1
|
Gopaul U, Laver D, Carey L, Matyas T, van Vliet P, Callister R. Measures of Maximal Tactile Pressures during a Sustained Grasp Task Using a TactArray Device Have Satisfactory Reliability and Concurrent Validity in People with Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:3291. [PMID: 36992002 PMCID: PMC10059963 DOI: 10.3390/s23063291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Sensor-based devices can record pressure or force over time during grasping and therefore offer a more comprehensive approach to quantifying grip strength during sustained contractions. The objectives of this study were to investigate the reliability and concurrent validity of measures of maximal tactile pressures and forces during a sustained grasp task using a TactArray device in people with stroke. Participants with stroke (n = 11) performed three trials of sustained maximal grasp over 8 s. Both hands were tested in within- and between-day sessions, with and without vision. Measures of maximal tactile pressures and forces were measured for the complete (8 s) grasp duration and plateau phase (5 s). Tactile measures are reported using the highest value among three trials, the mean of two trials, and the mean of three trials. Reliability was determined using changes in mean, coefficients of variation, and intraclass correlation coefficients (ICCs). Pearson correlation coefficients were used to evaluate concurrent validity. This study found that measures of reliability assessed by changes in means were good, coefficients of variation were good to acceptable, and ICCs were very good for maximal tactile pressures using the average pressure of the mean of three trials over 8 s in the affected hand with and without vision for within-day sessions and without vision for between-day sessions. In the less affected hand, changes in mean were very good, coefficients of variations were acceptable, and ICCs were good to very good for maximal tactile pressures using the average pressure of the mean of three trials over 8 s and 5 s, respectively, in between-day sessions with and without vision. Maximal tactile pressures had moderate correlations with grip strength. The TactArray device demonstrates satisfactory reliability and concurrent validity for measures of maximal tactile pressures in people with stroke.
Collapse
Affiliation(s)
- Urvashy Gopaul
- KITE Research—Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Derek Laver
- Human Physiology, School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Leeanne Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
- Neurorehabilitation and Recovery Group, the Florey Institute of Neuroscience and Mental Health, Austin Campus, Heidelberg, VIC 3084, Australia
| | - Thomas Matyas
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| | - Paulette van Vliet
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Robin Callister
- Human Physiology, School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Jung W, Lee S, Hwang Y. Wireless Inchworm-like Compact Soft Robot by Induction Heating of Magnetic Composite. MICROMACHINES 2023; 14:162. [PMID: 36677223 PMCID: PMC9865691 DOI: 10.3390/mi14010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Microrobots and nanorobots have been produced with various nature-inspired soft materials and operating mechanisms. However, freely operating a wirelessly miniaturized soft robot remains a challenge. In this study, a wireless crawling compact soft robot using induction heating was developed. The magnetic composite heater built into the robot was heated wirelessly via induction heating, causing a phase change in the working fluid surrounding the heater. The pressure generated from the evaporated fluid induces the bending of the robot, which is composed of elastomers. During one cycle of bending by heating and shrinking by cooling, the difference in the frictional force between the two legs of the robot causes it to move forward. This robot moved 7240 μm, representing 103% of its body length, over nine repetitions. Because the robot's surface is made of biocompatible materials, it offers new possibilities for a soft exploratory microrobot that can be used inside a living body or in a narrow pipe.
Collapse
|
3
|
Danesh H, Rahmati J, Mahdieh M, Hemadi SM, Bahmani A. Medical and chemical evaluation of robotic surgery methods; A review study. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Along with the advances in medical science, surgical methods have also undergone many advances. Today, with the advancement of technology in all fields, including medicine, robots have entered medical science. These robots have many uses as well as advantages and disadvantages that they enjoy in Iran and other countries. In this study, it was addressed. This study is a review of robotic surgery methods in Iran and other countries in the form of a review study. This study is a conceptual review. The steps performed are 1- Designing a research question, 2- Searching and extracting researchrelated studies, 3- Selecting related studies, 4- Tabulating and summarizing information and data, and 5- Reporting results. The results showed that robotic surgery in operations such as brain, kidney, open heart, liver, eye, laparoscopy, dental surgery, coronary artery surgery, hysterectomy, lymphadenectomy, general surgery, obstetrics, head and neck, shelf Chest, urology, endoscopy, colonoscopy, ear, nose, and throat are used and have advantages such as three-dimensional vision, flexible rotation of the instrument, reduction of surgeon hand vibration with vibration filter, ease of surgery and the ability to create the required patterns It reduces the volume of blood lost during surgery, the length of stay in the hospital, the amount of pain, and subsequently the number of analgesic doses consumed in the postoperative ward. Disadvantages include the relative increase in operating time, the high cost of robots, and the physician's lack of sensory perception of the patient's environment."
