1
|
Nizioł J, Krupa S, Szuberla W, Ruman T. Advances in metallic nanostructures-assisted laser desorption/ionization mass spectrometry imaging of biological samples: A review. Anal Chim Acta 2025; 1366:344256. [PMID: 40490319 DOI: 10.1016/j.aca.2025.344256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Mass spectrometry imaging (MSI) has emerged as a powerful tool for the spatial visualization of biomolecules, driving advances in diverse fields such as biomedical research, plant metabolomics, and forensic science. Incorporating nanostructures, particularly metallic and metal oxide nanoparticles, has revolutionized laser desorption/ionization (LDI)-MSI by enhancing ionization efficiency, spatial resolution, and sensitivity. RESULTS This review focuses on the preparation, application, and performance of various metallic nanostructures (e.g., gold, silver, platinum, and metal oxides) in LDI-MSI, emphasizing both fundamental physicochemical properties and their role in improving sensitivity, spatial resolution, and data reproducibility. SIGNIFICANCE We provide a comparative assessment of metallic nanostructures versus other types of nanomaterials (quantum dots, carbon-based materials), highlight key advantages and current limitations, and offer a roadmap for future developments in nanomaterial-assisted MSI, including prospective strategies for stabilizing and functionalizing surfaces, exploring alternative laser wavelengths, and ensuring robust analytical workflows.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Sumi Krupa
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Wiktoria Szuberla
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
2
|
Tan J, Wang C, Hu Z, Zhang X. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230094. [PMID: 40040824 PMCID: PMC11875451 DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacauChina
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuChina
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacauChina
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
3
|
Amin MO, Al-Hetlani E. Matrix- and surface-assisted laser desorption/ionization-mass spectrometry analysis of fingermark components for forensic studies: current trends and future prospects. Anal Bioanal Chem 2024; 416:3751-3764. [PMID: 38647691 DOI: 10.1007/s00216-024-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The chemical analysis of fingermarks (FMs) has attracted considerable attention in the realm of forensic investigations. Techniques based on direct ionization of a sample by laser irradiation, specifically matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), have provided excellent figures of merit for analyzing high molecular-weight compounds. However, it can be challenging to analyze low molecular-weight compounds using MALDI-MS owing to potential interference produced by the organic matrices in the low molecular-weight region, which can impede the detection of small molecules (m/z < 700 Da). Alternately, surface-assisted laser desorption/ionization-mass spectrometry (SALDI-MS) has shown great promise for small molecules analysis owing to the unique properties of the nanostructures used, particularly, minimal chemical background in low m/z region improved the production of ions involved in this method. The advancement of MALDI-MS and SALDI-MS has propelled their application in the analysis of FM components, focused on gaining deep insights into individual traits. This review aims to outline the current role of MALDI-MS and SALDI-MS in the chemical analysis of FMs. It also describes the latest achievements in forensic intelligence derived from fingermark analysis using these powerful methods. The accomplishments include the understanding of certain characteristics and lifestyles of donors. The review offers a comprehensive overview of the challenges and demands in this field. It suggests potential enhancements in this rapidly expanding domain to bridge the gap between research and practical police casework.
Collapse
Affiliation(s)
- Mohamed O Amin
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| | - Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| |
Collapse
|
4
|
Irifune R, Ishikawa T, Kitagawa S, Iiguni Y, Ohtani H. Analysis of polyisoprene oligomers via in situ silver nanoparticle formation on thin-layer chromatography plate using matrix-assisted laser-induced desorption/ionization mass spectrometry. ANAL SCI 2023; 39:1823-1827. [PMID: 37668881 DOI: 10.1007/s44211-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
The direct mass spectrometry (MS) detection of polyisoprene (PI) oligomers on a thin-layer chromatography (TLC) plate using matrix-assisted laser-induced desorption/ionization (MALDI) with silver trifluoroacetate as the cationization reagent was investigated. The spots of PI oligomers and silver trifluoroacetate on the TLC plate resulted in brown materials after UV laser irradiation. It was suggested that silver trifluoroacetate yielded Ag nanoparticles as brown materials after heating via laser irradiation. The nanoparticles behaved as an inorganic matrix and a source of Ag+ adduct in the analysis of PI oligomers. The use of organic matrices together with silver trifluoroacetate reduced the signal intensity of PI oligomers on MALDI-MS on a TLC plate. The separation of PI oligomers (polymerization degree, n = 5-11) by TLC resulted in a single elliptical spot without a clear separation after the chromatographic procedure. However, in MS imaging, differences in migration lengths based on degrees of polymerization were clearly observed and the degrees of polymerization were identified without comparison with standards.
