1
|
Baek BS, Park H, Choi JW, Lee EY, Seong SY. HIFU-CCL19/21 Axis Enhances Dendritic Cell Vaccine Efficacy in the Tumor Microenvironment. Pharmaceutics 2025; 17:65. [PMID: 39861713 PMCID: PMC11769570 DOI: 10.3390/pharmaceutics17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth. METHODS M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment. DC vaccines loaded with OLFM4 were then administered to boost the immune response within this primed environment. RESULTS The combination of M-HIFU and DC vaccine significantly inhibited tumor growth and metastasis, with enhanced T-cell activation and increased recruitment of immune cells due to elevated chemokines CCL19 and CCL21. This synergy promoted immune memory, reducing the likelihood of recurrence. CONCLUSIONS M-HIFU effectively promotes the migration of DC vaccines through CCL19/21, presenting a promising approach for cancer treatment. Further studies are recommended to optimize this combination for clinical applications, with potential to improve patient outcomes in challenging cancer types.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Shaperon Inc., Ltd., Seoul 06373, Republic of Korea
| |
Collapse
|
2
|
Chen B, Sun X, Huang H, Feng C, Chen W, Wu D. An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes. J Affect Disord 2024; 359:22-32. [PMID: 38754597 DOI: 10.1016/j.jad.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and interstitial cystitis (IC) are two highly debilitating conditions that often coexist with reciprocal effect, significantly exacerbating patients' suffering. However, the molecular underpinnings linking these disorders remain poorly understood. METHODS Transcriptomic data from GEO datasets including those of MDD and IC patients was systematically analyzed to develop and validate our model. Following removal of batch effect, differentially expressed genes (DEGs) between respective disease and control groups were identified. Shared DEGs of the conditions then underwent functional enrichment analyses. Additionally, immune infiltration analysis was quantified through ssGSEA. A diagnostic model for MDD was constructed by exploring 113 combinations of 12 machine learning algorithms with 10-fold cross-validation on the training sets following by external validation on test sets. Finally, the "Enrichr" platform was utilized to identify potential drugs for MDD. RESULTS Totally, 21 key genes closely associated with both MDD and IC were identified, predominantly involved in immune processes based on enrichment analyses. Immune infiltration analysis revealed distinct profiles of immune cell infiltration in MDD and IC compared to healthy controls. From these genes, a robust 11-gene (ABCD2, ATP8B4, TNNT1, AKR1C3, SLC26A8, S100A12, PTX3, FAM3B, ITGA2B, OLFM4, BCL7A) diagnostic signature was constructed, which exhibited superior performance over existing MDD diagnostic models both in training and testing cohorts. Additionally, epigallocatechin gallate and 10 other drugs emerged as potential targets for MDD. CONCLUSION Our work developed a diagnostic model for MDD employing a combination of bioinformatic techniques and machine learning methods, focusing on shared genes between MDD and IC.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Xinyue Sun
- Department of neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Cong Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Baek BS, Park H, Choi JW, Lee EY, Youn JI, Seong SY. Dendritic cells pulsed with penetratin-OLFM4 inhibit the growth and metastasis of melanoma in mice. Biomed Pharmacother 2024; 177:117083. [PMID: 38968793 DOI: 10.1016/j.biopha.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2 % and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97 %, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7 % compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Je-In Youn
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Shaperon Inc. Ltd, Seoul, South Korea.
| |
Collapse
|
4
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Sempach L, Doll JPK, Limbach V, Marzetta F, Schaub AC, Schneider E, Kettelhack C, Mählmann L, Schweinfurth-Keck N, Ibberson M, Lang UE, Schmidt A. Examining immune-inflammatory mechanisms of probiotic supplementation in depression: secondary findings from a randomized clinical trial. Transl Psychiatry 2024; 14:305. [PMID: 39048549 PMCID: PMC11269721 DOI: 10.1038/s41398-024-03030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
We recently indicated that four-week probiotic supplementation significantly reduced depression along with microbial and neural changes in people with depression. Here we further elucidated the biological modes of action underlying the beneficial clinical effects of probiotics by focusing on immune-inflammatory processes. The analysis included a total of N = 43 participants with depression, from which N = 19 received the probiotic supplement and N = 24 received a placebo over four weeks, in addition to treatment as usual. Blood and saliva were collected at baseline, at post-intervention (week 4) and follow-up (week 8) to assess immune-inflammatory markers (IL-1β, IL-6, CRP, MIF), gut-related hormones (ghrelin, leptin), and a stress marker (cortisol). Furthermore, transcriptomic analyses were conducted to identify differentially expressed genes. Finally, we analyzed the associations between probiotic-induced clinical and immune-inflammatory changes. We observed a significant group x time interaction for the gut hormone ghrelin, indicative of an increase in the probiotics group. Additionally, the increase in ghrelin was correlated with the decrease in depressive symptoms in the probiotics group. Transcriptomic analyses identified 51 up- and 57 down-regulated genes, which were involved in functional pathways related to enhanced immune activity. We identified a probiotic-dependent upregulation of the genes ELANE, DEFA4 and OLFM4 associated to immune activation and ghrelin concentration. These results underscore the potential of probiotic supplementation to produce biological meaningful changes in immune activation in patients with depression. Further large-scale mechanistic trials are warranted to validate and extend our understanding of immune-inflammatory measures as potential biomarkers for stratification and treatment response in depression. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Collapse
Affiliation(s)
- Lukas Sempach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland.
