1
|
Kuno S, Pakpian N, Muanprasat C. The potential role of PD-1/PD-L1 small molecule inhibitors in colorectal cancer with different mechanisms of action. Eur J Pharmacol 2025; 992:177351. [PMID: 39922421 DOI: 10.1016/j.ejphar.2025.177351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide, with increasing incidence in younger ages highlighting the need for new or alternative therapy, of which is immune checkpoint inhibitors. Antibody-based immune checkpoint inhibitors targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized cancer treatment, including CRC. However, the low response rate in CRC highlights the need for additional research and innovative therapies. Small molecule inhibitors have risen as another strategy worth exploring, considering their potential to target a wide array of PD-1/PD-L1-related pathways. This review focuses on the potential of small molecule inhibitors targeting the PD-1/PD-L1 axis in CRC. Exploring various classes of small molecule inhibitors, including those that directly block the PD-1/PD-L1 interaction and others that target upstream regulators or downstream signaling pathways involved in PD-1/PD-L1-mediated immune suppression. Additionally, modulation of post-transcriptional and post-translational processes, thereby influencing the expression, stability, or localization of PD-1/PD-L1 proteins to enhance antitumor immunity, provides a multifaceted treatment approach. By disrupting these pathways, these inhibitors can restore immune system activity against tumor cells, offering new hope for overcoming resistance and improving outcomes in CRC patients who do not respond to conventional immune checkpoint inhibitors (ICIs). Integrating these small molecules into CRC treatment strategies could represent a promising advancement in the battle against the challenging disease.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nattaporn Pakpian
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
2
|
Feng R, Li X, Li B, Luan T, He J, Liu G, Yue J. Integrating transcriptomics and scPagwas analysis predicts naïve CD4 T cell-related gene DRAM2 as a potential biomarker and therapeutic target for colorectal cancer. BMC Cancer 2025; 25:317. [PMID: 39984869 PMCID: PMC11843817 DOI: 10.1186/s12885-025-13731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE The interaction between T cells, particularly naïve CD4 T cells (CD4Tn), and colorectal cancer (CRC) is highly complex. CD4Tn play a crucial role in modulating immune responses within the tumor microenvironment, yet the precise mechanisms by which they influence tumor progression remain elusive. This study aims to explore the relationship between CRC and CD4Tn, identify biomarkers and therapeutic targets, and focus on the role of CD4Tn in shaping the immune environment of CRC. METHODS Single-cell transcriptomics, alongside the scPagwas algorithm, were employed to identify pivotal T cell subsets involved in CRC progression. Bulk transcriptomic data were further analyzed using deconvolution algorithms to elucidate the roles of these key T cell subsets. The abundance of naïve CD4 T cells (CD4Tn) was specifically assessed to gauge patient responses to immunotherapy, alterations in the immune microenvironment, and correlations with genetic mutations. Key genes linked to CD4Tn were identified using weighted gene co-expression network analysis and Pearson correlation scores. The SMR algorithm was subsequently used for validation, with experimental verification following. RESULTS Through single-cell transcriptomics and the scPagwas algorithm, CD4Tn was confirmed as a critical cell type in CRC progression. High infiltration of CD4Tn cells in CRC patients was correlated with poorer prognosis and suboptimal responses to immunotherapy. SMR analysis suggested a potential causal link between DRAM2 gene expression and CRC progression. Experimental knockdown of DRAM2 in colorectal cancer cells significantly inhibited tumor growth. CONCLUSION The DRAM2 gene, associated with CD4Tn cells, appears to play a pivotal role in the advancement of CRC and may represent a promising therapeutic target for treatment.
Collapse
Affiliation(s)
- Rui Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benhua Li
- The Second People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Tiankuo Luan
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Jiaming He
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Guojing Liu
- Department of Neurosurgery, The University-Town Hospital of Chongqing Medical University, NO.55 of university-town middle Road, Shapingba District, Chongqing, 400000, China.
| | - Jian Yue
- Department of Breast Surgery, Gaozhou People's Hospital, No.89 Xiguan Road, Gaozhou, Guangdong, 525200, China.
| |
Collapse
|
3
|
Gong Z, Yi H, Zhang J, Li W, Wang H, Guo P, Li C, Pan A, Cao Y, Lu Z, Jiang H. Role of Arg1 + ILC2s and ILCregs in gestational diabetes progression. Sci Rep 2025; 15:1580. [PMID: 39794391 PMCID: PMC11724119 DOI: 10.1038/s41598-025-85452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that are responsible for regulation of the immune microenvironment. In particular, the ILC categories ILC2s and regulatory ILCs (ILCregs) are associated with immunosuppression and chronic inflammation. Chronic low-grade inflammation leads to insulin resistance, a major etiological factor in gestational diabetes mellitus (GDM). However, the influence of ILCs on GDM remains poorly understood. Therefore, this study aims to investigate the potential role of ILCs in the development and progression of GDM. This study included 19 patients diagnosed with GDM and 19 age- and body mass index-matched individuals in the control group. Flow cytometry was employed to assess the frequency and function of ILC subsets in peripheral blood (PB), cord blood (CB), and placental tissues. Additionally, ELISA was utilized to measure the levels of the cytokines TNF-α, IFN-γ, TGF-β, and IL-4/10/13/22 in the serum samples of patients. Compared to the control group with normal pregnancy, significantly elevated levels of ILC2s, Arg1+ILC2s, and ILCregs were detected in the PB, CB, and placental tissues of the GDM group. With regard to inflammation-related cytokines, the levels of IL-13/22 in PB serum were significantly elevated, while the TGF-β levels were significantly reduced in the GDM group compared to the control group (CG). Further, in the CB serum samples, IL-13 levels were elevated in the GDM group. Additionally, a negative correlation was observed between the number of ILC3s and the number of ILCregs present in umbilical cord blood, while the IL-13 level in peripheral blood was negatively correlated with the number of ILC3s. The present findings indicate that chronic low-grade inflammation mediated by Arg-1+ILC2s and ILCregs is closely associated with the pathogenesis of GDM.
Collapse
Affiliation(s)
- Zhangyun Gong
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixing Yi
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wan Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peipei Guo
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Caihua Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anan Pan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhimin Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Huanhuan Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Wagner M, Nishikawa H, Koyasu S. Reinventing type 2 immunity in cancer. Nature 2025; 637:296-303. [PMID: 39780006 DOI: 10.1038/s41586-024-08194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
Collapse
Affiliation(s)
- Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland.
