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herold Johnny Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maikel Petrus Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, Ruiz R, Elexpuru Zabaleta M, Giampieri F, Battino M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020; 12:E1827. [PMID: 32575399 PMCID: PMC7353391 DOI: 10.3390/nu12061827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The interaction between nutrition and human infectious diseases has always been recognized. With the emergence of molecular tools and post-genomics, high-resolution sequencing technologies, the gut microbiota has been emerging as a key moderator in the complex interplay between nutrients, human body, and infections. Much of the host-microbial and nutrition research is currently based on animals or simplistic in vitro models. Although traditional in vivo and in vitro models have helped to develop mechanistic hypotheses and assess the causality of the host-microbiota interactions, they often fail to faithfully recapitulate the complexity of the human nutrient-microbiome axis in gastrointestinal homeostasis and infections. Over the last decade, remarkable progress in tissue engineering, stem cell biology, microfluidics, sequencing technologies, and computing power has taken place, which has produced a new generation of human-focused, relevant, and predictive tools. These tools, which include patient-derived organoids, organs-on-a-chip, computational analyses, and models, together with multi-omics readouts, represent novel and exciting equipment to advance the research into microbiota, infectious diseases, and nutrition from a human-biology-based perspective. After considering some limitations of the conventional in vivo and in vitro approaches, in this review, we present the main novel available and emerging tools that are suitable for designing human-oriented research.
Collapse
Affiliation(s)
- Manuela Cassotta
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Tamara Yuliett Forbes-Hernández
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Ruben Calderón Iglesias
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Maria Elexpuru Zabaleta
- Dipartimento di Scienze Cliniche e Molecolari, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Francesca Giampieri
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Pothuraju R, Krishn SR, Gautam SK, Pai P, Ganguly K, Chaudhary S, Rachagani S, Kaur S, Batra SK. Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers (Basel) 2020; 12:E649. [PMID: 32168759 PMCID: PMC7139953 DOI: 10.3390/cancers12030649] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Mucus serves as the chief protective barrier against pathogenic and mechanical insults in respiratory, gastrointestinal, and urogenital tracts. Altered mucin expression, the major component of mucus, in conjunction with differential glycosylation has been strongly associated with both benign and malignant pathologies of colon. Mucins and their associated glycans arbitrate their impact sterically as well as mechanically by altering molecular and microbial spectrum during pathogenesis. Mucin expression in normal and pathological conditions is regulated by nonspecific (dietary factors and gut microbiota) and specific (epigenetic and transcriptional) modulators. Further, recent studies highlight the impact of altering mucin glycome (cancer-associated carbohydrate antigens including Tn, Sialyl-Tn, Sialyl-Lew A, and Sialyl-Lewis X) on host immunomodulation, antitumor immunity, as well as gut microbiota. In light of emerging literature, the present review article digs into the impact of structural organization and of expressional and glycosylation alteration of mucin family members on benign and malignant pathologies of colorectal cancer.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Kebouchi M, Hafeez Z, Le Roux Y, Dary-Mourot A, Genay M. Importance of digestive mucus and mucins for designing new functional food ingredients. Food Res Int 2020; 131:108906. [PMID: 32247482 DOI: 10.1016/j.foodres.2019.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
The mucus, mainly composed of the glycoproteins mucins, is a rheological substance that covers the intestinal epithelium and acts as a protective barrier against a variety of harmful molecules, microbial infection and varying lumen environment conditions. Alterations in the composition or structure of the mucus could lead to various diseases such as inflammatory bowel disease or colorectal cancer. Recent studies revealed that an exogenous intake of probiotic bacteria or other dietary components (such as bioactive peptides and probiotics) derived from food influence mucus layer properties as well as modulate gene expression and secretion of mucins. Therefore, the use of such components for designing new functional ingredients and then foods, could constitute a novel approach to preserve the properties of mucus. After presenting some aspects of the mucus and mucins in the gastrointestinal tract as well as mucus role in the gut health, this review will address role of dietary ingredients in improving mucus/mucin production and provides new suggestions for further investigations of how dietary ingredients/probiotics based functional foods can be developed to maintain or improve the gut health.