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland.
| | - Jessica P K Doll
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Verena Limbach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Chiara Schaub
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Translational Psychiatry, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Else Schneider
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Experimental Cognitive and Clinical Affective Neuroscience (ECAN) Laboratory, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Cedric Kettelhack
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Laura Mählmann
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Undine E Lang
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Wei H, Li W, Zeng L, Ding N, Li K, Yu H, Jiang F, Yin H, Xia Y, Deng C, Cai N, Chen X, Gu L, Chen H, Zhang F, He Y, Li J, Zhang C. OLFM4 promotes the progression of intestinal metaplasia through activation of the MYH9/GSK3β/β-catenin pathway. Mol Cancer 2024; 23:124. [PMID: 38849840 PMCID: PMC11157765 DOI: 10.1186/s12943-024-02016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3β and resulted in increased β-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.
Collapse
Affiliation(s)
- Hongfa Wei
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenchao Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leli Zeng
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Ni Ding
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kuan Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Yu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fei Jiang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haofan Yin
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Laboratory Medicine, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yu Xia
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Cuncan Deng
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Nan Cai
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiancong Chen
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liang Gu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Huanjie Chen
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
| | - Feiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China.
| | - Yulong He
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Jia Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China.
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Xu K, Zheng P, Zhao S, Wang J, Feng J, Ren Y, Zhong Q, Zhang H, Chen X, Chen J, Xie P. LRFN5 and OLFM4 as novel potential biomarkers for major depressive disorder: a pilot study. Transl Psychiatry 2023; 13:188. [PMID: 37280213 DOI: 10.1038/s41398-023-02490-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Evidences have shown that both LRFN5 and OLFM4 can regulate neural development and synaptic function. Recent genome-wide association studies on major depressive disorder (MDD) have implicated LRFN5 and OLFM4, but their expressions and roles in MDD are still completely unclear. Here, we examined serum concentrations of LRFN5 and OLFM4 in 99 drug-naive MDD patients, 90 drug-treatment MDD patients, and 81 healthy controls (HCs) using ELISA methods. The results showed that both LRFN5 and OLFM4 levels were considerably higher in MDD patients compared to HCs, and were significantly lower in drug-treatment MDD patients than in drug-naive MDD patients. However, there were no significant differences between MDD patients who received a single antidepressant and a combination of antidepressants. Pearson correlation analysis showed that they were associated with the clinical data, including Hamilton Depression Scale score, age, duration of illness, fasting blood glucose, serum lipids, and hepatic, renal, or thyroid function. Moreover, these two molecules both yielded fairly excellent diagnostic performance in diagnosing MDD. In addition, a combination of LRFN5 and OLFM4 demonstrated a better diagnostic effectiveness, with an area under curve of 0.974 in the training set and 0.975 in the testing set. Taken together, our data suggest that LRFN5 and OLFM4 may be implicated in the pathophysiology of MDD and the combination of LRFN5 and OLFM4 may offer a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Pang L, Yan X, Su D, Wu X, Jiang H. Feasibility of olfactomedin 4 as a molecular biomarker for early diagnosis of gastric neoplasia after intestinal metaplasia. Scand J Gastroenterol 2023; 58:133-141. [PMID: 36124708 DOI: 10.1080/00365521.2022.2116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This study discusses whether olfactomedin 4 (OLFM4) could be used as a sensitive and specific biomarker in the early diagnosis of gastric cancer (GC) after gastric intestinal metaplasia (GIM). METHODS An integrative analysis combining data derived from the Gene Expression Omnibus (GEO) and cBioPortal databases was performed to investigate the potential molecular biomarker. Immunohistochemistry and quantitative real-time polymerase chain reactions were used to measure the expression of messenger ribonucleic acid (mRNA) and protein by OLFM4. In combination with the gastroscopic findings and the OLFM4 expression in GIM-GC, a predictive model was established. The receiver operator characteristic curve (ROC) was applied to assess the diagnostic value of the model for GIM-GC. RESULTS According to the GEO and cBioPortal databases, OLFM4 was identified as a key gene in the diagnosis of GIM-GC. Higher protein expression of OLFM4 was found in GIM and GIM-GC compared with chronic superficial gastritis (GS) (p < 0.05). The positive expression rate of OLFM4 in paracancerous tissue (GCP) was higher than in GIM (p > 0.05). There was no significant difference between GIM-GC and GCP (p > 0.05). The mRNA expression of OLFM4 was similar to the protein expression, and the positive expression rate was higher in early GIM-GC than in GIM (p < 0.05). CONCLUSION Olfactomedin 4 could be used as a biomarker for the early diagnosis of GIM-GC, and the logistic predictive model could be an effective tool for increasing the early diagnostic rate.