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
5
|
Yang WY, Ben Issa M, Saaoud F, Xu K, Shao Y, Lu Y, Dornas W, Cueto R, Jiang X, Wang H, Yang X. Perspective: Pathological transdifferentiation-a novel therapeutic target for cardiovascular diseases and chronic inflammation. Front Cardiovasc Med 2024; 11:1500775. [PMID: 39660114 PMCID: PMC11628510 DOI: 10.3389/fcvm.2024.1500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Pathological transdifferentiation, where differentiated cells aberrantly transform into other cell types that exacerbate disease rather than promote healing, represents a novel and significant concept. This perspective discusses its role and potential targeting in cardiovascular diseases and chronic inflammation. Current therapies mainly focus on mitigating early inflammatory response through proinflammatory cytokines and pathways targeting, including corticosteroids, TNF-α inhibitors, IL-1β monoclonal antibodies and blockers, IL-6 blockers, and nonsteroidal anti-inflammatory drugs (NSAIDs), along with modulating innate immune memory (trained immunity). However, these approaches often fail to address long-term tissue damage and functional regeneration. For instance, fibroblasts can transdifferentiate into myofibroblasts in cardiac fibrosis, and endothelial cells may undergo endothelial to mesenchymal transition (EndMT) in vascular remodeling, resulting in fibrosis and impaired tissue function. Targeting pathological transdifferentiation represents a promising therapeutic avenue by focusing on key signaling pathways that drive these aberrant cellular phenotypic and transcriptomic transitions. This approach seeks to inhibit these pathways or modulate cellular plasticity to promote effective tissue regeneration and prevent fibrosis. Such strategies have the potential to address inflammation, cell death, and the resulting tissue damage, providing a more comprehensive and sustainable treatment solution. Future research should focus on understanding the mechanisms behind pathological transdifferentiation, identifying relevant biomarkers and master regulators, and developing novel therapies through preclinical and clinical trials. Integrating these new therapies with existing anti-inflammatory treatments could enhance efficacy and improve patient outcomes. Highlighting pathological transdifferentiation as a therapeutic target could transform treatment paradigms, leading to better management and functional recovery of cardiovascular tissues in diseases and chronic inflammation.
Collapse
Affiliation(s)
- William Y. Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohammed Ben Issa
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Waleska Dornas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Cueto
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
7
|
Sun H, Qiu J, Qiu J. Epigenetic regulation of innate lymphoid cells. Eur J Immunol 2024; 54:e2350379. [PMID: 38824666 DOI: 10.1002/eji.202350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Innate lymphoid cells (ILCs) lack antigen-specific receptors and are considered the innate arm of the immune system, phenotypically and functionally mirroring CD4+ helper T cells. ILCs are categorized into groups 1, 2, and 3 based on transcription factors and cytokine expression. ILCs predominantly reside in mucosal tissues and play important roles in regional immune responses. The development and function of ILC subsets are controlled by both transcriptional and epigenetic mechanisms, which have been extensively studied in recent years. Epigenetic regulation refers to inheritable changes in gene expression that occur without affecting DNA sequences. This mainly includes chromatin status, histone modifications, and DNA methylation. In this review, we summarize recent discoveries on epigenetic mechanisms regulating ILC development and function, and how these regulations affect disease progression under pathological conditions. Although the ablation of specific epigenetic regulators can cause global changes in corresponding epigenetic modifications to the chromatin, only partial genes with altered epigenetic modifications change their mRNA expression, resulting in specific outcomes in cell differentiation and function. Therefore, elucidating epigenetic mechanisms underlying the regulation of ILCs will provide potential targets for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Laboratory Medicine, Department of Blood Transfusion, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Wu M, Zhou Y, Pei D, Gao S. Unveiling the role of AGT in lipid metabolism and regulated cell death in colon cancer. Neoplasia 2024; 54:101009. [PMID: 38850836 PMCID: PMC11214316 DOI: 10.1016/j.neo.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Lipid metabolism and regulated cell death (RCD) play a role in the remodeling of tumor immune microenvironment and regulation of cancer progression. Since the underlying immune mechanisms of colon cancer remain elusive, this study aims to identify potential therapeutic target genes. METHODS Differential genes related to lipid metabolism and RCD in COAD patients were identified using R language and online tools. Based on the expression of genes, two groups were classified using consensus clustering. CIBERSORT and ssGSEA were used to detect immune infiltration in both groups. Prognostic signature genes for colon cancer were screened using machine learning algorithms. KEGG, GO and GSEA for gene pathway enrichment. In addition, interacting genes in the immune module were obtained using a weighted gene co-expression network (WGCNA). Finally, expression and mutation of key in colon cancer genes were detected using TIMER, HPR, cBioPortal website and qPCR. RESULTS The consensus clustering analysis revealed that 231 relevant differential genes were highly associated with immune infiltration. A series of machine learning and website analyses identified AGT as a hub gene linked to lipid metabolism and regulated cell death, which is overexpressed in colon cancer. CONCLUSION AGT, as a signature gene of lipid metabolism and regulated cell death, plays a critical role in the development of COAD and is associated with tumor immune infiltration.
Collapse
Affiliation(s)
- Mengdi Wu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yuyang Zhou
- Department of Laboratory Medicine, Siyang Hospital 223700, PR China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Shoucui Gao
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
9
|
Yang SM, Liu JM, Wen RP, Qian YD, He JB, Sun JS. Correlation between abdominal computed tomography signs and postoperative prognosis for patients with colorectal cancer. World J Gastrointest Surg 2024; 16:2145-2156. [PMID: 39087101 PMCID: PMC11287691 DOI: 10.4240/wjgs.v16.i7.2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Patients with different stages of colorectal cancer (CRC) exhibit different abdominal computed tomography (CT) signs. Therefore, the influence of CT signs on CRC prognosis must be determined. AIM To observe abdominal CT signs in patients with CRC and analyze the correlation between the CT signs and postoperative prognosis. METHODS The clinical history and CT imaging results of 88 patients with CRC who underwent radical surgery at Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University were retrospectively analyzed. Univariate and multivariate Cox regression analyses were used to explore the independent risk factors for postoperative death in patients with CRC. The three-year survival rate was analyzed using the Kaplan-Meier curve, and the correlation between postoperative survival time and abdominal CT signs in patients with CRC was analyzed using Spearman correlation analysis. RESULTS For patients with CRC, the three-year survival rate was 73.86%. The death group exhibited more severe characteristics than the survival group. A multivariate Cox regression model analysis showed that body mass index (BMI), degree of periintestinal infiltration, tumor size, and lymph node CT value were independent factors influencing postoperative death (P < 0.05 for all). Patients with characteristics typical to the death group had a low three-year survival rate (log-rank χ 2 = 66.487, 11.346, 12.500, and 27.672, respectively, P < 0.05 for all). The survival time of CRC patients was negatively correlated with BMI, degree of periintestinal infiltration, tumor size, lymph node CT value, mean tumor long-axis diameter, and mean tumor short-axis diameter (r = -0.559, 0.679, -0.430, -0.585, -0.425, and -0.385, respectively, P < 0.05 for all). BMI was positively correlated with the degree of periintestinal invasion, lymph node CT value, and mean tumor short-axis diameter (r = 0.303, 0.431, and 0.437, respectively, P < 0.05 for all). CONCLUSION The degree of periintestinal infiltration, tumor size, and lymph node CT value are crucial for evaluating the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Shao-Min Yang
- Department of Radiology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan 528315, Guangdong Province, China
| | - Jie-Mei Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University, Foshan 528399, Guangdong Province, China
| | - Rui-Ping Wen
- Department of Radiology, Lecong Hospital of Shunde, Foshan 528315, Guangdong Province, China
| | - Yu-Dong Qian
- Department of Radiology, Lecong Hospital of Shunde, Foshan 528315, Guangdong Province, China
| | - Jing-Bo He
- Department of Ultrasound, Lecong Hospital of Shunde, Foshan 528315, Guangdong Province, China
| | - Jing-Song Sun
- Department of Radiology, Lecong Hospital of Shunde, Foshan 528315, Guangdong Province, China
| |
Collapse
|
10
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
11
|
Chen Y, Gu X, Cao K, Tu M, Liu W, Ju J. The role of innate lymphoid cells in systemic lupus erythematosus. Cytokine 2024; 179:156623. [PMID: 38685155 DOI: 10.1016/j.cyto.2024.156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.