Collapse
Affiliation(s)
- Ryota Irifune
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Takanao Ishikawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan.
| | - Yoshinori Iiguni
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| |
Collapse
|
5
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
6
|
Pyrylium based derivatization imaging mass spectrometer revealed the localization of L-DOPA. PLoS One 2022; 17:e0271697. [PMID: 35917331 PMCID: PMC9345479 DOI: 10.1371/journal.pone.0271697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Simultaneous imaging of l-dihydroxyphenylalanine (l-DOPA), dopamine (DA) and norepinephrine (NE) in the catecholamine metabolic pathway is particularly useful because l-DOPA is a neurophysiologically important metabolic intermediate. In this study, we found that 2,4,6-trimethylpyrillium tetrafluoroborate (TMPy) can selectively and efficiently react with target catecholamine molecules. Specifically, simultaneous visualization of DA and NE as metabolites of l-DOPA with high steric hinderance was achieved by derivatized-imaging mass spectrometry (IMS). Interestingly, l-DOPA showed strong localization in the brainstem, in contrast to the pattern of DA and NE, which co-localized with tyrosine hydroxylase (TH). In addition, to identify whether the detected molecules were endogenous or exogenous l-DOPA, mice were injected with l-DOPA deuterated in three positions (D3-l-DOPA), which was identifiable by a mass shift of 3Da. TMPy-labeled l-DOPA, DA and NE were detected at m/z 302.1, 258.1 and 274.1, while their D3 versions were detected at 305.0, 261.1 and 277.1 in mouse brain, respectively. l-DOPA and D3-l-DOPA were localized in the BS. DA and NE, and D3-DA and D3-NE, all of which are metabolites of L-DOPA and D3-l-DOPA, were localized in the striatum (STR) and locus coeruleus (LC). These findings suggest a mechanism in the brainstem that allows l-DOPA to accumulate without being metabolized to monoamines downstream of the metabolic pathway.
Collapse
|
7
|
Taira S, Shikano H, Takahashi N. Analysis of hair components by nanoparticle-assisted laser desorption/ionization mass spectrometry imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
9
|
Abstract
Mass spectrometry imaging (MSI) is a technique for obtaining information on the distribution of various molecules by performing mass spectrometry directly on the sample surface. The applications range from small molecules such as lipids to large molecules such as proteins. It is also possible to detect pharmaceuticals and elemental isotopes in interstellar matter. This review will introduce various applications of MSI with examples.
Collapse
Affiliation(s)
- Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
10
|
Imaging of Plant Hormones with Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2437:127-139. [PMID: 34902145 DOI: 10.1007/978-1-0716-2030-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plant hormones can act in synergistic and antagonistic ways in response to biotic and abiotic stresses and during plant growth and development. Thus, a technique is needed to simultaneously determine the distribution and concentration of several plant hormones. A relatively new technology, mass spectrometry imaging (MSI), enables the direct mapping and imaging of biomolecules on tissue sections. MSI permits simultaneous detection of multiple analytes on a single section of plant tissue, even in the absence of target-specific markers such as antibodies. Recently, MSI has been used to localize multiple, small molecule (m/z < 500) plant hormones by the nanoparticle-assisted laser desorption/ionization (Nano-PALDI) mass spectrometry (MS) method. Here, we illustrate a technology for multiple-hormone imaging using Nano-PALDI MSI and discuss its potential in investigating the role of hormone signaling in plant development and stress responses.