Collapse
Affiliation(s)
- Lixing Pang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Yan
- Department of Endocrinology, Nanning Second People's Hospital, Nanning, China
| | - Dongxing Su
- Department of Gastroenterology, Nanning Second People's Hospital, Nanning, China
| | - Xianbin Wu
- Department of Gastroenterology, Nanning Second People's Hospital, Nanning, China
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Yamamoto R, Suzuki S, Homma K, Yamaguchi S, Sujino T, Sasaki J. Hydrogen gas and preservation of intestinal stem cells in mesenteric ischemia and reperfusion. World J Gastrointest Surg 2022; 14:1329-1339. [PMID: 36632117 PMCID: PMC9827576 DOI: 10.4240/wjgs.v14.i12.1329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Patients with mesenteric ischemia frequently suffer from bowel necrosis even after revascularization. Hydrogen gas has showed promising effects for ischemia-reperfusion injury by reducing reactive oxygen species in various animal and clinical studies. We examined intestinal tissue injury by ischemia and reperfusion under continuous initiation of 3% hydrogen gas.
AIM To clarify the treatment effects and target cells of hydrogen gas for mesenteric ischemia.
METHODS Three rat groups underwent 60-min mesenteric artery occlusion (ischemia), 60-min reperfusion following 60-min occlusion (reperfusion), or ischemia-reperfusion with the same duration under continuous 3% hydrogen gas inhalation (hydrogen). The distal ileum was harvested. Immunofluorescence staining with caspase-3 and leucine-rich repeat-containing G-protein-coupled 5 (LGR5), a specific marker of intestinal stem cell, was conducted to evaluate the injury location and cell types protected by hydrogen. mRNA expressions of LGR5, olfactomedin 4 (OLFM4), hairy and enhancer of split 1, Jagged 2, and Neurogenic locus notch homolog protein 1 were measured by quantitative polymerase chain reaction. Tissue oxidative stress was analyzed with immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG). Systemic oxidative stress was evaluated by plasma 8-OHdG.
RESULTS Ischemia damaged the epithelial layer at the tip of the villi, whereas reperfusion induced extensive apoptosis of the cells at the crypt base, which were identified as intestinal stem cells with double immunofluorescence stain. Hydrogen mitigated such apoptosis at the crypt base, and the LGR5 expression of the tissues was higher in the hydrogen group than in the reperfusion group. OLFM4 was also relatively higher in the hydrogen group, whereas other measured RNAs were comparable between the groups. 8-OHdG concentration was high in the reperfusion group, which was reduced by hydrogen, particularly at the crypt base. Serum 8-OHdG concentrations were relatively higher in both reperfusion and hydrogen groups without significance.
CONCLUSION This study demonstrated that hydrogen gas inhalation preserves intestinal stem cells and mitigates oxidative stress caused by mesenteric ischemia and reperfusion.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Sayuri Suzuki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
10
|
Zheng H, Sun J, Pang T, Liu J, Lu L, Chang S. Identify novel, shared and disorder-specific genetic architecture of major depressive disorder, insomnia and chronic pain. J Psychiatr Res 2022; 155:511-517. [PMID: 36191519 DOI: 10.1016/j.jpsychires.2022.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD), insomnia (INS) and chronic pain (CP) often have high comorbidity and show high genetic correlation. Here we aimed to better characterize their novel, shared and disorder-specific genetic architecture. Based on genome-wide association study (GWAS) summary data, we applied the conditional false discovery rate (condFDR) and conjunctional FDR (conjFDR) approach to investigate the novel and overlapped genetic loci for MDD, INS and CP. In addition, putative disorder-specific SNP associations were analyzed by conditioning the other two traits. The functions of the identified genomic loci were explored by performing gene set enrichment analysis (GSEA) for the loci mapped genes. We identified 22, 43 and 91 novel risk loci for MDD, INS and CP. GSEA for the loci mapped genes highlighted olfactory signaling pathway for MDD novel loci, breast cancer related gene set for both INS and CP novel loci, and nervous system related development, structure and activity for CP. Furthermore, we identified three loci jointly associated with the three disorders, including 13q14.3 locus with nearby gene OLFM4, 14q21.1 locus with nearby gene LRFN5 and 5q21.2 locus located in intergenic region. In addition, we identified one specific loci for MDD, 7 for INS and 11 for CP respectively by conditioning the other two traits, which were mapped to 68 genes for MDD, 85 for INS and 100 for CP. The MDD specific genes are enriched in immune system related pathways. This study increases understanding of the genetic architectures underlying MDD, INS and CP. The shared underlying genetic risk may help to explain the high comorbidity rates of the disorders.