Collapse
Affiliation(s)
- Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
12
|
Liang Z, Tang Z, Zhu C, Li F, Chen S, Han X, Zheng R, Hu X, Lin R, Pei Q, Yin C, Wang J, Tang C, Cao N, Zhao J, Wang R, Li X, Luo N, Wen Q, Yu J, Li J, Xia X, Zheng X, Wang X, Huang N, Zhong Z, Mo C, Chen P, Wang Y, Fan J, Guo Y, Zhong H, Liu J, Peng Z, Mao H, Shi GP, Bonventre JV, Chen W, Zhou Y. Intestinal CXCR6 + ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity 2024; 57:1306-1323.e8. [PMID: 38815582 PMCID: PMC11539045 DOI: 10.1016/j.immuni.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.
Collapse
Affiliation(s)
- Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Shuaijiabin Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjun Yin
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ji Wang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Cao
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Rong Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiong Wen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xi Xia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Yun Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Haojie Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jiaqi Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
13
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
14
|
Zhang X, Zhu R, Yu D, Wang J, Yan Y, Xu K. Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: "Single" vision for "heterogeneous" environment. Cell Prolif 2024; 57:e13592. [PMID: 38158643 PMCID: PMC11056715 DOI: 10.1111/cpr.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a phenotypically and functionally heterogeneous stromal cell, are one of the most important components of the tumour microenvironment. Previous studies have consolidated it as a promising target against cancer. However, variable therapeutic efficacy-both protumor and antitumor effects have been observed not least owing to the strong heterogeneity of CAFs. Over the past 10 years, advances in single-cell RNA sequencing (scRNA-seq) technologies had a dramatic effect on biomedical research, enabling the analysis of single cell transcriptomes with unprecedented resolution and throughput. Specifically, scRNA-seq facilitates our understanding of the complexity and heterogeneity of diverse CAF subtypes. In this review, we discuss the up-to-date knowledge about CAF heterogeneity with a focus on scRNA-seq perspective to investigate the emerging strategies for integrating multimodal single-cell platforms. Furthermore, we summarized the clinical application of scRNA-seq on CAF research. We believe that the comprehensive understanding of the heterogeneity of CAFs form different visions will generate innovative solutions to cancer therapy and achieve clinical applications.
Collapse
Affiliation(s)
- Xiangjian Zhang
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ruiqiu Zhu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Die Yu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Juan Wang
- School of MedicineShanghai UniversityShanghaiChina
| | - Yuxiang Yan
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| |
Collapse
|
15
|
Verner JM, Arbuthnott HF, Ramachandran R, Bharadwaj M, Chaudhury N, Jou E. Emerging roles of type 1 innate lymphoid cells in tumour pathogenesis and cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:296-315. [PMID: 38745765 PMCID: PMC11090689 DOI: 10.37349/etat.2024.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 05/16/2024] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor β (TGFβ) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
| | | | - Raghavskandhan Ramachandran
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Balliol College, University of Oxford, OX1 3BJ Oxford, United Kingdom
| | - Manini Bharadwaj
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Natasha Chaudhury
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Eric Jou
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
- Kellogg College, University of Oxford, OX2 6PN Oxford, United Kingdom
| |
Collapse
|
16
|
Uddin MJ, Thompson B, Leslie JL, Fishman C, Sol-church K, Kumar P, Petri WA. Investigating the impact of antibiotic-induced dysbiosis on protection from Clostridium difficile colitis by mouse colonic innate lymphoid cells. mBio 2024; 15:e0333823. [PMID: 38376154 PMCID: PMC11209775 DOI: 10.1128/mbio.03338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.
Collapse
Affiliation(s)
- Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Arcus Biosciences, Hayward, California, USA
| | - Casey Fishman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Katia Sol-church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M, Ren S, Yang D, Ma X, Xie W. Sulfation of chondroitin and bile acids converges to antagonize Wnt/ β-catenin signaling and inhibit APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B 2024; 14:1241-1256. [PMID: 38487006 PMCID: PMC10935170 DOI: 10.1016/j.apsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] Open
Abstract
Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/β-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/β-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Ji X, Zhu R, Gao C, Xie H, Gong X, Luo J. Hypoxia-Derived Exosomes Promote Lung Adenocarcinoma by Regulating HS3ST1-GPC4-Mediated Glycolysis. Cancers (Basel) 2024; 16:695. [PMID: 38398086 PMCID: PMC10886556 DOI: 10.3390/cancers16040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The diagnosis of lung adenocarcinoma (LUAD) is often delayed due to the typically asymptomatic nature of the early-stage disease, causing advanced-stage LUAD diagnosis in most patients. Hypoxia is widely recognized as a driving force in cancer progression. Exosomes originating from hypoxic tumor cells promote tumorigenesis by influencing glycolysis, migration, invasion, and immune infiltration. Given these insights, our study aimed to explore the role of hypoxia-derived exosomal long non-coding RNA (lncRNA) OIP5-AS1 in LUAD cell lines and mouse models. MATERIALS AND METHODS Exosomes were meticulously isolated and authenticated based on their morphology and biomarkers. The interaction between heparan sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1) and Glypican 4 (GPC4) was examined using immunoprecipitation. The influence of the hypoxia-derived exosomal lncRNA OIP5-AS1 on glycolysis was assessed in LUAD cell lines. The effect of the hypoxia-derived exosomal lncRNA OIP5-AS1 on cell proliferation and metastasis was evaluated using colony formation, cell viability, cell cycle, and apoptosis analyses. Its effects on tumor size were confirmed in xenograft animal models. RESULTS Our study revealed the mechanism of the hypoxia-derived exosomal lncRNA OIP5-AS1 in LUAD progression. We discovered that GPC4 promotes HS3ST1-mediated glycolysis and that the hypoxia-derived exosomal lncRNA OIP5-AS1 enhances glycolysis by regulating miR-200c-3p in LUAD cells. Notably, this lncRNA stimulates LUAD cell proliferation and metastasis and fosters LUAD tumor size via miR-200c-3p. Our findings underscore the potential role of the hypoxia-derived exosomal lncRNA OIP5-AS1 in LUAD progression. CONCLUSIONS The hypoxia-derived exosomal lncRNA OIP5-AS1 promotes LUAD by regulating HS3ST1-GPC4-mediated glycolysis via miR-200c-3p.
Collapse
Affiliation(s)
- Xianxiu Ji
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ren Zhu
- Department of Medical Administration, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Caixia Gao
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
19
|
Xia CW, Saranchova I, Finkel PL, Besoiu S, Munro L, Pfeifer CG, Haegert A, Lin YY, Le Bihan S, Collins C, Jefferies WA. A diversity of novel type-2 innate lymphoid cell subpopulations revealed during tumour expansion. Commun Biol 2024; 7:12. [PMID: 38172434 PMCID: PMC10764766 DOI: 10.1038/s42003-023-05536-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.
