1
|
De Simone B, Abu-Zidan FM, Boni L, Castillo AMG, Cassinotti E, Corradi F, Di Maggio F, Ashraf H, Baiocchi GL, Tarasconi A, Bonafede M, Truong H, De'Angelis N, Diana M, Coimbra R, Balogh ZJ, Chouillard E, Coccolini F, Kelly MD, Di Saverio S, Di Meo G, Isik A, Leppäniemi A, Litvin A, Moore EE, Pasculli A, Sartelli M, Podda M, Testini M, Wani I, Sakakushev B, Shelat VG, Weber D, Galante JM, Ansaloni L, Agnoletti V, Regimbeau JM, Garulli G, Kirkpatrick AL, Biffl WL, Catena F. Indocyanine green fluorescence-guided surgery in the emergency setting: the WSES international consensus position paper. World J Emerg Surg 2025; 20:13. [PMID: 39948641 PMCID: PMC11823064 DOI: 10.1186/s13017-025-00575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Decision-making in emergency settings is inherently complex, requiring surgeons to rapidly evaluate various clinical, diagnostic, and environmental factors. The primary objective is to assess a patient's risk for adverse outcomes while balancing diagnoses, management strategies, and available resources. Recently, indocyanine green (ICG) fluorescence imaging has emerged as a valuable tool to enhance surgical vision, demonstrating proven benefits in elective surgeries. AIM This consensus paper provides evidence-based and expert opinion-based recommendations for the standardized use of ICG fluorescence imaging in emergency settings. METHODS Using the PICO framework, the consensus coordinator identified key research areas, topics, and questions regarding the implementation of ICG fluorescence-guided surgery in emergencies. A systematic literature review was conducted, and evidence was evaluated using the GRADE criteria. A panel of expert surgeons reviewed and refined statements and recommendations through a Delphi consensus process, culminating in final approval. RESULTS ICG fluorescence imaging, including angiography and cholangiography, improves intraoperative decision-making in emergency surgeries, potentially reducing procedure duration, complications, and hospital stays. Optimal use requires careful consideration of dosage and timing due to limited tissue penetration (5-10 mm) and variable performance in patients with significant inflammation, scarring, or obesity. ICG is contraindicated in patients with known allergies to iodine or iodine-based contrast agents. Successful implementation depends on appropriate training, availability of equipment, and careful patient selection. CONCLUSIONS Advanced technologies and intraoperative navigation techniques, such as ICG fluorescence-guided surgery, should be prioritized in emergency surgery to improve outcomes. This technology exemplifies precision surgery by enhancing minimally invasive approaches and providing superior real-time evaluation of bowel viability and biliary structures-areas traditionally reliant on the surgeon's visual assessment. Its adoption in emergency settings requires proper training, equipment availability, and standardized protocols. Further research is needed to evaluate cost-effectiveness and expand its applications in urgent surgical procedures.
Collapse
Affiliation(s)
- Belinda De Simone
- Department of Emergency and General Minimally Invasive Surgery, Infermi Hospital, AUSL Romagna, Rimini, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, CO, Italy.