Collapse
Affiliation(s)
- Mounira Kebouchi
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France; Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | - Zeeshan Hafeez
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France
| | - Yves Le Roux
- Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | | | - Magali Genay
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France.
| |
Collapse
|
14
|
Inhibition of TFF3 Enhances Sensitivity-and Overcomes Acquired Resistance-to Doxorubicin in Estrogen Receptor-Positive Mammary Carcinoma. Cancers (Basel) 2019; 11:cancers11101528. [PMID: 31658702 PMCID: PMC6826976 DOI: 10.3390/cancers11101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Dose-dependent toxicity and acquired resistance are two major challenges limiting the efficacious treatment of mammary carcinoma (MC) with doxorubicin. Herein, we investigated the function of Trefoil Factor 3 (TFF3) in the sensitivity and acquired resistance of estrogen receptor positive (ER+) MC cells to doxorubicin. Doxorubicin treatment of ER+MC cells increased TFF3 expression. The depletion of TFF3 by siRNA or inhibition with a small molecule TFF3 inhibitor (AMPC) synergistically enhanced the efficacy of doxorubicin in ER+MC through the suppression of doxorubicin-induced AKT activation and enhancement of doxorubicin-induced apoptosis. Elevated expression of TFF3 and increased activation of AKT were also observed using a model of acquired doxorubicin resistance in ER+MC cells. AMPC partially re-sensitized the doxorubicin resistant cells to doxorubicin-induced apoptosis. Indeed, doxorubicin resistant ER + MC cells exhibited increased sensitivity to AMPC as a single agent compared to doxorubicin sensitive cells. In vivo, AMPC attenuated growth of doxorubicin sensitive ER+MC xenografts whereas it produced regression of xenografts generated by doxorubicin resistant ER+MC cells. Hence, TFF3 inhibition may improve the efficacy and reduce required doses of doxorubicin in ER+MC. Moreover, inhibition of TFF3 may also be an effective therapeutic strategy to eradicate doxorubicin resistant ER+MC.
Collapse
|
15
|
Pearce SC, Coia HG, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K. Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Front Physiol 2018; 9:1584. [PMID: 30483150 PMCID: PMC6240795 DOI: 10.3389/fphys.2018.01584] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome is extremely important for maintaining homeostasis with host intestinal epithelial, neuronal, and immune cells and this host-microbe interaction is critical during times of stress or disease. Environmental, nutritional, and cognitive stress are just a few factors known to influence the gut microbiota and are thought to induce microbial dysbiosis. Research on this bidirectional relationship as it pertains to health and disease is extensive and rapidly expanding in both in vivo and in vitro/ex vivo models. However, far less work has been devoted to studying effects of host-microbe interactions on acute stressors and performance, the underlying mechanisms, and the modulatory effects of different stressors on both the host and the microbiome. Additionally, the use of in vitro/ex vivo models to study the gut microbiome and human performance has not been researched extensively nor reviewed. Therefore, this review aims to examine current evidence concerning the current status of in vitro and ex vivo host models, the impact of acute stressors on gut physiology/microbiota as well as potential impacts on human performance and how we can parlay this information for DoD relevance as well as the broader scientific community. Models reviewed include widely utilized intestinal cell models from human and animal models that have been applied in the past for stress or microbiology research as well as ex vivo organ/tissue culture models and new innovative models including organ-on-a-chip and co-culture models.
Collapse
Affiliation(s)
- Sarah C Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Heidi G Coia
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, Washington, DC, United States.,711th Human Performance Wing, Airforce Research Laboratory, Airman Systems Directorate, Human-Centered ISR Division, Molecular Mechanisms Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - J P Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Ida G Pantoja-Feliciano
- Soldier Protection and Optimization Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenneth Racicot
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
16
|
Wan MLY, Chen Z, Shah NP, El-Nezami H. Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 Cell-Free Supernatants on Modulation of Mucin and Cytokine Secretion on Human Intestinal Epithelial HT29-MTX Cells. J Food Sci 2018; 83:1999-2007. [PMID: 29863797 DOI: 10.1111/1750-3841.14168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
This study examined modulation effects of cell-free supernatants of two commonly studied probiotic bacteria Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle 1917 (EcN) on mucin and cytokine profiles of human intestinal epithelial HT29-MTX cells. It was found that LGG and EcN supernatants differentially modulated MUC5AC and MUC5B mRNA and protein, and total mucin-like glycoprotein secretion. Regarding modulation of cytokine profiles, LGG supernatants moderately influenced the secretion of anti-inflammatory cytokines such as interleukin (IL)-4, IL-5, and IL-10, while those of EcN exerted a broad proinflammatory effect to intestinal epithelial cells by inducing the secretion of proinflammatory cytokines such as IL-8, monocyte chemotactic protein-1, transforming growth factor α, tumor necrosis factor α, granulocyte macrophage colony-stimulating factor, and interferon γ. These results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens. PRACTICAL APPLICATION The results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens.
