1
|
Xu W, Zhang H, Zhang R, Zhong X, Li X, Zhou W, Xie X, Wang K, Xu M. Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma. Eur Radiol 2025; 35:989-1000. [PMID: 39066894 DOI: 10.1007/s00330-024-10985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To establish and validate a non-invasive deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict vessels encapsulating tumor clusters (VETC) patterns in hepatocellular carcinoma (HCC). MATERIALS AND METHODS This retrospective study included consecutive HCC patients with preoperative CEUS images and available tissue specimens. Patients were randomly allocated into the training and test cohorts. CEUS images were analyzed using the ResNet-18 convolutional neural network for the development and validation of the VETC predictive model. The predictive value for postoperative early recurrence (ER) of the proposed model was further evaluated. RESULTS A total of 242 patients were enrolled finally, including 195 in the training cohort (54.6 ± 11.2 years, 178 males) and 47 in the test cohort (55.1 ± 10.6 years, 40 males). The DL model (DL signature) achieved favorable performance in both the training cohort (area under the receiver operating characteristics curve [AUC]: 0.92, 95% confidence interval [CI]: 0.88-0.96) and test cohort (AUC: 0.90, 95% CI: 0.82-0.99). The stratified analysis demonstrated good discrimination of DL signature regardless of tumor size. Moreover, the DL signature was found independently correlated with postoperative ER (hazard ratio [HR]: 1.99, 95% CI: 1.29-3.06, p = 0.002). C-indexes of 0.70 and 0.73 were achieved when the DL signature was used to predict ER independently and combined with clinical features. CONCLUSION The proposed DL signature provides a non-invasive and practical method for VETC-HCC prediction, and contributes to the identification of patients with high risk of postoperative ER. CLINICAL RELEVANCE STATEMENT This DL model based on contrast-enhanced US displayed an important role in non-invasive diagnosis and prognostication for patients with VETC-HCC, which was helpful in individualized management. KEY POINTS Preoperative biopsy to determine VETC status in HCC patients is limited. The contrast-enhanced DL model provides a non-invasive tool for the prediction of VETC-HCC. The proposed deep-learning signature assisted in identifying patients with a high risk of postoperative ER.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Haoyan Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Xian Zhong
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoju Li
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Wenwen Zhou
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Tian H, Chen Y, Zhao L, Liao C, Li S, Zhang B. Clinicopathologic and ultrasonographic features of combined hepatocellular-cholangiocarcinoma and its correlation with microvascular invasion: a predictive role of contrast-enhanced ultrasound. Front Oncol 2024; 14:1474675. [PMID: 39759152 PMCID: PMC11695213 DOI: 10.3389/fonc.2024.1474675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Background This study aims to investigate the clinicopathological and ultrasonography characteristics of combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and its correlation with microvascular invasion (MVI), as well as the predictive value of contrast-enhanced ultrasound (CEUS) imaging. Methods A retrospective analysis was conducted on 57 patients diagnosed with cHCC-CCA between November 2017 and May 2023 at Guizhou Provincial People's Hospital. Among them, 27 patients were MVI-positive and 30 patients were MVI-negative, all of whom underwent preoperative CEUS within 2 weeks. Clinical data, ultrasonographic findings, and CEUS features were compared between the two groups to analyze the influencing factors and predictive value of MVI in cHCC-CCA patients. Results Compared to the MVI-negative group, the MVI-positive group showed a higher proportion of tumors with a maximum diameter greater than 5 cm, elevated alpha-fetoprotein (AFP) levels, low echo halo around the tumor, non-smooth tumor contour, peripheral irregular rim-like enhancement and early washout (≤60s) with nodular patterns on CEUS (P<0.05). Multivariate logistic regression analysis revealed that low echo halo, peripheral irregular rim-like enhancement, and early washout were independent risk factors for MVI in cHCC-CCA patients. The receiver operating characteristic (ROC) curve analysis demonstrated an area under the curve (AUC) of 0.8056 for these factors. Conclusions Ultrasonographic and CEUS features have a certain correlation with MVI in cHCC-CCA patients. Low echo halo, peripheral irregular rim-like enhancement, and early washout are independent risk factors for MVI in patients with cHCC-CCA. These features have a predictive value in determining the presence of MVI in patients with cHCC-CCA.