Collapse
Affiliation(s)
- Clara Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Pablo L Finkel
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Stephanie Besoiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Anne Haegert
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Yen-Yi Lin
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Stéphane Le Bihan
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Colin Collins
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
20
|
Mori A, Ohno H, Satoh-Takayama N. Disease pathogenesis and barrier functions regulated by group 3 innate lymphoid cells. Semin Immunopathol 2024; 45:509-519. [PMID: 38305897 DOI: 10.1007/s00281-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.
Collapse
Affiliation(s)
- Ayana Mori
- Immunobiology Laboratory, School of Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
21
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
22
|
Gharaie S, Lee K, Noller K, Lo EK, Miller B, Jung HJ, Newman-Rivera AM, Kurzhagen JT, Singla N, Welling PA, Fan J, Cahan P, Noel S, Rabb H. Single cell and spatial transcriptomics analysis of kidney double negative T lymphocytes in normal and ischemic mouse kidneys. Sci Rep 2023; 13:20888. [PMID: 38017015 PMCID: PMC10684868 DOI: 10.1038/s41598-023-48213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
T cells are important in the pathogenesis of acute kidney injury (AKI), and TCR+CD4-CD8- (double negative-DN) are T cells that have regulatory properties. However, there is limited information on DN T cells compared to traditional CD4+ and CD8+ cells. To elucidate the molecular signature and spatial dynamics of DN T cells during AKI, we performed single-cell RNA sequencing (scRNA-seq) on sorted murine DN, CD4+, and CD8+ cells combined with spatial transcriptomic profiling of normal and post AKI mouse kidneys. scRNA-seq revealed distinct transcriptional profiles for DN, CD4+, and CD8+ T cells of mouse kidneys with enrichment of Kcnq5, Klrb1c, Fcer1g, and Klre1 expression in DN T cells compared to CD4+ and CD8+ T cells in normal kidney tissue. We validated the expression of these four genes in mouse kidney DN, CD4+ and CD8+ T cells using RT-PCR and Kcnq5, Klrb1, and Fcer1g genes with the NIH human kidney precision medicine project (KPMP). Spatial transcriptomics in normal and ischemic mouse kidney tissue showed a localized cluster of T cells in the outer medulla expressing DN T cell genes including Fcer1g. These results provide a template for future studies in DN T as well as CD4+ and CD8+ cells in normal and diseased kidneys.
Collapse
Affiliation(s)
- Sepideh Gharaie
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Kyungho Lee
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Kathleen Noller
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Emily K Lo
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Brendan Miller
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Hyun Jun Jung
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Andrea M Newman-Rivera
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Johanna T Kurzhagen
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Nirmish Singla
- Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Luo J, Huang Y, Wu J, Dai L, Dong M, Cheng B. A novel hypoxia-associated gene signature for prognosis prediction in head and neck squamous cell carcinoma. BMC Oral Health 2023; 23:864. [PMID: 37964257 PMCID: PMC10647095 DOI: 10.1186/s12903-023-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of head and neck, which seriously threatens human life and health. However, the mechanism of hypoxia-associated genes (HAGs) in HNSCC remains unelucidated. This study aims to establish a hypoxia-associated gene signature and the nomogram for predicting the prognosis of patients with HNSCC. METHODS Previous literature reports provided a list of HAGs. The TCGA database provided genetic and clinical information on HNSCC patients. First, a hypoxia-associated gene risk model was constructed for predicting overall survival (OS) in HNSCC patients and externally validated in four GEO datasets (GSE27020, GSE41613, GSE42743, and GSE117973). Then, immune status and metabolic pathways were analyzed. A nomogram was constructed and assessed the predictive value. Finally, experimental validation of the core genes was performed by qRT-PCR. RESULTS A HNSCC prognostic model was constructed based on 8 HAGs. This risk model was validated in four external datasets and exhibited high predictive value in various clinical subgroups. Significant differences in immune cell infiltration levels and metabolic pathways were found between high and low risk subgroups. The nomogram was highly accurate for predicting OS in HNSCC patients. CONCLUSIONS The 8 hypoxia-associated gene signature can serve as novel independent prognostic indicators in HNSCC patients. The nomogram combining the risk score and clinical stage enhanced predictive performance in predicting OS compared to the risk model and clinical characteristics alone.
Collapse
Affiliation(s)
- Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuejiao Huang
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Stomatology, Wuhan No. 1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430030, China.
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
24
|
Wang X, Chen X, Chen J, Liao C, Yang X, Zhou J, Liu S, Ye S, Zheng Y, Huang L, Zhao J, Ye L, Huang B, Cao Y. Dopamine Receptor 1 Impedes ILC2-Mediated Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1418-1425. [PMID: 37728417 DOI: 10.4049/jimmunol.2300220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Ever-growing evidence has revealed that group 2 innate lymphoid cells (ILC2s) exhibit pleiotropic effects in antihelminth immunity, allergy, tissue protection, and cancer. Currently, the role of ILC2s in cancer is highly controversial regarding the intricate tumor microenvironment (TME), and the tumor-promoting or antitumor immunological mechanisms of ILC2s remain largely unknown. In this study, we report that dopamine receptor 1 (DRD1) restrains ILC2 activity in the TME. DRD1 deficiency promotes ILC2 activation, which irritates eosinophil recruitment and cytotoxic CD8+ T cell expansion during ongoing malignancy. Consequently, DRD1-deficient mice exhibit delayed tumor growth and reduced tumor progression. Furthermore, fenoldopam, a selective DRD1 agonist, restrains the ILC2 response in the TME and aggravates tumor burden in mice. Taken together, our data elaborate that the DRD1 signal acts as an excitatory rheostat in regulating ILC2-dependent antitumor immunity.
Collapse
Affiliation(s)
- Xiangyang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jierong Chen
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chunhui Liao
- Department of Orthodontics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaofan Yang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiasheng Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shusen Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuhao Zheng
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Linzi Huang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yingjiao Cao
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Audouze-Chaud J, Mathews JA, Crome SQ. Efficient and stable CRISPR/Cas9-mediated genome-editing of human type 2 innate lymphoid cells. Front Immunol 2023; 14:1275413. [PMID: 37868976 PMCID: PMC10585162 DOI: 10.3389/fimmu.2023.1275413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of innate lymphocytes with important roles in immune response coordination and maintenance of tissue homeostasis. The ILC family includes group 1 (ILC1s), group 2 (ILC2s) and group 3 (ILC3s) 'helper' ILCs, as well as cytotoxic Natural Killer (NK) cells. Study of helper ILCs in humans presents several challenges, including their low proportions in peripheral blood or needing access to rare samples to study tissue resident ILC populations. In addition, the lack of established protocols harnessing genetic manipulation platforms has limited the ability to explore molecular mechanism regulating human helper ILC biology. CRISPR/Cas9 is an efficient genome editing tool that enables the knockout of genes of interest, and is commonly used to study molecular regulation of many immune cell types. Here, we developed methods to efficiently knockout genes of interest in human ILC2s. We discuss challenges and lessons learned from our CRISPR/Cas9 gene editing optimizations using a nucleofection transfection approach and test a range of conditions and nucleofection settings to obtain a protocol that achieves effective and stable gene knockout while maintaining optimal cell viability. Using IL-4 as a representative target, we compare different ribonucleoprotein configurations, as well as assess effects of length of time in culture and other parameters that impact CRISPR/Cas9 transfection efficiency. Collectively, we detail a CRISPR/Cas9 protocol for efficient genetic knockout to aid in studying molecular mechanism regulating human ILC2s.