Collapse
Affiliation(s)
- Murphy Lam-Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Zhijian Chen
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P Shah
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong.,Inst. of Public Health and Clinical Nutrition, Univ. of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Allaire JM, Morampudi V, Crowley SM, Stahl M, Yu H, Bhullar K, Knodler LA, Bressler B, Jacobson K, Vallance BA. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G360-G377. [PMID: 29122749 PMCID: PMC5899238 DOI: 10.1152/ajpgi.00181.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Goblet cells (GCs) are the predominant secretory epithelial cells lining the luminal surface of the mammalian gastrointestinal (GI) tract. Best known for their apical release of mucin 2 (Muc2), which is critical for the formation of the intestinal mucus barrier, GCs have often been overlooked for their active contributions to intestinal protection and host defense. In part, this oversight reflects the limited tools available to study their function but also because GCs have long been viewed as relatively passive players in promoting intestinal homeostasis and host defense. In light of recent studies, this perspective has shifted, as current evidence suggests that Muc2 as well as other GC mediators are actively released into the lumen to defend the host when the GI tract is challenged by noxious stimuli. The ability of GCs to sense and respond to danger signals, such as bacterial pathogens, has recently been linked to inflammasome signaling, potentially intrinsic to the GCs themselves. Moreover, further work suggests that GCs release Muc2, as well as other mediators, to modulate the composition of the gut microbiome, leading to both the expansion as well as the depletion of specific gut microbes. This review will focus on the mechanisms by which GCs actively defend the host from noxious stimuli, as well as describe advanced technologies and new approaches by which their responses can be addressed. Taken together, we will highlight current insights into this understudied, yet critical, aspect of intestinal mucosal protection and its role in promoting gut defense and homeostasis.
Collapse
Affiliation(s)
- Joannie M. Allaire
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Stahl
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbing Yu
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh A. Knodler
- 2Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Brian Bressler
- 3Division of Gastroenterology, Department of Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Neutrophil Elastase and Interleukin 17 Expressed in the Pig Colon during Brachyspira hyodysenteriae Infection Synergistically with the Pathogen Induce Increased Mucus Transport Speed and Production via Mitogen-Activated Protein Kinase 3. Infect Immun 2017; 85:IAI.00262-17. [PMID: 28559407 DOI: 10.1128/iai.00262-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Brachyspira hyodysenteriae colonizes the pig colon, resulting in mucoid hemorrhagic diarrhea and mucus layer changes. These changes are characterized by a disorganized mucus structure and massive mucus induction with de novo expression of MUC5AC and increased production of MUC2. To investigate the mechanisms behind this altered mucin environment, we quantified the mRNA levels of mucin pathway genes and factors from the immune system in the colons of infected and control pigs and observed upregulation of neutrophil elastase, SPDEF, FOXA3, MAPK3/ERK1, IL-17A, IL-1β, IL-6, and IL-8 expression. In vitro, colonic mucus-producing mucosal surfaces were treated with these factors along with B. hyodysenteriae infection and analyzed for their effect on mucin production. Neutrophil elastase and infection synergistically induced mucus production and transport speed, and interleukin 17A (IL-17A) also had similar effects, in both the presence and absence of infection. A mitogen-activated protein kinase 3 (MAPK3)/extracellular signal-regulated kinase 1 (ERK1) inhibitor suppressed these effects. Therefore, we suggest that the SPDEF, FOXA3, and MAPK3/ERK1 signaling pathways are behind the transcriptional program regulating mucin biosynthesis in the colon during B. hyodysenteriae infection. In addition to furthering the knowledge on this economically important disease, this mechanism may be useful for the development of therapies aimed at conditions where enhancing mucus production may be beneficial, such as chronic inflammatory disorders of the colon.