Collapse
Affiliation(s)
- HaiYing Tian
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Ultrasound Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuling Chen
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - LiNa Zhao
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - ChunYan Liao
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Sha Li
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bei Zhang
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Zhang W, Guo Q, Zhu Y, Wang M, Zhang T, Cheng G, Zhang Q, Ding H. Cross-institutional evaluation of deep learning and radiomics models in predicting microvascular invasion in hepatocellular carcinoma: validity, robustness, and ultrasound modality efficacy comparison. Cancer Imaging 2024; 24:142. [PMID: 39438929 PMCID: PMC11520182 DOI: 10.1186/s40644-024-00790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE To conduct a head-to-head comparison between deep learning (DL) and radiomics models across institutions for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) and to investigate the model robustness and generalizability through rigorous internal and external validation. METHODS This retrospective study included 2304 preoperative images of 576 HCC lesions from two centers, with MVI status determined by postoperative histopathology. We developed DL and radiomics models for predicting the presence of MVI using B-mode ultrasound, contrast-enhanced ultrasound (CEUS) at the arterial, portal, and delayed phases, and a combined modality (B + CEUS). For radiomics, we constructed models with enlarged vs. original regions of interest (ROIs). A cross-validation approach was performed by training models on one center's dataset and validating the other, and vice versa. This allowed assessment of the validity of different ultrasound modalities and the cross-center robustness of the models. The optimal model combined with alpha-fetoprotein (AFP) was also validated. The head-to-head comparison was based on the area under the receiver operating characteristic curve (AUC). RESULTS Thirteen DL models and 25 radiomics models using different ultrasound modalities were constructed and compared. B + CEUS was the optimal modality for both DL and radiomics models. The DL model achieved AUCs of 0.802-0.818 internally and 0.667-0.688 externally across the two centers, whereas radiomics achieved AUCs of 0.749-0.869 internally and 0.646-0.697 externally. The radiomics models showed overall improvement with enlarged ROIs (P < 0.05 for both CEUS and B + CEUS modalities). The DL models showed good cross-institutional robustness (P > 0.05 for all modalities, 1.6-2.1% differences in AUC for the optimal modality), whereas the radiomics models had relatively limited robustness across the two centers (12% drop-off in AUC for the optimal modality). Adding AFP improved the DL models (P < 0.05 externally) and well maintained the robustness, but did not benefit the radiomics model (P > 0.05). CONCLUSION Cross-institutional validation indicated that DL demonstrated better robustness than radiomics for preoperative MVI prediction in patients with HCC, representing a promising solution to non-standardized ultrasound examination procedures.
Collapse
Affiliation(s)
- Weibin Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, The People's Republic of China
| | - Qihui Guo
- The SMART (Smart Medicine and AI-based Radiology Technology) Lab, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, The People's Republic of China
| | - Yuli Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, The People's Republic of China
| | - Meng Wang
- The SMART (Smart Medicine and AI-based Radiology Technology) Lab, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, The People's Republic of China
| | - Tong Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, The People's Republic of China
| | - Guangwen Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, The People's Republic of China
| | - Qi Zhang
- The SMART (Smart Medicine and AI-based Radiology Technology) Lab, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, The People's Republic of China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, The People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China.
| |
Collapse
|
4
|
Brooks JA, Kallenbach M, Radu IP, Berzigotti A, Dietrich CF, Kather JN, Luedde T, Seraphin TP. Artificial Intelligence for Contrast-Enhanced Ultrasound of the Liver: A Systematic Review. Digestion 2024:1-18. [PMID: 39312896 DOI: 10.1159/000541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The research field of artificial intelligence (AI) in medicine and especially in gastroenterology is rapidly progressing with the first AI tools entering routine clinical practice, for example, in colorectal cancer screening. Contrast-enhanced ultrasound (CEUS) is a highly reliable, low-risk, and low-cost diagnostic modality for the examination of the liver. However, doctors need many years of training and experience to master this technique and, despite all efforts to standardize CEUS, it is often believed to contain significant interrater variability. As has been shown for endoscopy, AI holds promise to support examiners at all training levels in their decision-making and efficiency. METHODS In this systematic review, we analyzed and compared original research studies applying AI methods to CEUS examinations of the liver published between January 2010 and February 2024. We performed a structured literature search on PubMed, Web of Science, and IEEE. Two independent reviewers screened the articles and subsequently extracted relevant methodological features, e.g., cohort size, validation process, machine learning algorithm used, and indicative performance measures from the included articles. RESULTS We included 41 studies with most applying AI methods for classification tasks related to focal liver lesions. These included distinguishing benign versus malignant or classifying the entity itself, while a few studies tried to classify tumor grading, microvascular invasion status, or response to transcatheter arterial chemoembolization directly from CEUS. Some articles tried to segment or detect focal liver lesions, while others aimed to predict survival and recurrence after ablation. The majority (25/41) of studies used hand-picked and/or annotated images as data input to their models. We observed mostly good to high reported model performances with accuracies ranging between 58.6% and 98.9%, while noticing a general lack of external validation. CONCLUSION Even though multiple proof-of-concept studies for the application of AI methods to CEUS examinations of the liver exist and report high performance, more prospective, externally validated, and multicenter research is needed to bring such algorithms from desk to bedside.