Collapse
Affiliation(s)
- Johanne Audouze-Chaud
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A. Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
26
|
Zhang Y, Ma S, Li T, Tian Y, Zhou H, Wang H, Huang L. ILC1-derived IFN-γ regulates macrophage activation in colon cancer. Biol Direct 2023; 18:56. [PMID: 37679802 PMCID: PMC10486120 DOI: 10.1186/s13062-023-00401-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are an important subset of innate immune cells in the tumor microenvironment, and they are pivotal regulators of tumor-promoting inflammation and tumor progression. Evidence has proven that TAM numbers are substantially increased in cancers, and most of these TAMs are polarized toward the alternatively activated M2 phenotype; Thus, these TAMs strongly promote the progression of cancer diseases. Type 1 innate lymphocytes (ILC1s) are present in high numbers in intestinal tissues and are characterized by the expression of the transcription factor T-bet and the secretion of interferon (IFN)-γ, which can promote macrophages to polarize toward the classically activated antitumor M1 phenotype. However, the relationship between these two cell subsets in colon cancer remains unclear. METHODS Flow cytometry was used to determine the percentages of M1-like macrophages, M2-like macrophages and ILC1s in colon cancer tissues and paracancerous healthy colon tissues in the AOM/DSS-induced mouse model of colon cancer. Furthermore, ILC1s were isolated and bone marrow-derived macrophages were generated to analyze the crosstalk that occurred between these cells when cocultured in vitro. Moreover, ILC1s were adoptively transferred or inhibited in vivo to explore the effects of ILC1s on tumor-infiltrating macrophages and tumor growth. RESULTS We found that the percentages of M1-like macrophages and ILC1s were decreased in colon cancer tissues, and these populations were positively correlated. ILC1s promoted the polarization of macrophages toward the classically activated M1-like phenotype in vitro, and this effect could be blocked by an anti-IFN-γ antibody. The in vivo results showed that the administration of the Group 1 innate lymphocyte-blocking anti-NK1.1 antibody decreased the number of M1-like macrophages in the tumor tissues of MC38 tumor-bearing mice and promoted tumor growth, and adoptive transfer of ILC1s inhibited tumors and increased the percentage of M1-like macrophages in MC38 tumor-bearing mice. CONCLUSIONS Our studies preliminarily prove for the first time that ILC1s promote the activation of M1-like macrophages by secreting IFN-γ and inhibit the progression of colon cancer, which may provide insight into immunotherapeutic approaches for colon cancer.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shu Ma
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tie Li
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yu Tian
- Department of Laboratory Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Huangao Zhou
- Department of emergency medicine, Jiangyin People's Hospital, Wuxi, China.
| | - Hongsheng Wang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Lan Huang
- Department of Laboratory Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China.
| |
Collapse
|
27
|
Lu Z, Wang H, Gong Z, Guo P, Li C, Bi K, Li X, Chen Y, Pan A, Xu Y, Zhou P, Wei Z, Jiang H, Cao Y. The enrichment of Arg1 +ILC2s and ILCregs facilitates the progression of endometriosis: A preliminary study. Int Immunopharmacol 2023; 121:110421. [PMID: 37302364 DOI: 10.1016/j.intimp.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Innate lymphoid cells (ILCs) are a kind of lymphocytes that reside in the tissue and have an essential function in the immune microenvironment. However, the relationship between endometriosis (EMS) and ILCs is complex and not fully understood. This study examines several groups of ILCs in the peripheral blood (PB), peritoneal fluid (PF) and endometrium of patients with EMS via flow cytometry. The study observed an increase in PB ILCs, particularly ILC2s and ILCregs subsets and Arg1+ILC2s in the EMS patients were highly activated. EMS patients had significantly higher levels of serum interleukin (IL)-10/33/25 compared to controls. We also found an elevation of Arg1+ILC2s in the PF and higher levels of ILC2s and ILCregs in ectopic endometrium compared with eutopic. Importantly, a positive correlation was observed between the enrichment of Arg1+ILC2s and ILCregs in the PB of EMS patients. The findings indicate that the involvement of Arg1+ILC2s and ILCregs fosters potentially endometriosis progression.
Collapse
Affiliation(s)
- Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhangyun Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuqing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Anan Pan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
28
|
Seo H, Verma A, Kinzel M, Huang Q, Mahoney DJ, Jacquelot N. Targeting Potential of Innate Lymphoid Cells in Melanoma and Other Cancers. Pharmaceutics 2023; 15:2001. [PMID: 37514187 PMCID: PMC10384206 DOI: 10.3390/pharmaceutics15072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.
Collapse
Affiliation(s)
- Hobin Seo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Amisha Verma
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Kinzel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
29
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
30
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
32
|
Deng Y, Chen Q, Chen J, Zhang Y, Zhao J, Bi X, Li Z, Zhang Y, Huang Z, Cai J, Zhao H. An elevated preoperative cholesterol-to-lymphocyte ratio predicts unfavourable outcomes in colorectal cancer liver metastasis patients receiving simultaneous resections: a retrospective study. BMC Surg 2023; 23:131. [PMID: 37194000 DOI: 10.1186/s12893-023-01988-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND To explore the clinical prognostic utility of the preoperative cholesterol-to-lymphocyte ratio (CLR) in outcomes for colorectal cancer liver metastasis (CRLM) patients receiving simultaneous resection of the primary lesion and liver metastases. METHODS A total of 444 CRLM patients receiving simultaneous resections were enrolled. The optimal cut-off value for CLR was determined using the highest Youden's index. Patients were divided into the CLR < 3.06 group and the CLR≥3.06 group. Propensity score matching analysis (PSM) and the inverse probability of treatment weighting (IPTW) method were conducted to eliminate bias between the two groups. The outcomes included short-term outcomes and long-term outcomes. Kaplan-Meier curves and log-rank tests were used to analyse progression-free survival (PFS) and overall survival (OS). RESULTS In the short-term outcome analysis, after 1:1 PSM, 137 patients were distributed to the CLR < 3.06 group and CLR≥3.06 group. No significant difference was noted between the two groups (P > 0.1). Compared with patients with CLR < 3.06, patients with CLR≥3.06 had comparable operation times (320.0 [272.5-421.0] vs. 360.0 [292.5-434.5], P = 0.088), blood loss (200.0 [100.0-400.0] vs. 200.0 [150.0-450.0], P = 0.831), postoperative complication rates (50.4% vs. 46.7%, P = 0.546) and postoperative ICU rates (5.8% vs. 11.7%, P = 0.087). In the long-term outcome analysis, Kaplan-Meier analysis showed that compared with patients with CLR < 3.06, patients with CLR≥3.06 had worse PFS (P = 0.005, median: 10.2 months vs. 13.0 months) and OS (P = 0.002, median: 41.0 months vs. 70.9 months). IPTW-adjusted Kaplan-Meier analysis showed that the CLR≥3.06 group had worse PFS (P = 0.027) and OS (P = 0.010) than the CLR < 3.06 group. In the IPTW-adjusted Cox proportional hazards regression analysis, CLR≥3.06 was an independent factor for PFS (HR = 1.376, 95% CI 1.097-1.726, P = 0.006) and OS (HR = 1.723, 95% CI 1.218-2.439, P = 0.002). IPTW-adjusted Cox proportional hazards regression analysis including postoperative complications, operation time, intraoperative blood loss, intraoperative blood transfusion and postoperative chemotherapy revealed that CLR≥3.06 was an independent factor for PFS (HR = 1.617, 95% CI 1.252-2.090, P < 0.001) and OS (HR = 1.823, 95% CI 1.258-2.643, P = 0.002). CONCLUSIONS The preoperative CLR level predicts unfavourable outcomes in CRLM patients receiving simultaneous resection of the primary lesion and liver metastases and should be taken into consideration when developing treatment and monitoring strategies.