Collapse
|
11
|
Mamun A, Islam A, Eto F, Sato T, Kahyo T, Setou M. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Rev Proteomics 2021; 17:843-854. [PMID: 33504247 DOI: 10.1080/14789450.2020.1880897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Imaging is a technique used for direct visualization of the internal structure or distribution of biomolecules of a living system in a two-dimensional or three-dimensional fashion. Phospholipids are important structural components of biological membranes and have been reported to be associated with various human diseases. Therefore, the visualization of phospholipids is crucial to understand the underlying mechanism of cellular and molecular processes in normal and diseased conditions. Areas covered: Mass spectrometry imaging (MSI) has enabled the label-free imaging of individual phospholipids in biological tissues and cells. The commonly used MSI techniques include matrix-assisted laser desorption ionization-MSI (MALDI-MSI), desorption electrospray ionization-MSI (DESI-MSI), and secondary ion mass spectrometry (SIMS) imaging. This special report described those methods, summarized the findings, and discussed the future development for the imaging of phospholipids. Expert opinion: Phospholipids imaging in complex biological samples has been significantly benefited from the development of MSI methods. In MALDI-MSI, novel matrix that produces homogenous crystals exclusively with polar lipids is important for phospholipids imaging with greater efficiency and higher spatial resolution. DESI-MSI has the potential of live imaging of the biological surface while SIMS is expected to image at the subcellular level in the near future.
Collapse
Affiliation(s)
- Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center , Hamamatsu, Shizuoka, Japan
| |
Collapse
|
12
|
Hiraoka K, Ariyada O, Usmanov DT, Chen LC, Ninomiya S, Yoshimura K, Takeda S, Yu Z, Mandal MK, Wada H, Rankin-Turner S, Nonami H. Probe Electrospray Ionization (PESI) and Its Modified Versions: Dipping PESI (dPESI), Sheath-Flow PESI (sfPESI) and Adjustable sfPESI (ad-sfPESI). Mass Spectrom (Tokyo) 2020; 9:A0092. [PMID: 33299735 PMCID: PMC7708747 DOI: 10.5702/massspectrometry.a0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
In 2007, probe electrospray ionization/mass spectrometry (PESI/MS) was developed. In this technique, the needle is moved down along a vertical axis and the tip of the needle touched to the sample. After capturing the sample at the needle tip, the needle is then moved up and a high voltage is applied to the needle at the highest position to generate electrospray. Due to the discontinuous sampling followed by the generation of spontaneous electrospray, sequential and exhaustive electrospray takes place depending on the surface activity of the analytes. As modified versions of PESI, dipping PESI (dPESI), sheath-flow PESI (sfPESI) and adjustable sfPESI (ad-sfPESI) have been developed. These methods are complementary to each other and they can be applicable to surface and bulk analysis of various biological samples. In this article, the characteristics of these methods and their applications to real samples will be reviewed.