Collapse
Affiliation(s)
- Haohao Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jie Sun
- Center for Pain Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jiajia Liu
- School of Nursing, Peking University, Beijing, 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China; National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Qinbaohong Zhike Oral Liquid Attenuates LPS-Induced Acute Lung Injury in Immature Rats by Inhibiting OLFM4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7272371. [PMID: 36035204 PMCID: PMC9400428 DOI: 10.1155/2022/7272371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Acute respiratory infections (ARIs) are a common public safety threat with high morbidity and mortality in pediatric patients worldwide. Qinbaohong Zhike oral liquid (QBH), a marketed traditional Chinese medicine product, has been widely used to cure respiratory diseases. QBH is reported to have antitussive, expectorant, and antiasthmatic properties. However, its treatment effect against ARIs is not elucidated. This study aimed to explore the therapeutic efficacy of QBH in the treatment of ARIs-induced pneumonia. Network pharmacology was used to predict the possible targets of QBH against ARIs. Next, the tracheal lipopolysaccharide (LPS-)-induced acute lung injury (ALI) immature rat model was constructed to evaluate the therapeutic effect of QBH. Tandem mass tag (TMT-)-based quantitative proteomics was then used to screen the in-depth disease targets of QBH. QBH exerted a protective effect against LPS-induced ALI by inhibiting pulmonary pathological damage. QBH also reduced the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and granulocyte macrophage colony-stimulating factor (GM-CSF) in the serum and IL-1β, IL-6, IL-8, TNF-α, IFN-γ, and GM-CSF in the lung tissue. Based on proteomic data, olfactomedin 4 (OLFM4) related to immunity and inflammation was selected as a potential target. Western blot analysis further confirmed the moderating effect of QBH downregulation on OLFM4 in the lung tissue. Our findings demonstrated that QBH alleviated lung tissue damage and inflammatory reaction via inhibiting OLFM4 expression in LPS-challenged immature rats. Our research indicates that QBH may have therapeutic potential for treating ARIs-related ALI in pediatric patients, which also serves as a candidate target for drug therapy of ALI by intervening OLFM-related signaling pathways.
Collapse
|
12
|
New Insights of OLFM2 and OLFM4 in Gut-Liver Axis and Their Potential Involvement in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137442. [PMID: 35806447 PMCID: PMC9267292 DOI: 10.3390/ijms23137442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Olfactomedins (OLFMs) are a family of glycoproteins that play a relevant role in embryonic development and in some pathological processes. Although OLFM2 is involved in the regulation of the energy metabolism and OLFM4 is an important player in inflammation, innate immunity and cancer, the role of OLFMs in NAFLD-related intestinal dysbiosis remains unknown. In this study, we analysed the hepatic mRNA expression of OLFM2 and the jejunal expression of OLFM4 in a well-established cohort of women with morbid obesity (MO), classified according to their hepatic histology into normal liver (n = 27), simple steatosis (n = 26) and nonalcoholic steatohepatitis (NASH, n = 16). Our results showed that OLFM2 hepatic mRNA was higher in NASH, in advanced degrees of steatosis and in the presence of lobular inflammation. Additionally, we obtained positive correlations between hepatic OLFM2 and glucose, cholesterol, trimethylamine N-oxide and deoxycholic acid levels and hepatic fatty acid synthase, and negative associations with weight and jejunal Toll-like receptors (TLR4) and TLR5 expression. Regarding jejunal OLFM4, we observed positive correlations with circulating interleukin (IL)-8, IL-10, IL-17 and jejunal TLR9. In conclusion, OLFM2 in the liver seems to play a relevant role in NAFLD progression, while OLFM4 in the jejunum could be involved in gut dysbiosis-related inflammatory events.