Collapse
Affiliation(s)
- Yiqiao Deng
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yizhou Zhang
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
33
|
Wen R, Zhou L, Peng Z, Fan H, Zhang T, Jia H, Gao X, Hao L, Lou Z, Cao F, Yu G, Zhang W. Single-cell sequencing technology in colorectal cancer: a new technology to disclose the tumor heterogeneity and target precise treatment. Front Immunol 2023; 14:1175343. [PMID: 37256123 PMCID: PMC10225552 DOI: 10.3389/fimmu.2023.1175343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal tumors, and its high tumor heterogeneity makes traditional sequencing methods incapable of obtaining information about the heterogeneity of individual cancer cells in CRC. Therefore, single-cell sequencing technology can be applied to better analyze the differences in genetic and protein information between cells, to obtain genomic sequence information of single cells, and to more thoroughly analyze the cellular characteristics and interactions in the CRC microenvironment. This will provide a more comprehensive understanding of colorectal cancer development and metastasis and indicate the treatment plan and prognosis. In this study, we review the application of single-cell sequencing to analyze the tumor microenvironment of CRC, explore the mechanisms involved in CRC metastasis and progression, and provide a reference for potential treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
34
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24076652. [PMID: 37047625 PMCID: PMC10095467 DOI: 10.3390/ijms24076652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that have garnered considerable attention due to their critical roles in regulating immunity and tissue homeostasis. They are particularly abundant in the gastrointestinal tract, where they have been shown to interact with commensal bacteria, pathogens, and other components of the local microenvironment to influence host immune responses to infection and oncogenesis. Their tissue-residency properties enable gastric ILCs a localized and rapid response to alert and stress, which indicates their key potential in regulating immunosurveillance. In this review, we discuss the current understanding of the role of ILCs in the gastric mucosa, with a focus on their interactions with the gastric microbiota and Helicobacter pylori and their contributions to tissue homeostasis and inflammation. We also highlight recent findings on the involvement of ILCs in the pathogenesis of gastric cancer and the implications of targeting ILCs as a therapeutic approach. Overall, this review provides an overview of the diverse functions of ILCs in gastric mucosa and highlights their potential as targets for future therapies for gastric cancer.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Ma Z, Wang J, Hu L, Wang S. Function of Innate Lymphoid Cells in Periodontal Tissue Homeostasis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076099. [PMID: 37047071 PMCID: PMC10093809 DOI: 10.3390/ijms24076099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Periodontitis is an irreversible inflammatory response that occurs in periodontal tissues. Given the size and diversity of natural flora in the oral mucosa, host immunity must strike a balance between pathogen identification and a complicated system of tolerance. The innate immune system, which includes innate lymphoid cells (ILCs), certainly plays a crucial role in regulating this homeostasis because pathogens are quickly recognized and responded to. ILCs are a recently discovered category of tissue-resident lymphocytes that lack adaptive antigen receptors. ILCs are found in both lymphoid and non-lymphoid organs and are particularly prevalent at mucosal barrier surfaces, where they control inflammatory response and homeostasis. Recent studies have shown that ILCs are important players in periodontitis; however, the mechanisms that govern the innate immune response in periodontitis still require further investigation. This review focuses on the intricate crosstalk between ILCs and the microenvironment in periodontal tissue homeostasis, with the purpose of regulating or improving immune responses in periodontitis prevention and therapy.
Collapse
Affiliation(s)
- Zhiyu Ma
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jinsong Wang
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University Beijing 100070, China
| | - Lei Hu
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100070, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University Beijing 100070, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100070, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100700, China
| |
Collapse
|
37
|
Zhang X, Yu D, Wu D, Gao X, Shao F, Zhao M, Wang J, Ma J, Wang W, Qin X, Chen Y, Xia P, Wang S. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host Microbe 2023; 31:418-432.e8. [PMID: 36893736 DOI: 10.1016/j.chom.2023.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/13/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
The intestinal microbiota plays an important role in colorectal cancer (CRC) progression. However, the effect of tissue-resident commensal bacteria on CRC immune surveillance remains poorly understood. Here, we analyzed the intratissue bacteria from CRC patient colon tissues. We found that the commensal bacteria belonging to the Lachnospiraceae family, including Ruminococcus gnavus (Rg), Blautia producta (Bp), and Dorea formicigenerans (Df), were enriched in normal tissues, while Fusobacterium nucleatum (Fn) and Peptostreptococcus anaerobius (Pa) were abundant in tumor tissues. Tissue-resident Rg and Bp reduced colon tumor growth and promoted the activation of CD8+ T cells in immunocompetent mice. Mechanistically, intratissue Rg and Bp degraded lyso-glycerophospholipids that inhibited CD8+ T cell activity and maintained the immune surveillance function of CD8+ T cells. Lyso-glycerophospholipids alone promoted tumor growth that was abrogated with Rg and Bp injection. Collectively, intratissue Lachnospiraceae family bacteria facilitate the immune surveillance function of CD8+ T cells and control colorectal cancer progression.
Collapse
Affiliation(s)
- Xusheng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- Department of General Surgery, the First Medical Center of the General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xintong Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiang Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China; Beijing IROT Key Laboratory, Beijing 100091, China
| | - Jiangwen Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Wang
- The State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Qin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China.
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Lopes N, Vivier E, Narni-Mancinelli E. Natural killer cells and type 1 innate lymphoid cells in cancer. Semin Immunol 2023; 66:101709. [PMID: 36621291 DOI: 10.1016/j.smim.2022.101709] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Innate lymphoid cells (ILCs) are a group of innate lymphocytes that do not express RAG-dependent rearranged antigen-specific cell surface receptors. ILCs are classified into five groups according to their developmental trajectory and cytokine production profile. They encompass NK cells, which are cytotoxic, helper-like ILCs 1-3, which functionally mirror CD4+ T helper (Th) type 1, Th2 and Th17 cells respectively, and lymphoid tissue inducer (LTi) cells. NK cell development depends on Eomes (eomesodermin), whereas the ILC1 program is regulated principally by the transcription factor T-bet (T-box transcription factor Tbx21), that of ILC2 is regulated by GATA3 (GATA-binding protein 3) and that of ILC3 is regulated by RORγt (RAR-related orphan receptor γ). NK cells were discovered close to fifty years ago, but ILC1s were first described only about fifteen years ago. Within the ILC family, NK and ILC1s share many similarities, as witnessed by their cell surface phenotype which largely overlap. NK cells and ILC1s have been reported to respond to tissue inflammation and intracellular pathogens. Several studies have reported an antitumorigenic role for NK cells in both humans and mice, but data for ILC1s are both scarce and contradictory. In this review, we will first describe the different NK cell and ILC1 subsets, their effector functions and development. We will then discuss their role in cancer and the effects of the tumor microenvironment on their metabolism.