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Osamu Ariyada
- ARIOS INC., 3–2–20 Musashino, Akishima, Tokyo 196–0021, Japan
| | - Dilshadbek T. Usmanov
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Lee C. Chen
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409–3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409–3898, Japan
| | - Zhang Yu
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Mridul K. Mandal
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agricultural and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833–0041, Japan
| | - Stephanie Rankin-Turner
- Clean Energy Research Center, University of Yamanashi, 4–3–11 Takeda, Kofu 400–8511, Japan
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, Matsuyama 790–8566, Japan
| |
Collapse
|
13
|
Samarah LZ, Vertes A. Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms. VIEW 2020. [DOI: 10.1002/viw.20200063] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laith Z. Samarah
- Department of Chemistry George Washington University Washington DC USA
| | - Akos Vertes
- Department of Chemistry George Washington University Washington DC USA
| |
Collapse
|
14
|
Abstract
Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Eunjin Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jisu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Inseong Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jeongwook Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
15
|
Meng Y, Ma S, Zhang Z, Hang W. 3D Nanoscale Chemical Imaging of Core–Shell Microspheres via Microlensed Fiber Laser Desorption Postionization Mass Spectrometry. Anal Chem 2020; 92:9916-9921. [DOI: 10.1021/acs.analchem.0c01434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yifan Meng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
| | - Siyuan Ma
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
| | - Zhenjian Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Shiono K, Taira S. Imaging of Multiple Plant Hormones in Roots of Rice ( Oryza sativa) Using Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6770-6775. [PMID: 32437141 DOI: 10.1021/acs.jafc.0c00749] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant hormones can act in synergistic and antagonistic ways in response to biotic and abiotic stresses and in plant growth and development. Thus, a technique is needed to simultaneously determine the distributions and concentrations of several plant hormones. Previously, we reported that localizations of two plant hormones [cytokinin (CK) and abscisic acid (ABA)] can be simultaneously visualized in a plant tissue using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). In MALDI-MS, however, self-ionization of an organic matrix occasionally interferes with ionizations of small molecules (<500 m/z) including most plant hormones. Another technique, nanoparticle-assisted laser desorption/ionization (Nano-PALDI), can avoid matrix self-ionization using nanoparticles to assist the ionization of analytes. Here, we compared the ionization efficiencies of common plant hormones by MALDI-MS and Nano-PALDI-MS. For the comparison, we prepared a standard mix of seven plant hormones [ABA, auxin (IAA), brassinosteroid (Br), two CKs (trans-zeatin, tZ, and 6-(γ,γ-dimethylallylamino) purine, iP), jasmonic acid, and salicylic acid (SA)], an ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC), and a heavy hydrogen-labeled ABA (D6-ABA). Basic MALDI-MS detected all compounds except IAA, Br, and D6-ABA, while Nano-PALDI-MS detected all nine compounds. By Nano-PALDI-MS imaging (MSI), each of the abovementioned hormones and ACC were also detected in root cross sections of rice which were incubated in the hormone mix for 2 h. In the elongation zone of untreated roots, Nano-PALDI-MSI revealed high levels of ABA and CKs in the outer part of roots and much lower levels in the stele, but Br, SA, and ACC were broadly distributed in the cross section. IAA seemed to be distributed in the epidermis, cortex, and stele. Multiple-hormone imaging using Nano-PALDI-MS has great potential for investigating the roles of hormone signaling in crop development and stress responses.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
17
|
Chun SC, Gopal J, Iyyakannu S, Muthu M. An analytical retrospection of mass spectrometric tools established for plant tissue culture: Current endeavours and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Sugiyama E, Skelly AN, Suematsu M, Sugiura Y. In situ imaging of monoamine localization and dynamics. Pharmacol Ther 2020; 208:107478. [DOI: 10.1016/j.pharmthera.2020.107478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
|
19
|
Wang T, Cheng X, Xu H, Meng Y, Yin Z, Li X, Hang W. Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Anal Chem 2019; 92:543-553. [DOI: 10.1021/acs.analchem.9b04067] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tongtong Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoling Cheng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hexin Xu
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoping Li
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
21
|
Nozaki K, Nakabayashi Y, Murakami T, Miyazato A, Osaka I. Novel approach to enhance sensitivity in surface-assisted laser desorption/ionization mass spectrometry imaging using deposited organic-inorganic hybrid matrices. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:612-619. [PMID: 31070274 DOI: 10.1002/jms.4370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Sample pretreatment is key to obtaining good data in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix-enhanced surface-assisted laser desorption/ionization (ME-SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α-cyano-4-hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME-SALDI-MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME-Zr-SALDI-MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI-MSI.