Collapse
|
13
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
14
|
Ma S, Duan L, Dong H, Ma X, Guo X, Liu J, Li G, Yu Y, Xu Y, Yuan G, Zhao X, Tian G, Zhai S, Pan Y, Zhang Y. OLFML2A Downregulation Inhibits Glioma Proliferation Through Suppression of Wnt/β-Catenin Signaling. Front Oncol 2021; 11:717917. [PMID: 34650914 PMCID: PMC8506028 DOI: 10.3389/fonc.2021.717917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Glioma is a highly heterogeneous and lethal tumor with an extremely poor prognosis. Through analysis of TCGA data, we identified that OLFML2A is a key promotor of gliomagenesis. However, the molecular function of OLFML2A and its underlying mechanism of action in glioma remain unclear. In this study, we found that OLFML2A expression was significantly upregulated in glioma specimens and positively correlated with pathological grades in glioma patients. Moreover, Kaplan–Meier survival analysis of TCGA data revealed that glioma patients with higher OLFML2A expression had shorter overall survival. Importantly, OLFML2A knockdown in glioma cells inhibited cell proliferation and promoted apoptosis. Mechanistically, OLFML2A downregulation inhibits Wnt/β-catenin signaling by upregulating amyloid precursor protein (APP) expression and reducing stabilized β-catenin levels, leading to the repression of MYC, CD44, and CSKN2A2 expression. Furthermore, OLFML2A downregulation suppressed the growth of transplanted glioma subcutaneously and intracranially by inhibiting Wnt/β-catenin pathway-dependent cell proliferation. By uncovering the oncogenic effects in human and rodent gliomas, our data support OLFML2A as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Shize Ma
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Huateng Dong
- Department of Pediatric Neurology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaodong Ma
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Xinyu Guo
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Jianli Liu
- Second Clinical School, Lanzhou University, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yue Yu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yanlong Xu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Xingkun Zhao
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Guopeng Tian
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Shijia Zhai
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Yan L, Chen H, Tang L, Jiang P, Yan F. Super-enhancer-associated long noncoding RNA AC005592.2 promotes tumor progression by regulating OLFM4 in colorectal cancer. BMC Cancer 2021; 21:187. [PMID: 33622275 PMCID: PMC7903608 DOI: 10.1186/s12885-021-07900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Background Super-enhancer-associated long noncoding RNAs (SE-lncRNAs) have been reported to play essential roles in tumorigenesis, but the fundamental mechanism of SE-lncRNAs in colorectal cancer (CRC) remains largely unknown. Methods A microarray was performed to identify the differentially expressed SE-lncRNAs between CRC tissues and peritumoral tissues. A novel SE-lncRNA, AC005592.2, was selected from these differentially expressed SE-lncRNAs to explore its effects on CRC development. Fluorescence quantitative real-time PCR (qRT-PCR) was used to assay the expression of AC005592.2 in CRC tissues and cell lines. Functional assays were applied to identify the biological effects of AC005592.2 in CRC cells. Furthermore, RNA-seq was employed to predict potential targets of AC005592.2. Results AC005592.2 was significantly increased in CRC tissues and cells. High expression of AC005592.2 was significantly associated with TNM stage and tumor differentiation in CRC patients. Knockdown of AC005592.2 suppressed CRC cell proliferation, invasion and migration but promoted apoptosis, while AC005592.2 overexpression exerted the opposite effects on CRC cells. In addition, AC005592.2 positively regulated the expression of olfactomedin 4 (OLFM4), which was also upregulated in CRC tissues. Conclusion The findings suggested that AC005592.2 is a crucial promoter of CRC progression and may serve as an attractive therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07900-x.
Collapse
Affiliation(s)
- Linping Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Huanhuan Chen
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Li Tang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Pan Jiang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China.
| |
Collapse
|
16
|
Prognostic Significance and Functional Relevance of Olfactomedin 4 in Early-Stage Hepatocellular Carcinoma. Clin Transl Gastroenterol 2020; 11:e00124. [PMID: 31990698 PMCID: PMC7056049 DOI: 10.14309/ctg.0000000000000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a leading cancer-related cause of death. Unfortunately, recurrence is common even after curative treatment of early-stage patients, and no adjuvant treatment has yet been established. Aberrant expression of OLFM4 in human cancers has been reported; yet, its specific function during tumor development remains poorly understood, and its role in HCC is unknown. The purpose of this study is to examine the prognostic significance of OLFM4 and its functional relevance in determining recurrence in patients with early-stage HCC. METHODS Immunohistochemical staining to assess expression, cellular distribution, and prognostic significance of OLFM4 was performed in a tissue microarray comprising 157 HCC tissues and matched nontumor tissues. In addition, expression of OLFM4-coding mRNA was assessed in a separate patients' cohort. The findings were validated by in vitro functional studies using siRNA directed against OLFM4 to assess its effect on cell motility and proliferation. RESULTS The fraction of HCC samples exhibiting positive OLFM4 staining was higher in comparison with that observed in hepatocytes from matched nontumor tissue (61% vs 39%). However, cytoplasmic-only staining for OLFM4 was associated with vascular invasion (P = 0.048), MMP-7 expression (P = 0.002), and poorer survival (P = 0.008). A multivariate analysis confirmed the independent significance of OLFM4 in determining patients' outcome (5-year survival [58.3% vs 17.3%; HR: 2.135 {95% confidence interval: 1.135-4.015}; P = 0.019]). Correspondingly, inhibition of OLFM4 by siRNA modulated the expression of MMP-7 and E-cadherin, causing inhibition of cell proliferation, motility, and migration. DISCUSSION To the best of our knowledge, we provide the first report on the prognostic significance of OLFM4 in HCC and identify its mechanistic role as crucial mediator of MMP family protein and E-Cadherin in determining cell invasion and metastasis formation.