Collapse
Affiliation(s)
- James A Brooks
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Michael Kallenbach
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Iuliana-Pompilia Radu
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permanence, Bern, Switzerland
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
5
|
Liu X, Qin X, Luo Q, Qiao J, Xiao W, Zhu Q, Liu J, Zhang C. A Transvaginal Ultrasound-Based Deep Learning Model for the Noninvasive Diagnosis of Myometrial Invasion in Patients with Endometrial Cancer: Comparison with Radiologists. Acad Radiol 2024; 31:2818-2826. [PMID: 38182443 DOI: 10.1016/j.acra.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
RATIONALE AND OBJECTIVES This study aimed to determine the feasibility of using the deep learning (DL) method to determine the degree (whether myometrial invasion [MI] >50%) of MI in patients with endometrial cancer (EC) based on ultrasound (US) images. MATERIALS AND METHODS From September 2017 to April 2023, 1289 US images of 604 patients with EC who underwent surgical resection at center 1, center 2 or center 3 were obtained and divided into a training set and an internal validation set. Ninety-five patients from center 4 and center 5 were randomly selected as the external testing set according to the same criteria as those for the primary cohort. This study evaluated three DL models trained on the training set and tested them on the validation and testing sets. The models' performance was analyzed based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), and the performance of the models was subsequently compared with that of 15 radiologists. RESULTS In the final clinical diagnosis of MI in patients with EC, EfficientNet-B6 showed the best performance in the testing set in terms of area under the curve (AUC) [0.814, 95% CI (0.746-0.882]; accuracy [0.802, 95% CI (0.733-0.855]; sensitivity [0.623]; specificity [0.879]; positive likelihood ratio (PLR) [6.750]; and negative likelihood ratio (NLR) [0.389]. The diagnostic efficacy of EfficientNet-B6 was significantly better than that of the 15 radiologists, with an average diagnostic accuracy of 0.681, average AUC of 0.678, AUC of the best performance of 0.739, accuracy of 0.716, sensitivity of 0.806, specificity 0.672, PLR2.457, and NLR 0.289. CONCLUSION Based on the preoperative US images of patients with EC, the DL model can accurately determine the degree of endometrial MI; the performance of this model is significantly better than that of radiologists, and it can effectively assist in clinical treatment decisions.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Shushan District, Hefei, 230022, Anhui, China (X.L., X.Q., Q.L., Q.Z., C.Z.); Department of Ultrasound, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, Sichuan, China (X.L., X.Q.)
| | - Xiachuan Qin
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Shushan District, Hefei, 230022, Anhui, China (X.L., X.Q., Q.L., Q.Z., C.Z.); Department of Ultrasound, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, Sichuan, China (X.L., X.Q.)
| | - Qi Luo
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Shushan District, Hefei, 230022, Anhui, China (X.L., X.Q., Q.L., Q.Z., C.Z.)
| | - Jing Qiao
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (J.Q.)
| | - Weihan Xiao
- North Sichuan Medical College, Nanchong, China (W.X.)
| | - Qiwei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Shushan District, Hefei, 230022, Anhui, China (X.L., X.Q., Q.L., Q.Z., C.Z.)
| | - Jian Liu
- Department of Ultrasound, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China (J.L.)