| | - Fikri M Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, UAE
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS - Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Ana Maria Gonzalez Castillo
- Emergency Surgery Unit, Department of General Surgery, Pompeu Fabra University, Hospital del Mar, Barcelona, Spain
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS - Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Francesco Corradi
- Department of Surgical, Medical andMolecularPathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Francesco Di Maggio
- Upper Gastro-Intestinal Surgery Unit, Department of General Surgery, Croydon University Hospital, London, UK
| | - Hajra Ashraf
- Upper Gastro-Intestinal Surgery Unit, Department of General Surgery, Croydon University Hospital, London, UK
| | - Gian Luca Baiocchi
- Unit of General Surgery, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | | | - Hung Truong
- Acute Care and Minimally Invasive Surgery, Scripps Memorial Hospital - La Jolla, Green, and Encinitas, La Jolla, USA
| | - Nicola De'Angelis
- Unit of Robotic and Minimally Invasive Digestive Surgery, Ferrara University Hospital, Ferrara, Italy
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, 1205, Geneva, Switzerland
- ICube Laboratory, Photonics Instrumentation for Health, 67034, Strasbourg, France
| | - Raul Coimbra
- Riverside University Health System Medical Center, Riverside, CA, USA
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia
| | - Elie Chouillard
- General Surgery Department, American Hospital of Paris, Paris, France
| | | | | | - Salomone Di Saverio
- General Surgery Unit, Madonna del Soccorso Hospital, AST Ascoli Piceno, San Benedetto del Tronto, Italy
| | - Giovanna Di Meo
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Academic General Surgery, University of Bari "A. Moro", Bari, Italy
| | - Arda Isik
- Istanbul Medeniyet University, Istanbul, Turkey
| | - Ari Leppäniemi
- Division of Emergency Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Andrey Litvin
- Department of Surgical Diseases No. 3, Gomel State Medical University, University Clinic, Gomel, Belarus
| | - Ernest E Moore
- Ernest E Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, USA
| | - Alessandro Pasculli
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Academic General Surgery, University of Bari "A. Moro", Bari, Italy
| | - Massimo Sartelli
- Department of General Surgery, Macerata Hospital, Macerata, Italy
| | - Mauro Podda
- Department of Surgical Science, Unit of Emergency Surgery, University of Cagliari, Cagliari, Italy
| | - Mario Testini
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Academic General Surgery, University of Bari "A. Moro", Bari, Italy
| | - Imtiaz Wani
- Department of Surgery, Government Gousia Hospital, DHS, Srinagar, India
| | - Boris Sakakushev
- General Surgery Department, Medical University, University Hospital St George, Plovdiv, Bulgaria
| | - Vishal G Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Novena, Singapore
| | - Dieter Weber
- Department of General Surgery, Royal Perth Hospital & The University of Western Australia, Perth, Australia
| | - Joseph M Galante
- UC Davis Health, Hospital Clinical Care Services, University of California, Davis, USA
| | - Luca Ansaloni
- Department of General Surgery, University of Pavia, Pavia, Italy
| | - Vanni Agnoletti
- Level 1 Trauma Center, Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Jean-Marc Regimbeau
- Service de Chirurgie Digestive du CHU d'Amiens, CHU Sud, Centre Hospitalier Universitaire Amiens-Picardie Site Sud, 80054, Amiens, France
| | - Gianluca Garulli
- Department of Emergency and General Minimally Invasive Surgery, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Andrew L Kirkpatrick
- Departments of Surgery and Critical Care Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Walter L Biffl
- Division of Trauma/Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Fausto Catena
- Department of General and Emergency Surgery, Bufalini Hospital-Level 1 Trauma Center, AUSL Romagna, Cesena, Italy
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Li ZR, Cheng YC, Hong ZJ. Diagnostic laparoscopy with indocyanine green fluorescence test for the evaluation of intestinal perfusion in abdominal blunt injury: a case report. Int J Emerg Med 2024; 17:100. [PMID: 39187750 PMCID: PMC11345953 DOI: 10.1186/s12245-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The indocyanine green (ICG) fluorescence test has become a standard test in surgical procedures, facilitating the assessment of blood perfusion in real-time. While its utility in emergency surgeries for evaluating anastomotic blood supply is well-established, its application in trauma cases, especially those involving mesenteric hematoma, remains underexplored. Herein, we present a case to illustrate the efficacy of the ICG fluorescence test in such scenarios. CASE PRESENTATION A 51-year-old man with uncontrolled hypertension suffered blunt abdominal trauma following a motor vehicle accident. We used the intra-operative ICG fluorescence test to chart the surgical plan for the patient. A combination of diagnostic laparoscopy with ICG fluorescence testing effectively excluded bowel ischemia, leading to the avoidance of intestinal resection and the need for a temporary ostomy. The patient resumed enteral nutrition. CONCLUSIONS Our case underscores the efficacy of ICG fluorescence testing in assessing bowel viability and guiding surgical strategies in trauma patients with mesenteric hematoma. By facilitating real-time visualization of blood perfusion, ICG testing enables the adoption of conservative treatments in patients who would traditionally require more invasive surgical interventions, with minimal effect on operation time and cost.