Collapse
|
17
|
Stark JE, Opoka AM, Mallela J, Devarajan P, Ma Q, Levinsky NC, Stringer KF, Wong HR, Alder MN. Juvenile OLFM4-null mice are protected from sepsis. Am J Physiol Renal Physiol 2020; 318:F809-F816. [PMID: 32068457 PMCID: PMC7099509 DOI: 10.1152/ajprenal.00443.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pediatric sepsis is a leading cause of morbidity and mortality in children. One of the most common and devastating morbidities is sepsis-related acute kidney injury (AKI). AKI was traditionally thought to be related to low perfusion and acute tubular necrosis. However, little acute tubular necrosis can be found following septic AKI, and little is known about the mechanism of septic AKI. Olfactomedin-4 (OLFM4) is a secreted glycoprotein that marks a subset of neutrophils. Increased expression of OLFM4 in the blood is associated with worse outcomes in sepsis. Here, we investigated a pediatric model of murine sepsis using murine pups to investigate the mechanisms of OLFM4 in sepsis. When sepsis was induced in murine pups, survival was significantly increased in OLFM4-null pups. Immunohistochemistry at 24 h after the induction of sepsis demonstrated increased expression of OLFM4 in the kidney, which was localized to the loop of Henle. Renal cell apoptosis and plasma creatinine were significantly increased in wild-type versus OLFM4-null pups. Finally, bone marrow transplant suggested that increased OLFM4 in the kidney reflects local production rather than filtered from the plasma. These results demonstrate renal expression of OLFM4 for the first time and suggest that a kidney-specific mechanism may contribute to survival differences in OLFM4-null animals.
Collapse
Affiliation(s)
- Julie E Stark
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Opoka
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaya Mallela
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nick C Levinsky
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Keith F Stringer
- Division of Pathology and Laboratory Medicine, University of Cincinnati Department of Pediatrics, Cincinnati, Ohio
| | - Hector R Wong
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
18
|
Ohkuma R, Yada E, Ishikawa S, Komura D, Ishizaki H, Tamada K, Kubota Y, Hamada K, Ishida H, Hirasawa Y, Ariizumi H, Satoh E, Shida M, Watanabe M, Onoue R, Ando K, Tsurutani J, Yoshimura K, Yokobori T, Sasada T, Aoki T, Murakami M, Norose T, Ohike N, Takimoto M, Izumizaki M, Kobayashi S, Tsunoda T, Wada S. High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer. PLoS One 2020; 15:e0226707. [PMID: 31923206 PMCID: PMC6953839 DOI: 10.1371/journal.pone.0226707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has an extremely poor prognosis, and identification of novel predictors of therapeutic efficacy and prognosis is urgently needed. Chemoresistance-related molecules are correlated with poor prognosis and may be effective targets for cancer treatment. Here, we aimed to identify novel molecules correlated with chemoresistance and poor prognosis in pancreatic cancer. We established 10 patient-derived xenograft (PDX) lines from patients with pancreatic cancer and performed next-generation sequencing (NGS) of tumor tissues from PDXs after treatment with standard drugs. We established a gene-transferred tumor cell line to express chemoresistance-related molecules and analyzed the chemoresistance of the established cell line against standard drugs. Finally, we performed immunohistochemical (IHC) analysis of chemoresistance-related molecules using 80 pancreatic cancer tissues. From NGS analysis, we identified olfactomedin-4 (OLFM4) as having high expression in the PDX group treated with anticancer drugs. In IHC analysis, OLFM4 expression was also high in PDXs administered anticancer drugs compared with that in untreated PDXs. Chemoresistance was observed by in vitro analysis of tumor cell lines with forced expression of OLFM4. In an assessment of tissue specimens from 80 patients with pancreatic cancer, Kaplan-Meier analysis showed that patients in the low OLFM4 expression group had a better survival rate than patients in the high OLFM4 expression group. Additionally, multivariate analysis showed that high expression of OLFM4 was an independent prognostic factor predicting poor outcomes. Overall, our study revealed that high expression of OLFM4 was involved in chemoresistance and was an independent prognostic factor in pancreatic cancer. OLFM4 may be a candidate therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Erica Yada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Shumpei Ishikawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuyuki Hamada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Hiroo Ishida
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Etsuko Satoh
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Shida
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Rie Onoue
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Kiyohiro Ando
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Junji Tsurutani
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takehiko Yokobori
- Department of Innovative Immune-Oncology Therapeutics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Takeshi Aoki
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Murakami
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Tomoko Norose
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Nobuyuki Ohike
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Gao XZ, Wang GN, Zhao WG, Han J, Diao CY, Wang XH, Li SL, Li WC. Blocking OLFM4/HIF-1α axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol 2019; 234:15035-15043. [PMID: 30680718 DOI: 10.1002/jcp.28144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023]
Abstract