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Shushan District, Hefei, 230022, Anhui, China (X.L., X.Q., Q.L., Q.Z., C.Z.).
| |
Collapse
|
6
|
Zhang R, Wang Y, Li Z, Shi Y, Yu D, Huang Q, Chen F, Xiao W, Hong Y, Feng Z. Dynamic radiomics based on contrast-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. BMC Med Imaging 2024; 24:80. [PMID: 38584254 PMCID: PMC11000376 DOI: 10.1186/s12880-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Wang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danping Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- College of Mathematical Medicine, Zhejiang Normal University School, Jinhua, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Collins GS, Whittle R, Bullock GS, Logullo P, Dhiman P, de Beyer JA, Riley RD, Schlussel MM. Open science practices need substantial improvement in prognostic model studies in oncology using machine learning. J Clin Epidemiol 2024; 165:111199. [PMID: 37898461 DOI: 10.1016/j.jclinepi.2023.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE To describe the frequency of open science practices in a contemporary sample of studies developing prognostic models using machine learning methods in the field of oncology. STUDY DESIGN AND SETTING We conducted a systematic review, searching the MEDLINE database between December 1, 2022, and December 31, 2022, for studies developing a multivariable prognostic model using machine learning methods (as defined by the authors) in oncology. Two authors independently screened records and extracted open science practices. RESULTS We identified 46 publications describing the development of a multivariable prognostic model. The adoption of open science principles was poor. Only one study reported availability of a study protocol, and only one study was registered. Funding statements and conflicts of interest statements were common. Thirty-five studies (76%) provided data sharing statements, with 21 (46%) indicating data were available on request to the authors and seven declaring data sharing was not applicable. Two studies (4%) shared data. Only 12 studies (26%) provided code sharing statements, including 2 (4%) that indicated the code was available on request to the authors. Only 11 studies (24%) provided sufficient information to allow their model to be used in practice. The use of reporting guidelines was rare: eight studies (18%) mentioning using a reporting guideline, with 4 (10%) using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis statement, 1 (2%) using Minimum Information About Clinical Artificial Intelligence Modeling and Consolidated Standards Of Reporting Trials-Artificial Intelligence, 1 (2%) using Strengthening The Reporting Of Observational Studies In Epidemiology, 1 (2%) using Standards for Reporting Diagnostic Accuracy Studies, and 1 (2%) using Transparent Reporting of Evaluations with Nonrandomized Designs. CONCLUSION The adoption of open science principles in oncology studies developing prognostic models using machine learning methods is poor. Guidance and an increased awareness of benefits and best practices of open science are needed for prediction research in oncology.
Collapse
Affiliation(s)
- Gary S Collins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom.
| | - Rebecca Whittle
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Garrett S Bullock
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA; Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, University of Oxford, Oxford, United Kingdom
| | - Patricia Logullo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Paula Dhiman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer A de Beyer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard D Riley
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael M Schlussel
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Qin X, Xia L, Ma Q, Cheng D, Zhang C. Development of a novel combined nomogram model integrating deep learning radiomics to diagnose IgA nephropathy clinically. Ren Fail 2023; 45:2271104. [PMID: 37860932 PMCID: PMC10591537 DOI: 10.1080/0886022x.2023.2271104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to develop and validate a combined nomogram model based on superb microvascular imaging (SMI)-based deep learning (DL), radiomics characteristics, and clinical factors for noninvasive differentiation between immunoglobulin A nephropathy (IgAN) and non-IgAN.We prospectively enrolled patients with chronic kidney disease who underwent renal biopsy from May 2022 to December 2022 and performed an ultrasound and SMI the day before renal biopsy. The selected patients were randomly divided into training and testing cohorts in a 7:3 ratio. We extracted DL and radiometric features from the two-dimensional ultrasound and SMI images. A combined nomograph model was developed by combining the predictive probability of DL with clinical factors using multivariate logistic regression analysis. The proposed model's utility was evaluated using receiver operating characteristics, calibration, and decision curve analysis. In this study, 120 patients with primary glomerular disease were included, including 84 in the training and 36 in the test cohorts. In the testing cohort, the ROC of the radiomics model was 0.816 (95% CI:0.663-0.968), and the ROC of the DL model was 0.844 (95% CI:0.717-0.971). The nomogram model combined with independent clinical risk factors (IgA and hematuria) showed strong discrimination, with an ROC of 0.884 (95% CI:0.773-0.996) in the testing cohort. Decision curve analysis verified the clinical practicability of the combined nomogram. The combined nomogram model based on SMI can accurately and noninvasively distinguish IgAN from non-IgAN and help physicians make clearer patient treatment plans.