Collapse
|
19
|
You ML, Chen YJ, Chong QY, Wu MM, Pandey V, Chen RM, Liu L, Ma L, Wu ZS, Zhu T, Lobie PE. Trefoil factor 3 mediation of oncogenicity and chemoresistance in hepatocellular carcinoma is AKT-BCL-2 dependent. Oncotarget 2017; 8:39323-39344. [PMID: 28445151 PMCID: PMC5503616 DOI: 10.18632/oncotarget.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Survival Rate
- Trefoil Factor-3/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ming-Liang You
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ming-Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ru-Mei Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Liang Liu
- Department of Oncology and Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| |
Collapse
|
20
|
Gopal A, Chidambaram IS, Devaraj N, Devaraj H. Shigella dysenteriae infection activates proinflammatory response through β-catenin/NF-κB signaling pathway. PLoS One 2017; 12:e0174943. [PMID: 28430783 PMCID: PMC5400225 DOI: 10.1371/journal.pone.0174943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 11/18/2022] Open
Abstract
Shigella dysenteriae (S.dysenteriae) the causative agent of bacillary dysentery invades the human colonic epithelium resulting in severe intestinal inflammatory response and epithelial destruction. However, the mechanism by which S.dysenteriae infection regulates proinflammatory cytokines during intestinal inflammation is still obscure. In this study, we evaluated whether the interaction of β-catenin and NF-κB regulates proinflammatory cytokines TNF-α and IL-8 by modulating GSK-3β activity during S.dysenteriae infection in rat ileal loop model. Here we demonstrated that S.dysenteriae infection stimulate β-catenin degradation which in turn decreased the association between NF-κB and β-catenin. Also, we showed that S.dysenteriae infection increased GSK-3β kinase activity which in turn phosphorylates β-catenin for its degradation by ubiquitination and upregulates IL-8 through NF-κB activation thereby leading to inflammation. Thus these findings revealed the role of β-catenin/ NF-κB and GSK-3β in modulating the inflammatory response during bacterial infection and also showed that β-catenin acts as a critical regulator of inflammation.
Collapse
Affiliation(s)
- Ashidha Gopal
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamilnadu, India
| | - Iyer Soumya Chidambaram
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamilnadu, India
| | - Niranjali Devaraj
- Department of Biochemistry, University of Madras, Chennai, Tamilnadu, India
| | - Halagowder Devaraj
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamilnadu, India
- * E-mail:
| |
Collapse
|
21
|
Fu Q, Chen K, Zhu Q, Wang W, Huang F, Miao L, Wu X. β-catenin promotes intracellular bacterial killing via suppression of Pseudomonas aeruginosa-triggered macrophage autophagy. J Int Med Res 2017; 45:556-569. [PMID: 28415949 PMCID: PMC5536651 DOI: 10.1177/0300060517692147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate β-catenin-mediated bacterial elimination during Pseudomonas aeruginosa infection of macrophage-like RAW264.7 cells. Methods Cell viability and catenin beta 1 (CTNNB1) expression in RAW264.7 cells following P. aeruginosa infection versus uninfected cells, were detected by cell counting kit-8 assay and β-catenin Western blots. RAW264.7 cells with CTNNB1 overexpression were established with β-catenin lentivirus using flow cytometry and clonogenic limiting dilution assays. Bacterial killing was measured by plate counts; phagocytosis and nitric oxide (NO) were measured by flow cytometry; and reactive oxygen species (ROS) were measured using Griess reaction. Autophagy was determined by microtubule-associated protein 1 light chain 3 alpha-phosphatidylethanolamine conjugate (LC3-II) protein levels and formation of LC3 puncta, using Western blot and immunofluorescence staining. Results Following P. aeruginosa infection, RAW264.7 cell β-catenin levels were reduced in a time- and multiplicity of infection-dependent manner. CTNNB1 overexpression was associated with increased P. aeruginosa elimination, but had no effect on RAW264.7 cell phagocytosis, ROS and NO. CTNNB1 overexpression reduced LC3-II levels and formation of LC3 puncta, suggesting autophagy inhibition. Rapamycin/starvation-induced autophagy resulted in reduced bacterial killing following P. aeruginosa infection. Conclusion β-catenin may promote bacterial killing via suppression of P. aeruginosa-induced macrophage autophagy.