Collapse
Affiliation(s)
- Kazuyoshi Nozaki
- Bioimaging, Analysis & Pharmacokinetics Research Labs. Drug Discovery research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Yuji Nakabayashi
- Center for Nano Material and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tatsuya Murakami
- Center for Nano Material and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Akio Miyazato
- Center for Nano Material and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama, 939-0398, Japan
| |
Collapse
|
22
|
Hansen RL, Dueñas ME, Lee YJ. Sputter-Coated Metal Screening for Small Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:299-308. [PMID: 30341582 DOI: 10.1007/s13361-018-2081-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles are efficient matrices in laser desorption/ionization (LDI) mass spectrometry (MS), especially for the profiling or imaging of small molecules. Recently, solvent-free physical vapor desorption (PVD), or sputter coating, was adopted as a homogenous method to rapidly apply metal nanoparticles (NPs) in situ to samples prior to LDI MS or MS imaging analysis. However, there has been no systematic study comparing different metal targets for the analysis of a variety of small molecule metabolites. Here, we present a screening and optimization of various sputter-coated metals, including Ag, Au, Cu, Pt, Ni, and Ti, for LDI analysis of small molecules in both positive and negative ion modes. Optimized sputter coating is then applied to high-spatial resolution LDI mass spectrometry imaging (MSI) of maize root and seed cross-sections. Noble metals, Ag, Au, and Pt, are found to be much more efficient than transition metals and organic matrices for most small metabolites. Sputter-coated metals are efficient for neutral lipids, such as triacylglycerols and diacylglycerols, but are very inefficient for most phospholipids. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rebecca L Hansen
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | | | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
23
|
Naito Y, Kotani M, Ohmura T. A novel laser desorption/ionization method using through hole porous alumina membranes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1851-1858. [PMID: 30076645 PMCID: PMC6175246 DOI: 10.1002/rcm.8252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 06/01/2023]
Abstract
RATIONALE A novel matrix-free laser desorption/ionization method based on porous alumina membranes was developed. The porous alumina membranes have a two-dimensional (2D) ordered structure consisting of closely aligned straight through holes of sub-micron in diameter that are amenable to mass production by industrial fabrication processes. METHODS Considering a balance between the ion generating efficiency and the mechanical strength of the membranes, the typical values for the hole diameter, open aperture ratio and membrane thickness were set to 200 nm, 50% and 5 μm, respectively. The membranes were coated with platinum on a single side that was exposed to the laser. Evaluation experiments were conducted on the feasibility of this membrane structure for an ionization method using a single peptide and mixed peptides and polyethylene glycol samples and a commercial matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer in the positive ion mode. RESULTS Results showed a softness of ionization and no sweet spot nature. The capillary action of the through holes with very high aspect ratio enables several loading protocols including sample impregnation from the surface opposite to the laser exposure side. CONCLUSIONS The feasibility study indicates that the through hole porous alumina membranes have several advantages in terms of usefulness over the conventional surface-assisted laser desorption ionization (SALDI) methods. The proposed novel ionization method is termed Desorption Ionization Using Through Hole Alumina Membrane (DIUTHAME).
Collapse
Affiliation(s)
- Yasuhide Naito
- The Graduate School for the Creation of New Photonics Industries1955‐1 Kurematsu‐cho, Nishi‐kuHamamatsu431‐1202Japan
| | | | | |
Collapse
|
24
|
Palermo A, Forsberg EM, Warth B, Aisporna AE, Billings E, Kuang E, Benton HP, Berry D, Siuzdak G. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS NANO 2018; 12:6938-6948. [PMID: 29966083 DOI: 10.1021/acsnano.8b02376] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low μJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.