Collapse
|
4
|
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. BIOSENSORS 2022; 12:943. [PMID: 36354452 PMCID: PMC9688418 DOI: 10.3390/bios12110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Li
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Alfalahi H, Renda F, Stefanini C. Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities. ACTA ACUST UNITED AC 2020. [DOI: 10.1109/tmrb.2020.3000899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Yu L, Yu X, Zhang Y. Microinstrument contact force sensing based on cable tension using BLSTM–MLP network. INTEL SERV ROBOT 2019. [DOI: 10.1007/s11370-019-00306-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kaczmarek KA, Tyler ME, Okpara UO, Haase SJ. Interaction of Perceived Frequency and Intensity in Fingertip Electrotactile Stimulation: Dissimilarity Ratings and Multidimensional Scaling. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2067-2074. [PMID: 28504942 DOI: 10.1109/tnsre.2017.2702628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sensations elicited by electrical stimulation of touch are multidimensional, varying in perceived intensity and quality in response to changes in stimulus current or waveform timing. This paper manipulated both current and frequency, while volunteer participants estimated the dissimilarity of all non-identical pairs of 16 stimulus conditions. Multidimensional scaling analysis revealed that a model having two perceptual dimensions was adequate in representing the electrotactile (electrocutaneous) sensations. The two dimensions were identified as perceptual frequency and intensity, and were strongly correlated with the two stimulus variables, frequency and current, although not in a 1:1 correspondence. Perception of frequency differences increased monotonically with stimulus intensity, which is consistent with other human sensory systems, such as hearing and vision. Our results are consistent with previously-reported research using a different methodology and cutaneous locus. Congruence across different methods and laboratories suggests similar underlying perceptual mechanisms.
Collapse
|
8
|
Abstract
Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.
Collapse
Affiliation(s)
- Allison Weaver
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott Steele
- Department of Surgery, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
9
|
Wu L, Wang J, Qi L, Wu K, Ren H, Meng MQH. Simultaneous Hand–Eye, Tool–Flange, and Robot–Robot Calibration for Comanipulation by Solving the <inline-formula>
<tex-math notation="LaTeX">$\mathbf{AXB=YCZ}$</tex-math>
</inline-formula> Problem. IEEE T ROBOT 2016. [DOI: 10.1109/tro.2016.2530079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Roy S, Evans C. Overview of robotic colorectal surgery: Current and future practical developments. World J Gastrointest Surg 2016; 8:143-150. [PMID: 26981188 PMCID: PMC4770168 DOI: 10.4240/wjgs.v8.i2.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/19/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Minimal access surgery has revolutionised colorectal surgery by offering reduced morbidity and mortality over open surgery, while maintaining oncological and functional outcomes with the disadvantage of additional practical challenges. Robotic surgery aids the surgeon in overcoming these challenges. Uptake of robotic assistance has been relatively slow, mainly because of the high initial and ongoing costs of equipment but also because of limited evidence of improved patient outcomes. Advances in robotic colorectal surgery will aim to widen the scope of minimal access surgery to allow larger and more complex surgery through smaller access and natural orifices and also to make the technology more economical, allowing wider dispersal and uptake of robotic technology. Advances in robotic endoscopy will yield self-advancing endoscopes and a widening role for capsule endoscopy including the development of motile and steerable capsules able to deliver localised drug therapy and insufflation as well as being recharged from an extracorporeal power source to allow great longevity. Ultimately robotic technology may advance to the point where many conventional surgical interventions are no longer required. With respect to nanotechnology, surgery may eventually become obsolete.
Collapse
|
11
|
Enayati N, De Momi E, Ferrigno G. Haptics in Robot-Assisted Surgery: Challenges and Benefits. IEEE Rev Biomed Eng 2016; 9:49-65. [DOI: 10.1109/rbme.2016.2538080] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Saccomandi P, Schena E, Oddo CM, Zollo L, Silvestri S, Guglielmelli E. Microfabricated tactile sensors for biomedical applications: a review. BIOSENSORS 2014; 4:422-48. [PMID: 25587432 PMCID: PMC4287711 DOI: 10.3390/bios4040422] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/12/2014] [Accepted: 10/29/2014] [Indexed: 01/27/2023]
Abstract
During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described.
Collapse
Affiliation(s)
- Paola Saccomandi
- Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, Rome 21-00128, Italy; E-Mails: (P.S.); (S.S.)
| | - Emiliano Schena
- Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, Rome 21-00128, Italy; E-Mails: (P.S.); (S.S.)
| | - Calogero Maria Oddo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, Viale Rinaldo Piaggio 34, Pontedera (PI) 56025, Italy; E-Mail:
| | - Loredana Zollo
- Center for Integrated Research, Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, Rome 21-00128, Italy; E-Mails: (L.Z.); (E.G.)
| | - Sergio Silvestri
- Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, Rome 21-00128, Italy; E-Mails: (P.S.); (S.S.)
| | - Eugenio Guglielmelli
- Center for Integrated Research, Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, Rome 21-00128, Italy; E-Mails: (L.Z.); (E.G.)
| |
Collapse
|