Collapse
Affiliation(s)
- Noella Lopes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Innate Pharma Research Laboratories, Innate Pharma, Marseille, France; APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
39
|
Garofalo C, Cerantonio A, Muscoli C, Mollace V, Viglietto G, De Marco C, Cristiani CM. Helper Innate Lymphoid Cells-Unappreciated Players in Melanoma Therapy. Cancers (Basel) 2023; 15:cancers15030933. [PMID: 36765891 PMCID: PMC9913873 DOI: 10.3390/cancers15030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) and targeted therapy have dramatically changed the outcome of metastatic melanoma patients. Although immune checkpoints were developed based on the biology of adaptive T cells, they have subsequently been shown to be expressed by other subsets of immune cells. Similarly, the immunomodulatory properties of targeted therapy have been studied primarily with respect to T lymphocytes, but other subsets of immune cells could be affected. Innate lymphoid cells (ILCs) are considered the innate counterpart of T lymphocytes and include cytotoxic natural killer cells, as well as three helper subsets, ILC1, ILC2 and ILC3. Thanks to their tissue distribution and their ability to respond rapidly to environmental stimuli, ILCs play a central role in shaping immunity. While the role of NK cells in melanoma physiopathology and therapy is well established, little is known about the other helper ILC subsets. In this review, we summarize recent findings on the ability of the melanoma TME to influence the phenotype and functional plasticity of helper ILCs and highlight how this subset may in turn shape the TME. We also discuss changes in the melanoma TME induced by targeted therapy that could affect helper ILC functions, the expression of immune checkpoints on this subset and how their inhibition by ICIs may modulate helper ILC function and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Cerantonio
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
40
|
Zhou L, Yang XQ, Zhao GY, Wang FJ, Liu X. Meta-analysis of neoadjuvant immunotherapy for non-metastatic colorectal cancer. Front Immunol 2023; 14:1044353. [PMID: 36776899 PMCID: PMC9911889 DOI: 10.3389/fimmu.2023.1044353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Immunotherapy has been approved for the treatment of metastatic colorectal cancer. The efficacy and safety of neoadjuvant immunotherapy for the treatment of non-metastatic colorectal cancer remains unclear. We tried to explore clinical effect of neoadjuvant immunotherapy in the treatment of non-metastatic colorectal cancer. Methods We searched the databases (PubMed, Wanfang Embase, Cochrane Library and China National Knowledge Infrastructure databases) to obtain suitable articles up to September 2022. The primary outcomes of pathological complete response (pCRs), major pathological response (MPR), objective response rate (ORR), R0-resection and anus preserving rate were collected and evaluated. Secordary outcomes (pCRs and MPR) of subgroup analysis between deficient mismatch repair/microsatellite instability-high group (dMMR/MSI-H) and proficient mismatch repair/microsatellite stable group (pMMR/MSS) and outcomes for rectal cancer were analyzed for the final results. Results We included ten articles and 410 cases of non-metastatic colorectal cancer with neoadjuvant immunotherapy. There were 113 (27.5%) cases with the dMMR/MSI-H status and 167 (40.7%) cases with the pMMR/MSS status. pCRs was found in 167/373 (44.6%) patients (ES: 0.49, 95% CI: 0.36 to 0.62, P<0.01, chi2 = 65.3, P<0.01, I 2 = 86.2%) and MPR was found in 194/304 (63.8%) patients (ES: 0.66, 95% CI: 0.54 to 0.78, P<0.01, chi2 = 42.55, P<0.01, I 2 = 81.2%) with the random-effects model and huge heterogeneity. In the subgroup analysis, pCRs was higher in the dMMR/MSI-H group than the pMMR/MSS group in the fixed-effects model with minimal heterogeneity (OR: 3.55, 95% CI: 1.74 to 7.27, P<0.01, chi2 = 1.86, P=0.6, I 2 = 0%). pCRs was found in 58/172 (33.9%) rectal cancer patients (ES: 0.33, 95% CI: 0.26 to 0.40, P<0.01, chi2 = 3.04, P=0.55, I 2 = 0%) with the fixed-effects model and little heterogeneity. Conclusion Neoadjuvant immunotherapy could increase pCRs and MPR rate for non-metastatic colorectal cancer. Neoadjuvant immunotherapy could achieve better pCRs rate in dMMR/MSI-H group than in the pMMR/MSS group. Neoadjuvant immunotherapy could be another treatment option for non-metastatic colorectal cancer. Systematic review registration https://www.crd.york.ac.uk/prospero/#myprospero, identifier CRD42022350523.
Collapse
Affiliation(s)
- Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Quan Yang
- Department of General Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang-yue Zhao
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng-jian Wang
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Liu
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Xin Liu,
| |
Collapse
|
41
|
Differential Regulation of Innate Lymphoid Cells in Human and Murine Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24021627. [PMID: 36675138 PMCID: PMC9865302 DOI: 10.3390/ijms24021627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Oral squamous cell carcinomas (OSCC) remain a major healthcare burden in Asian countries. In Pakistan alone, it is the most common cancer in males and second only to breast cancer in females. Alarmingly, treatment options for OSCC remain limited. With this context, investigations made to explore the inflammatory milieu of OSCC become highly relevant, with the hope of practicing immunotherapeutic approaches to address this highly prevalent tumor. We investigated the newly identified innate lymphoid cells (ILCs) and associated cytokines in well-defined human oral squamous cell carcinoma (OSCC) as well as in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced murine model of OSCC using flow cytometry and quantitative real-time polymerase chain reaction (qPCR). We further went on to explore molecular circuitry involved in OSCC by developing a murine model of OSCC and using an α-Thy1 antibody to inhibit ILCs. Amongst the ILCs that we found in human OSCC, ILC3 (23%) was the most abundant, followed by ILC2 (17%) and ILC1 (1%). Mice were divided into four groups: DMBA (n = 33), DMBA+antibody (Ab) (n = 30), acetone (n = 5), and control (n = 5). In murine OSCC tissues, ILC1 and ILC3 were down-infiltrated, while ILC2 remained unchanged compared to controls. Interestingly, compared to the controls (DMBA group), mice treated with the α-Thy1 antibody showed fewer numbers of large tumors, and a larger percentage of these mice were tumor-free at this study's end point. We present novel data on the differential expansion/downsizing of ILCs in OSCC, which provides a pivotal basis to dive deeper into molecular circuitry and the OSCC tumor niche to devise novel diagnostic, therapeutic, and prognostic strategies to prevent/treat oral cancers.
Collapse
|
42
|
Li M, Wang Z, Jiang W, Lu Y, Zhang J. The role of group 3 innate lymphoid cell in intestinal disease. Front Immunol 2023; 14:1171826. [PMID: 37122757 PMCID: PMC10140532 DOI: 10.3389/fimmu.2023.1171826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s), a novel subpopulation of lymphocytes enriched in the intestinal mucosa, are currently considered as key sentinels in maintaining intestinal immune homeostasis. ILC3s can secrete a series of cytokines such as IL-22 to eliminate intestinal luminal antigens, promote epithelial tissue repair and mucosal barrier integrity, and regulate intestinal immunity by integrating multiple signals from the environment and the host. However, ILC3 dysfunction may be associated with the development and progression of various diseases in the gut. Therefore, in this review, we will discuss the role of ILC3 in intestinal diseases such as enteric infectious diseases, intestinal inflammation, and tumors, with a focus on recent research advances and discoveries to explore potential therapeutic targets.