Hypoxia is a common biological hallmark of solid cancers, which has been proposed to be associated with oncogenesis and chemotherapy resistance. The purpose of the present study was to investigate the role and underlying mechanisms of olfactomedin 4 (OLFM4) in the hypoxia-induced invasion, epithelial-mesenchymal transition (EMT), and chemotherapy resistance of non-small-cell lung cancer (NSCLC). We observed dramatically upregulated expression of OLFM4 in several NSCLC cell lines, and this effect was more pronounced in A549 and H1299 cells. In addition, our data revealed that OLFM4 expression was remarkably increased in both A549 and H1299 cells under hypoxic microenvironment, accompanied by enhanced levels of hypoxia-inducible factor (HIF)-1α protein. The HIF-1α level was elevated in response to hypoxia, resulting in the regulation of OLFM4. Interestingly, OLFM4 was a positive regulator of hypoxia-driven HIF-1α production. Moreover, depletion of OLFM4 modulated multiple EMT-associated proteins, as evidenced by the enhanced E-cadherin levels along with the diminished expression of N-cadherin and vimentin in response to hypoxia, and thus blocked invasion ability of A549 and H1299 cells following exposure to hypoxia. Furthermore, ablation of OLFM4 accelerated the sensitivity of A549 cells to cisplatin under hypoxic conditions, implying that OLFM4 serves as a key regulator in chemotherapeutic resistance under hypoxia. In conclusion, OLFM4/HIF-1α axis might be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xian-Zheng Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guan-Nan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wu-Gan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jing Han
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chang-Ying Diao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiao-Hui Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Sheng-Lei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
20
|
Suzuki T, Yamazaki H, Honda K, Ryo E, Kaneko A, Ota Y, Mori T. Altered DNA methylation is associated with aberrant stemness gene expression in early‑stage HNSCC. Int J Oncol 2019; 55:915-924. [PMID: 31432153 DOI: 10.3892/ijo.2019.4857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by morphological and functional cellular heterogeneity, which are properties of progenitor cells, as opposed to cell alterations caused by accidental expression of stem cell‑related molecules. The expression levels of stemness molecules and their distribution in HNSCC are unclear. As regards sporadic cellular heterogeneity, methylation is an important factor for transcriptional regulation in tumors. Integrative screening analysis of mRNA expression and altered methylation status was performed with original microarrays in 12 tumor and non‑tumor pairs of oral squamous cell carcinoma (SCC) cases. From this data set, genes regulated via aberrant DNA methylation and classified proteins were validated by function clustering. Olfactomedin 4 (OLFM4), known as an intestinal stemness molecule and cell‑cell adhesion factor, was found to be highly expressed in tumors, with an mRNA expression ratio [tumor/normal (T/N)] of 40.7686 and low methylation (‑18.02%) in the promoter region. In addition, the OLFM4 expression levels increased following treatment with the demethylating agent 5‑azacytidine in two HNSCC cell lines. Furthermore, the expression levels of OLFM4 in 59 cases of early‑stage tongue SCC were analyzed using immunohistochemistry to examine protein expression corresponding to the histopathological definition of tumors and to evaluate prognosis. The aberrant stemness gene expression caused by altered DNA methylation appeared to regulate early‑stage HNSCC characteristics. The results of the present study indicated a correlation between OLFM4 expression and promoter methylation, and suggest that it plays an important role in tumor cell heterogeneity in HNSCC.
Collapse
Affiliation(s)
- Takatsugu Suzuki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Hiroshi Yamazaki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Kazufumi Honda
- Division of Biomarker for Cancer Early Detection, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Akihiro Kaneko
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Yoshihide Ota
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Taisuke Mori
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| |
Collapse
|
21
|
Valo I, Raro P, Boissard A, Maarouf A, Jézéquel P, Verriele V, Campone M, Coqueret O, Guette C. OLFM4 Expression in Ductal Carcinoma In Situ and in Invasive Breast Cancer Cohorts by a SWATH-Based Proteomic Approach. Proteomics 2019; 19:e1800446. [PMID: 31318138 DOI: 10.1002/pmic.201800446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/04/2019] [Indexed: 12/13/2022]
Abstract
Human olfactomedin-4 (OLFM4) is a secreted protein involved in a variety of cellular functions including proliferation, differentiation, apoptosis, and cell adhesion. OLFM4 expression has been studied in several tumor types including gastric, colorectal, lung, and endometrioid cancers where it has been suggested to be an independent favorable or unfavorable prognostic marker. For breast cancer, the clinical significance of OLFM4 is still unclear. In the present study, SWATH-MS is used as a tool for the robust identification and quantification of breast tissue proteins. SWATH-MS data show that OLFM4 expression is higher in DCIS than in invasive breast cancer. In-depth analysis of the breast tumor proteome show that OLFM4 is a favorable pronostic marker. Serum OLFM4 levels in peripheral blood are also analyzed by ELISA in 825 cases, including 94 cases of healthy individuals, 61 cases of non-invasive breast tumor (DCIS) and 670 cases of breast cancer (BC). It is found that serum OLFM4 levels are significantly higher in the DCIS cohort and in the breast cancer cohort compared with the healthy controls. This result suggests that circulating OLFM4 could be an interesting biomarker of early breast cancer. Data are available via ProteomeXchange with identifier PXD014194.