Collapse
Affiliation(s)
- Qiang Fu
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Kang Chen
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Qian Zhu
- 2 Institute of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, China
| | - Weijia Wang
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Fuda Huang
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Lishao Miao
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Xinger Wu
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| |
Collapse
|
22
|
Hanisch C, Sharbati J, Kutz-Lohroff B, Huber O, Einspanier R, Sharbati S. TFF3-dependent resistance of human colorectal adenocarcinoma cells HT-29/B6 to apoptosis is mediated by miR-491-5p regulation of lncRNA PRINS. Cell Death Discov 2017; 3:16106. [PMID: 28149533 PMCID: PMC5279457 DOI: 10.1038/cddiscovery.2016.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor-α (TNF-α) is a double-edged cytokine associated with pathogenesis of inflammatory-related cancers being also able to induce cancer cell death. In the process of tumour development or metastasis, cancer cells can become resistant to TNF-α. In trefoil factor 3 (TFF3) overexpressing colorectal adenocarcinoma cells (HT-29/B6), we observed enhanced resistance against TNF-α/interferon gamma-induced apoptosis. TFF3 is a secreted small peptide that supports intestinal tissue repair but is also involved in intestinal tumour progression and scattering. We hypothesised that TFF3 rescues intestinal epithelial cancer cells from TNF-α-induced apoptosis by involving regulatory RNA networks. In silico-based expression analysis revealed TFF3-mediated regulation of selected microRNAs as well as long non-coding RNAs (lncRNAs), whereas miR-491-5p was identified to target the lncRNA ‘psoriasis susceptibility-related RNA gene induced by stress’ (PRINS). RNA interference-based gain- and loss-of-function experiments examined miR-491-PRINS axis to exert the TFF3-mediated phenotype. Chemical inhibition of selected pathways showed that phosphatidylinositol 3-kinase/AKT accounts for TFF3-mediated downregulation of miR-491-5p and accumulation of PRINS. Moreover, we showed that PRINS colocalises with PMAIP1 (NOXA) in nuclei of HT-29/B6 possessing inhibitory effects. Immunoprecipitation experiments proved molecular interaction of PMAIP1 with PRINS. Our study provides an insight into RNA regulatory networks that determine resistance of colorectal cancer cells to apoptosis.
Collapse
Affiliation(s)
- Carlos Hanisch
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Jutta Sharbati
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany; Lise Meitner School of Science, Berlin, Germany
| | - Barbara Kutz-Lohroff
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital , Jena, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Soroush Sharbati
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
23
|
Li X, Liu N, Wang Y, Liu J, Shi H, Qu Z, Du T, Guo B, Gu B. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes. Mol Cell Endocrinol 2017; 440:93-105. [PMID: 27717746 DOI: 10.1016/j.mce.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with inhibited osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Brain and muscle ARNT-like protein 1 (BMAL1) has been linked to the T2DM-related bone remodeling, however, the specific mechanism is still unclear. Herein, we aimed to determine the role of BMAL1 in T2DM-induced suppression of BMSCs osteogenesis. Inhibited osteogenesis and BMAL1 expression were showed in diabetic BMSCs. And while β-catenin and T cell factor (TCF) expression were decreased, the glycogen synthase kinase-3β (GSK-3β) and nemo-like kinase (NLK) expression were increased in diabetic BMSCs. Moreover, over-expression of BMAL1 led to recovered osteogenesis ability and activation of Wnt/β-catenin pathway, which was partially due to inhibition of GSK-3β caused by over-expression of BMAL1. Taken together, our findings provide new insights into the role of BMAL1 in T2DM-induced suppression of BMSCs osteogenesis. Over-expressed BMAL1 could recover BMSCs osteogenesis in T2DM partially by decreasing GSK-3β expression to activate Wnt/β-catenin pathway. BMAL1 may have a potential use in repairing diabetic bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoguang Li
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Na Liu
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Yizhu Wang
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Jinglong Liu
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Haigang Shi
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Zhenzhen Qu
- Department of Stomatology, Beijing Xinhua Hospital, Beijing, China.
| | - Tingting Du
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Bin Guo
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| | - Bin Gu
- Institution of Stomatology, The General Hospital of Chinese PLA, Beijing, China.
| |
Collapse
|
24
|
Anderson M, Sansonetti PJ, Marteyn BS. Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century. Front Cell Infect Microbiol 2016; 6:45. [PMID: 27148494 PMCID: PMC4835486 DOI: 10.3389/fcimb.2016.00045] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.