Collapse
Affiliation(s)
- Ze-Rui Li
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chiao Cheng
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Hong
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Kataoka M, Itaka Y, Masada T, Minami K, Higashino H, Yamashita S. Near-infrared imaging of in vivo performance of orally administered solid forms to rats: Feasibility study with indocyanine green. Int J Pharm 2024; 649:123677. [PMID: 38061499 DOI: 10.1016/j.ijpharm.2023.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
This study demonstrates the applicability of near-infrared (NIR) imaging to evaluating in vivo oral formulation performance. As a NIR probe and model drug, indocyanine green (ICG) and acetaminophen (ACE) were selected, respectively. The fluorescence intensity of ICG greatly increased upon dissolution, with the dissolved ICG passing through the gastrointestinal tract over time. Both compounds (0.05 mg of ICG and 0.5 mg of ACE) were encapsulated in gelatin and hydroxypropyl methylcellulose (HPMC) capsules in the solid form. In vitro, the HPMC capsules showed a disintegration lag time, a feature that was not observed for the gelatin capsules. After oral administration of each capsule to rats, blood samples were collected, followed by fluorescent imaging of the abdominal region. At 0.25 h after HPMC capsule administration, the fluorescence area and intensity were significantly small and relatively weak compared to that of the gelatin capsule. These tendencies resulted from the difference in capsule disintegration times, leading to a change in gastric emptying, which corresponded well with the initial time profile of the plasma concentration of ACE. These results indicate that possibility of NIR imaging with ICG to evaluate in vivo performance of orally administered formulations.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yoshiya Itaka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
5
|
Abdelrahman H, El-Menyar A, Peralta R, Al-Thani H. Application of indocyanine green in surgery: A review of current evidence and implementation in trauma patients. World J Gastrointest Surg 2023; 15:757-775. [PMID: 37342859 PMCID: PMC10277941 DOI: 10.4240/wjgs.v15.i5.757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/26/2023] Open
Abstract
Background: Modern surgical medicine strives to manage trauma while improving outcomes using functional imaging. Identification of viable tissues is crucial for the surgical management of polytrauma and burn patients presenting with soft tissue and hollow viscus injuries. Bowel anastomosis after trauma-related resection is associated with a high rate of leakage. The ability of the surgeon’s bare eye to determine bowel viability remains limited, and the need for a more standardized objective assessment has not yet been fulfilled. Hence, there is a need for more precise diagnostic tools to enhance surgical evaluation and visualization to aid early diagnosis and timely management to minimize trauma-associated complications. Indocyanine green (ICG) coupled with fluorescence angiography is a potential solution for this problem. ICG is a fluorescent dye that responds to near-infrared irradiation. Methods: We conducted a narrative review to address the utility of ICG in the surgical management of patients with trauma as well as elective surgery. Discussion: ICG has many applications in different medical fields and has recently become an important clinical indicator for surgical guidance. However, there is a paucity of information regarding the use of this technology to treat traumas. Recently, angiography with ICG has been introduced in clinical practice to visualize and quantify organ perfusion under several conditions, leading to fewer cases of anastomotic insufficiency. This has great potential to bridge this gap and enhance the clinical outcomes of surgery and patient safety. However, there is no consensus on the ideal dose, time, and manner of administration nor the indications that ICG provides a genuine advantage through greater safety in trauma surgical settings. Conclusions: There is a scarcity of publications describing the use of ICG in trauma patients as a potentially useful strategy to facilitate intraoperative decisions and to limit the extent of surgical resection. This review will improve our understanding of the utility of intraoperative ICG fluorescence in guiding and assisting trauma surgeons to deal with the intraoperative challenges and thus improve the patients’ operative care and safety in the field of trauma surgery.
Collapse
Affiliation(s)
| | - Ayman El-Menyar
- Trauma and Vascular Surgery, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ruben Peralta
- Trauma Surgery, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hassan Al-Thani
- Trauma and Vascular Surgery, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|