Collapse
Affiliation(s)
- Xiachuan Qin
- Department of Ultrasound, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nan Chong, Sichuan Province, China
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Linlin Xia
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qianqing Ma
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Dongliang Cheng
- Hebin Intelligent Robots Co., LTD, Hefei, Anhui Province, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
9
|
Jiang D, Qian Y, Tan BB, Zhu XL, Dong H, Qian R. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using ultrasound features including elasticity. World J Gastrointest Surg 2023; 15:2042-2051. [PMID: 37901729 PMCID: PMC10600765 DOI: 10.4240/wjgs.v15.i9.2042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is an important predictor of poor prognosis in patients with hepatocellular carcinoma (HCC). Accurate preoperative prediction of MVI in HCC would provide useful information to guide the choice of therapeutic strategy. Shear wave elastography (SWE) plays an important role in hepatic imaging, but its value in the preoperative prediction of MVI in HCC has not yet been proven. AIM To explore the value of conventional ultrasound features and SWE in the preoperative prediction of MVI in HCC. METHODS Patients with a postoperative pathological diagnosis of HCC and a definite diagnosis of MVI were enrolled in this study. Conventional ultrasound features and SWE features such as maximal elasticity (Emax) of HCCs and Emax of the periphery of HCCs were acquired before surgery. These features were compared between MVI-positive HCCs and MVI-negative HCCs and between mild MVI HCCs and severe MVI HCCs. RESULTS This study included 86 MVI-negative HCCs and 102 MVI-positive HCCs, including 54 with mild MVI and 48 with severe MVI. Maximal tumor diameters, surrounding liver tissue, color Doppler flow, Emax of HCCs, and Emax of the periphery of HCCs were significantly different between MVI-positive HCCs and MVI-negative HCCs. In addition, Emax of the periphery of HCCs was significantly different between mild MVI HCCs and severe MVI HCCs. Higher Emax of the periphery of HCCs and larger maximal diameters were independent risk factors for MVI, with odds ratios of 2.820 and 1.021, respectively. CONCLUSION HCC size and stiffness of the periphery of HCC are useful ultrasound criteria for predicting positive MVI. Preoperative ultrasound and SWE can provide useful information for the prediction of MVI in HCCs.
Collapse
Affiliation(s)
- Dong Jiang
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Yi Qian
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Bi-Bo Tan
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Xia-Ling Zhu
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Rong Qian
- Department of Ultrasound, No. 905 Hospital of PLA Navy, Shanghai 200052, China
| |
Collapse
|
10
|
Bo J, Xiang F, XiaoWei F, LianHua Z, ShiChun L, YuKun L. A Nomogram Based on Contrast-Enhanced Ultrasound to Predict the Microvascular Invasion in Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1561-1568. [PMID: 37003955 DOI: 10.1016/j.ultrasmedbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The aim of this study was to establish and validate a contrast-enhanced ultrasound (CEUS) nomogram for pre-operative microvascular invasion (MVI) prediction in hepatocellular carcinoma (HCC), and compare it with the nomogram based on gadopentetate dimeglumine-enhanced magnetic resonance imaging (Gd-MRI). METHODS A total of 251 patients with a single HCC were enrolled in this prospective study, including 176 patients in the training cohort and 75 patients in the validation cohort. Contrast-enhanced ultrasound (CEUS) with Sonazoid and Gd-MRI was performed pre-operatively. Post-operative histopathology was the gold standard for MVI. Univariate and multivariate logistic regression was performed to determine independent risk factors for MVI. Nomograms based on CEUS and Gd-MRI were established, and their discrimination, calibration and decision curve analysis were evaluated and compared. RESULTS Multivariate logistic regression revealed that arterial circular enhancement, non-enhancing area and thick ring-like enhancement in the post-vascular phase were independent risk factors for MVI. The areas under the receiver operating characteristic curve of the nomogram were 0.841 (0.779-0.892) and 0.914 (0.827-0.966) in the training and validation cohorts, with no significant difference compared with the Gd-MRI nomogram (p = 0.294, 0.321). The C-indexes were 0.821 and 0.870 in the training and validation cohorts. Decision curve analysis revealed that the CEUS nomogram had better clinical applicability than the Gd-MRI nomogram when the threshold probability was between 0.35 and 0.95. CONCLUSION The CEUS-based nomogram was available for predicting MVI in HCC, and its predictive performance was not inferior to that of Gd-MRI.
Collapse
Affiliation(s)
- Jiang Bo
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fei Xiang
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fan XiaoWei
- Department of Pathology, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhu LianHua
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lu ShiChun
- Department of Hepatobiliary Surgery, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Luo YuKun
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|