Collapse
Affiliation(s)
- Mark Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France; Collège de FranceParis, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| |
Collapse
|
25
|
Karthikeyan T, Pravin M, Muthusamy VS, Bharathi Raja R, Lakshmi BS. In Vitro Investigation of the Immunomodulatory Potential of Probiotic Lactobacillus casei. Probiotics Antimicrob Proteins 2016; 5:51-8. [PMID: 26782605 DOI: 10.1007/s12602-012-9122-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.
Collapse
Affiliation(s)
- Thirugnanam Karthikeyan
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | - Mariappan Pravin
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | | | - Rajaganapathy Bharathi Raja
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | - Baddireddi Subhadra Lakshmi
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India.
| |
Collapse
|
26
|
Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 2016; 37:223-32. [PMID: 26762229 DOI: 10.1093/carcin/bgw005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Gopal A, Iyer SC, Gopal U, Devaraj N, Halagowder D. Shigella dysenteriae modulates BMP pathway to induce mucin gene expression in vivo and in vitro. PLoS One 2014; 9:e111408. [PMID: 25365201 PMCID: PMC4218725 DOI: 10.1371/journal.pone.0111408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 12/27/2022] Open
Abstract
Mucosal epithelial cells in the intestine act as the first line of host defense against pathogens by increasing mucin production for clearance. Despite this fact, the underlying molecular mechanisms by which Shigella dysenteriae transduce mucin gene expression remain poorly defined. The goal of this study was to determine the role of Bone morphogenetic protein (BMP) pathway in mucin gene expression during S. dysenteriae infection. In this study we demonstrate that S. dysenteriae activates BMP signaling to induce MUC2 and MUC5AC gene expression in rat ileal loop model and in vitro. We also observed that BMP pathway regulates CDX2 expression which plays a critical role in induction of MUC2 gene during S. dysenteriae infection. In SMAD4 silenced cells S. dysenteriae infection did not abrogate MUC2 and MUC5AC gene expression whereas in CDX2 silenced cells it induces differential expression of MUC5AC gene. These results suggest that SMAD4-CDX2 induces MUC2 gene expression whereas SMAD4 directly influences differential expression of MUC5AC gene. Altogether, our results show that during S. dysenteriae infection the BMP pathway modulates inflammatory transcription factors CDX2 and SMAD4 to induce MUC2 and MUC5AC gene expression which plays a key role in the regulation of host mucosal defense thereby paving a cue for therapeutic application.
Collapse
Affiliation(s)
- Ashidha Gopal
- Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | - Soumya Chidambaram Iyer
- Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Niranjali Devaraj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | - Devaraj Halagowder
- Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
- * E-mail:
| |
Collapse
|
28
|
Immune modulating capability of two exopolysaccharide-producing Bifidobacterium strains in a Wistar rat model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:106290. [PMID: 24971309 PMCID: PMC4058098 DOI: 10.1155/2014/106290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models.
Collapse
|
29
|
|
30
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
31
|
Wilberts BL, Arruda PH, Kinyon JM, Madson DM, Frana TS, Burrough ER. Comparison of Lesion Severity, Distribution, and Colonic Mucin Expression in Pigs With Acute Swine Dysentery Following Oral Inoculation With “Brachyspira hampsonii” or Brachyspira hyodysenteriae. Vet Pathol 2014; 51:1096-108. [DOI: 10.1177/0300985813516646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Swine dysentery is classically associated with infection by Brachyspira hyodysenteriae, the only current officially recognized Brachyspira sp. that consistently imparts strong beta-hemolysis on blood agar. Recently, several strongly beta-hemolytic Brachyspira have been isolated from swine with clinical dysentery that are not identified as B. hyodysenteriae by PCR including the recently proposed species “ Brachyspira hampsonii.” In this study, 6-week-old pigs were inoculated with either a clinical isolate of “ B. hampsonii” (EB107; n = 10) clade II or a classic strain of B. hyodysenteriae (B204; n = 10) to compare gross and microscopic lesions and alterations in colonic mucin expression in pigs with clinical disease versus controls ( n = 6). Gross lesions were similar between infected groups. No histologic difference was observed between infected groups with regard to neutrophilic inflammation, colonic crypt depth, mucosal ulceration, or hemorrhage. Histochemical and immunohistochemical evaluation of the apex of the spiral colon revealed decreased expression of sulphated mucins, decreased expression of MUC4, and increased expression of MUC5AC in diseased pigs compared to controls. No difference was observed between diseased pigs in inoculated groups. This study reveals significant alterations in colonic mucin expression in pigs with acute swine dysentery and further reveals that these and other microscopic changes are similar following infection with “ B. hampsonii” clade II or B. hyodysenteriae.