Collapse
|
43
|
Zhao M, Shao F, Yu D, Zhang J, Liu Z, Ma J, Xia P, Wang S. Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis. Nat Commun 2022; 13:7600. [PMID: 36494354 PMCID: PMC9734379 DOI: 10.1038/s41467-022-35347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILC) are abundant in mucosal tissues. They serve critical functions in anti-pathogen response and tissue homeostasis. However, the heterogenous composition of ILCs in mucosal sites and their various maturation trajectories are less well known. In this study, we characterize ILC types and functions from both the lung and the small intestine, and identify their tissue-specific markers. We find that ILC2s residing in the lung express CCR2, whereas intestinal ILC2s express CCR4. Through the use of CCR2 and CCR4 reporter mice, we show that ILC2s undergo translocation via the lung-gut axis upon IL-33 treatment. This trajectory of ILC2s is also observed at the postnatal stage. Allergen-induced activation of lung ILC2s affects the homeostasis of gut ILC2s. Together, our findings implicate that ILCs display tissue-specific features in both the lung and gut, and ILC2s mature along the lung-gut axis in particular homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Min Zhao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Fei Shao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Dou Yu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiaqi Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiangwen Ma
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pengyan Xia
- grid.11135.370000 0001 2256 9319Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuo Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
44
|
Li Z, Sun H, Gu Z, Qiu J. Emerging roles of ILC2s in antitumor immunity. Cell Mol Immunol 2022; 19:1311-1313. [PMID: 36056147 PMCID: PMC9622867 DOI: 10.1038/s41423-022-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Zhao Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanxiao Sun
- Department of Blood Transfusion, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhitao Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
45
|
Bruchard M, Spits H. The role of ILC subsets in cancer. Semin Immunol 2022; 61-64:101654. [PMID: 36306660 DOI: 10.1016/j.smim.2022.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
The family of innate lymphoid cells (ILCs) are composed of five canonical subsets, NK cells, ILC1, ILC2, ILC3 and Lymphoid tissue inducer cells. ILCs have important functions in early stages of immune response towards infectious agents. ILCs are highly plastic enabling rapid modification of their functions dependent on the type of microbe and tissue environment to optimally counter these microbes. Data that still accumulate in a rapid pace indicate that these cells are also involved in immunity against tumor cells. Paradoxically ILC subsets have been shown to have tumor suppressing and tumor promoting activities. In this brief review we provide a snapshot of our current knowledge of characteristics and functions of tumor infiltrating ILC subsets and speculate on how these cells can be harnessed to mediate anti-tumor immunity.
Collapse
Affiliation(s)
- Mélanie Bruchard
- INSERM U1231, Equipe Labellisée Ligue Contre le Cancer, Dijon, France, Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France, University of Burgundy and Franche Comté, Dijon, France.
| | - Hergen Spits
- Amsterdam UMC location University of Amsterdam, department of Experimental Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection & Immunity, Meibergdreef 9, Amsterdam, Netherlands.
| |
Collapse
|
46
|
Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N, Boussiotis VA. Immune cellular components and signaling pathways in the tumor microenvironment. Semin Cancer Biol 2022; 86:187-201. [PMID: 35985559 PMCID: PMC10735089 DOI: 10.1016/j.semcancer.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
Abstract
During the past decade there has been a revolution in cancer therapeutics by the emergence of antibody-based and cell-based immunotherapies that modulate immune responses against tumors. These new therapies have extended and improved the therapeutic efficacy of chemo-radiotherapy and have offered treatment options to patients who are no longer responding to these classic anti-cancer treatments. Unfortunately, tumor eradication and long-lasting responses are observed in a small fraction of patients, whereas the majority of patients respond only transiently. These outcomes indicate that the maximum potential of immunotherapy has not been reached due to incomplete knowledge of the cellular and molecular mechanisms that guide the development of successful anti-tumor immunity and its failure. In this review, we discuss recent discoveries about the immune cellular composition of the tumor microenvironment (TME) and the role of key signaling mechanisms that compromise the function of immune cells leading to cancer immune escape.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Konstantinos Aliazis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Qi Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| |
Collapse
|
47
|
Castillo-González R, Valle-Noguera A, Gomez-Sánchez MJ, Xia P, Cruz-Adalia A. Innate lymphoid cells type 3 in cancer. Front Immunol 2022; 13:1033252. [PMID: 36341381 PMCID: PMC9627779 DOI: 10.3389/fimmu.2022.1033252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a multifactorial chronic illness caused by a combination of genetic and environmental factors. A tumor is more than just a collection of cancer cells, it also contains infiltrating and resident host cells that are constantly interacting with it. Innate lymphoid cells (ILCs) have been recently found to be within the tumor and its microenvironment in close relationship with cancer cells. Although ILCs lack an antigen-specific receptor, they can respond to environmental stress signals, aiding in the fast orchestration of an early immune response. They are tissue resident cells mostly located in mucosa and first barrier organs that have been mainly studied in the defense against pathogens, lymphoid development, and tissue repair, however, current research has begun to elucidate their involvement in carcinogenesis. Nevertheless, among all ILCs, ILC3s have been found to be the most controversial in terms of tumor immunity. It has been found that they enhance anti-tumor immunity by detecting cancerous cells and helping lymphocytes infiltrate tumors. However, some recent studies have revealed that IL-23 stimulating ILC3s may promote tumor growth. In this review, we have incorporated the most recent studies on the involvement of ILC3s in cancer development to offer an overview of the role of ILC3s in cancer emphasis on their particular activity in several organs primarily in the mucosa, but also in breast, pancreas, liver, and skin, realizing that their role likely depends on the tissue microenvironment and the subtype of ILC3s.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Pathology Anatomy Department, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Valle-Noguera
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Maria José Gomez-Sánchez
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pu Xia
- National Center for Radiation Research in Oncology (OncoRay) - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden, Dresden, Germany
| | - Aranzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Aranzazu Cruz-Adalia,
| |
Collapse
|
48
|
Thomas CM, Peebles RS. Development and function of regulatory innate lymphoid cells. Front Immunol 2022; 13:1014774. [PMID: 36275689 PMCID: PMC9581395 DOI: 10.3389/fimmu.2022.1014774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a critical element of the innate immune system and are potent producers of pro-inflammatory cytokines. Recently, however, the production of the anti-inflammatory cytokine IL-10 has been observed in all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a regulatory phenotype that serves to maintain lung and gut homeostasis. Other studies advocate a potential therapeutic role of these IL-10-expressing ILCs in allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection. Herein, we review IL-10 producing ILCs, discussing their development, function, regulation, and immunotherapeutic potential through suppressing harmful inflammatory responses. Furthermore, we address inconsistencies in the literature regarding these regulatory IL-10 producing ILCs, as well as directions for future research.
Collapse
Affiliation(s)
- Christopher M. Thomas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States,Research Service, Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, United States,*Correspondence: R. Stokes Peebles Jr,
| |
Collapse
|
49
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
50
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|