Collapse
Affiliation(s)
- Amelia Palermo
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Erica M Forsberg
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Vienna Metabolomics Center (VIME) , University of Vienna , Währingerstraße 38 , 1090 Vienna , Austria
| | - Aries E Aisporna
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Elizabeth Billings
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ellen Kuang
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - H Paul Benton
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gary Siuzdak
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
- Department of Chemistry, Molecular and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
25
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
26
|
Thomas A, Lenglet S, Chaurand P, Déglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C. Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 2017; 106:20-33. [DOI: 10.1160/th10-12-0812] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 01/05/2023]
Abstract
SummaryThe identification and quantification of proteins and lipids is of major importance for the diagnosis, prognosis and understanding of the molecular mechanisms involved in disease development. Owing to its selectivity and sensitivity, mass spectrometry has become a key technique in analytical platforms for proteomic and lipidomic investigations. Using this technique, many strategies have been developed based on unbiased or targeted approaches to highlight or monitor molecules of interest from biomatrices. Although these approaches have largely been employed in cancer research, this type of investigation has been met by a growing interest in the field of cardiovascular disorders, potentially leading to the discovery of novel biomarkers and the development of new therapies. In this paper, we will review the different mass spectrometry- based proteomic and lipidomic strategies applied in cardiovascular diseases, especially atherosclerosis. Particular attention will be given to recent developments and the role of bioinformatics in data treatment. This review will be of broad interest to the medical community by providing a tutorial of how mass spectrometric strategies can support clinical trials.
Collapse
|
27
|
Imaging mass spectrometry analysis of ubiquinol localization in the mouse brain following short-term administration. Sci Rep 2017; 7:12990. [PMID: 29021617 PMCID: PMC5636788 DOI: 10.1038/s41598-017-13257-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 11/15/2022] Open
Abstract
We analyzed the localization of ubiquinol, the reduced form of coenzyme Q10 (Re-CoQ10), in mouse brain sections using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry (IMS) to evaluate the effect of dietary Re-CoQ10 in mouse brain. Mice were orally administered Re-CoQ10 for 14 days and brain Re-CoQ10 content was subsequently quantified using liquid chromatography-mass spectrometry. IMS was employed to visualize Re-CoQ10 at a resolution of 150 μm in the mouse brain. Increased Re-CoQ10 was observed in the corpus callosum, hippocampus, midbrain, cerebellum, brain stem, substantia nigra and striatum. These regions are related to movement, memory and vital life functions. Thus, we demonstrated the effect of Re-CoQ10 administration on the specific localization of Re-CoQ10 in the brain.
Collapse
|
28
|
Shiono K, Hashizaki R, Nakanishi T, Sakai T, Yamamoto T, Ogata K, Harada KI, Ohtani H, Katano H, Taira S. Multi-imaging of Cytokinin and Abscisic Acid on the Roots of Rice (Oryza sativa) Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7624-7628. [PMID: 28718648 DOI: 10.1021/acs.jafc.7b02255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods. Here, we report the first multi-imaging of two plant hormones, one of cytokinin [i.e., trans-zeatin (tZ)] and abscisic acid (ABA) using a new technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging. Protonated signals of tZ (m/z 220.1) and ABA (m/z 265.3) were chosen on longitudinal sections of rice roots for MS imaging. tZ was broadly distributed about 40 mm behind the root apex but was barely detectable at the apex, whereas ABA was mainly detected at the root apex. Multi-imaging using MALDI-TOF-MS enabled the visualization of the localization and quantification of plant hormones. Thus, this tool is applicable to a wide range of plant species growing under various environmental conditions.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Riho Hashizaki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology , Nagoya, Aichi 466-8555, Japan
| | - Toyofumi Nakanishi
- Clinical Pathology, Osaka Medical College , 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Tatsuko Sakai
- Graduate School of Environmental and Human Sciences, Faculty of Pharmacy, Meijo University , Tempaku, Nagoya, Aichi 468-8503, Japan
| | - Takushi Yamamoto
- Analytical and Measuring Instruments Division, Shimadzu Corporation , 1 Kuwabara, Kyoto 604-8511, Japan
| | - Koretsugu Ogata