Collapse
Affiliation(s)
- B. L. Wilberts
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - P. H. Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - J. M. Kinyon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - D. M. Madson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - T. S. Frana
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
32
|
Wan LYM, Allen KJ, Turner PC, El-Nezami H. Modulation of mucin mRNA (MUC5AC and MUC5B) expression and protein production and secretion in Caco-2/HT29-MTX co-cultures following exposure to individual and combined Fusarium mycotoxins. Toxicol Sci 2014; 139:83-98. [PMID: 24496642 DOI: 10.1093/toxsci/kfu019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intestinal epithelial cells (IECs) are a critical component of the innate local immune response. In order to reduce the risk of pathogen infection or xenobiotic intoxication, different host defense mechanisms have been evolved. Evidence has shown that upon ingestion of food or feed contaminated with toxins (e.g., mycotoxins), IECs respond by regulating mucin secretions, which act as a physical barrier inhibiting bacterial attachment and subsequent infection-related processes. However, the effect of Fusarium mycotoxins on mucin production remains unclear. Consequently, the aim of this study was to evaluate individual and interactive effects of four common Fusarium mycotoxins, deoxynivalenol, nivalenol, zearalenone, and fumonisins B1 on mRNA expression and secretion of mucins, MUC5AC, and MUC5B, as well as total mucin-like glycoprotein secretion, using Caco-2 (absorptive-type) and HT29-MTX (secretive-type) cells and their co-cultures (initial seeding ratios Caco-2/HT29-MTX: 90/10 and 70/30). Our results showed that individual and mixtures of mycotoxins significantly modulated MUC5AC and MUC5B mRNA and protein, and total mucin-like glycoprotein secretion as measured by quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and enzyme-linked lectin assay, respectively. Additive effects were not always observed for mixtures. Also, the present study showed that in co-cultures, lower MUC5AC and MUC5B mRNA, protein and total mucin production occurred following exposure, which might suggest higher intestinal permeability and susceptibility to toxin exposure. This study demonstrates the importance of selecting an appropriate cell model for the in vitro investigation of Fusarium mycotoxin effects either alone or in combinations on the immunological defense mechanisms of IECs, and will contribute to improved toxin risk assessments.
Collapse
Affiliation(s)
- Lam-Yim Murphy Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
33
|
β-Catenin promotes host resistance against Pseudomonas aeruginosa keratitis. J Infect 2013; 67:584-94. [PMID: 23911965 DOI: 10.1016/j.jinf.2013.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/19/2013] [Accepted: 07/23/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of β-catenin in Pseudomonas aeruginosa (PA) keratitis. METHODS Western-blot and immunostaining assay were used to determine the β-catenin protein expression in C57BL/6 (B6) corneas and in in vitro cultured murine cells including macrophage-like RAW264.7 cells, bone marrow-derived neutrophils and A6(1) corneal epithelial cells. B6 mice were subconjunctivally injected with lentivirus expressing active mutant of β-catenin (β-cat-lentivirus) vs appropriate control (Ctl-lentivirus), and then infected with PA. Pro-inflammatory cytokine levels were examined using real-time PCR and ELISA, and bacterial burden was assessed using plate count assays both in vivo and in vitro. RESULTS β-Catenin protein expression was decreased in B6 corneas, murine macrophage-like RAW264.7 cells, mouse bone marrow-derived neutrophils and mouse A6(1) corneal epithelial cells after PA infection. Over-expression of β-catenin in B6 corneas significantly reduced the severity of corneal disease after PA infection, by decreasing pro-inflammatory cytokine expression and bacterial burden. In vitro data further demonstrated that over-expression of β-catenin suppressed pro-inflammatory cytokine production but enhanced bacterial clearance in macrophages and neutrophils. CONCLUSIONS β-Catenin reduces the severity of PA keratitis by decreasing corneal inflammation and bacterial burden.
Collapse
|