- Analytical and Measuring Instruments Division, Shimadzu Corporation , 1 Kuwabara, Kyoto 604-8511, Japan
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Sciences, Faculty of Pharmacy, Meijo University , Tempaku, Nagoya, Aichi 468-8503, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology , Nagoya, Aichi 466-8555, Japan
| | - Hajime Katano
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Shu Taira
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| |
Collapse
|
29
|
Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. NANOMATERIALS 2017; 7:nano7040075. [PMID: 28368330 PMCID: PMC5408167 DOI: 10.3390/nano7040075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
Nanomaterials are frequently used in laser desorption ionization mass spectrometry (LDI-MS) as DI enhancers, providing excellent figures of merit for the analysis of low molecular weight organic molecules. In recent years, literature on this topic has benefited from several studies assessing the fundamental aspects of the ion desorption efficiency and the internal energy transfer, in the case of model analytes. Several different parameters have been investigated, including the intrinsic chemical and physical properties of the nanophase (chemical composition, thermal conductivity, photo-absorption efficiency, specific heat capacity, phase transition point, explosion threshold, etc.), along with morphological parameters such as the nanophase size, shape, and interparticle distance. Other aspects, such as the composition, roughness and defects of the substrate supporting the LDI-active nanophases, the nanophase binding affinity towards the target analyte, the role of water molecules, have been taken into account as well. Readers interested in nanoparticle based LDI-MS sub-techniques (SALDI-, SELDI-, NALDI- MS) will find here a concise overview of the recent findings in the specialized field of fundamental and mechanistic studies, shading light on the desorption ionization phenomena responsible of the outperforming MS data offered by these techniques.
Collapse
|
30
|
Zhou D, Guo S, Zhang M, Liu Y, Chen T, Li Z. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal Chim Acta 2017; 962:52-59. [DOI: 10.1016/j.aca.2017.01.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/09/2017] [Accepted: 01/15/2017] [Indexed: 12/18/2022]
|
31
|
Spatial Metabolite Profiling by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:291-321. [DOI: 10.1007/978-3-319-47656-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Morimoto S, Ishikawa T, Hyodo K, Yamazaki T, Taira S, Tsuneyama K, Ichiyanagi Y. Preparation and characterization of newly developed matrix using functional γ
-Fe 2
O 3
nanoparticles for mass spectrometry in small molecules. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Morimoto
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai, Hodogaya Yokohama Kanagawa 240-8501 Japan
| | - Tomoya Ishikawa
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai, Hodogaya Yokohama Kanagawa 240-8501 Japan
| | - Kuminori Hyodo
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai, Hodogaya Yokohama Kanagawa 240-8501 Japan
| | - Takahiro Yamazaki
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai, Hodogaya Yokohama Kanagawa 240-8501 Japan
| | - Shu Taira
- Department of Bioscience; Fukui Prefectual University; 4-1-1 Matsuokakennjoujima, Eiheiji Yoshida Fukui 910-1195 Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Science; Tokushima University Graduate School; 3-18-15 Kuramoto Tokushima 770-8503 Japan
| | - Yuko Ichiyanagi
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai, Hodogaya Yokohama Kanagawa 240-8501 Japan
| |
Collapse
|
33
|
Chitanda JM, Zhang H, Pahl E, Purves RW, El-Aneed A. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1686-1693. [PMID: 27488316 DOI: 10.1007/s13361-016-1454-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H](-). Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H](+) or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | | | - Erica Pahl
- University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
34
|
Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry. Anal Chem 2016; 88:8926-30. [DOI: 10.1021/acs.analchem.6b02732] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gargey B. Yagnik
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Rebecca L. Hansen
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Andrew R. Korte
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Malinda D. Reichert
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Javier Vela
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Young Jin Lee
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Mohammadi AS, Phan NTN, Fletcher JS, Ewing AG. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry. Anal Bioanal Chem 2016; 408:6857-68. [PMID: 27549796 PMCID: PMC5012256 DOI: 10.1007/s00216-016-9812-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
Abstract
We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections.
|