Collapse
Affiliation(s)
- Isabelle Valo
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Pedro Raro
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France
| | - Pascal Jézéquel
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Unité de Bioinfomique, 44805, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | | | - Mario Campone
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| |
Collapse
|
22
|
Suzuki L, ten Kate FJC, Gotink AW, Stoop H, Doukas M, Nieboer D, Spaander MCW, van Lanschot JJB, van Wijnhoven BPL, Koch AD, Bruno MJ, Looijenga LHJ, Biermann K. Olfactomedin 4 (OLFM4) expression is associated with nodal metastases in esophageal adenocarcinoma. PLoS One 2019; 14:e0219494. [PMID: 31283789 PMCID: PMC6613772 DOI: 10.1371/journal.pone.0219494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
To date no informative biomarkers exist to accurately predict presence of lymph node metastases (LNM) in esophageal adenocarcinoma (EAC). We studied the discriminative value of Olfactomedin 4 (OLFM4), an intestinal stem cell marker, in EAC. Patients who had undergone esophagectomy as single treatment modality for both advanced (pT2-4) and early (pT1b) adenocarcinoma of the esophagus or gastro-esophageal junction were selected for this study from an institutional database (Erasmus MC University Medical Center, Rotterdam, The Netherlands). Surgical resection specimens of 196 advanced and 44 early EAC were examined. OLFM4 expression was studied by immunohistochemistry and categorized as low (<30%) or high (> = 30%) expression. Low OLFM4 was associated with poor differentiation grade in both advanced (60% vs. 34.8%, p = 0.001) and early EAC (39.1% vs. 9.5%, p = 0.023). LNM were present in 161 (82.1%) of advanced and 9 (20.5%) of early EAC respectively. Low OLFM4 was independently associated with the presence of LNM in advanced EAC in multivariable analysis (OR 2.7; 95% CI, 1.16-6.41; p = 0.022), but not in early EAC (OR 2.1; 95% CI, 0.46-9.84; p = 0.338). However, the difference in association with LNM between advanced (OR 2.7; 95% CI, 1.18-6.34; p = 0.019) and early (OR 2.3; 95% CI, 0.47-11.13; p = 0.302) EAC was non-significant (p = 0.844), suggesting that the lack of significance in early EAC is due to the small number of patients in this group. OLFM4 was not of significance for the disease free and overall survival. Overall, low expression of intestinal stem cell marker OLFM4 was associated with the presence of LNM. Our study suggests that OLFM4 could be an informative marker with the potential to improve preoperative assessment in patients with EAC. Further studies are needed to confirm the value of OLFM4 as a biomarker for LNM.
Collapse
Affiliation(s)
- Lucia Suzuki
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Fiebo J. C. ten Kate
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Annieke W. Gotink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Daan Nieboer
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Jan J. B. van Lanschot
- Department of Surgery, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Bas P. L. van Wijnhoven
- Department of Surgery, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Arjun D. Koch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
24
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
25
|
Abstract
Sepsis-related biomarkers have a variety of potential applications. The most well-known application is to differentiate patients with signs of systemic inflammation caused by infection, from those with systemic inflammation due to a non-infectious cause. This application is important for timely and judicious prescription of antibiotics. Apart from diagnostic applications, biomarkers can also be used to identify patients with sepsis who are at risk for poor outcome and to subgroup patients with sepsis based on biological commonalities. The latter two applications embody the concepts of prognostic and predictive enrichment, which are fundamental to precision medicine. This review will elaborate on these concepts, provide relevant examples, and discuss important considerations in the process of biomarkers discovery and development.
Collapse
Affiliation(s)
- Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
26
|
Alder MN, Mallela J, Opoka AM, Lahni P, Hildeman DA, Wong HR. Olfactomedin 4 marks a subset of neutrophils in mice. Innate Immun 2018; 25:22-33. [PMID: 30537894 PMCID: PMC6661892 DOI: 10.1177/1753425918817611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are the most abundant immune cell of the innate immune system and
participate in essential immune functions. Heterogeneity within neutrophils has
been documented, but it is difficult to distinguish if these are altered
activation states of a single population or separate subpopulations of
neutrophils determined at the time of differentiation. Several groups have
identified a subset of human neutrophils that express olfactomedin 4 (OLFM4) and
increased OLFM4+ neutrophils during sepsis is correlated with worse outcome,
suggesting these neutrophils or the OLFM4 they secrete may be pathogenic. We
tested if mice could be used as a model to study OLFM4+ neutrophils. We found
the OLFM4 expressing subset of neutrophils is conserved in mice. Depending on
the strain, 7–35% of murine neutrophils express OLFM4 and expression is
determined early in neutrophil differentiation. OLFM4+ neutrophils phagocytose
and transmigrate with similar efficiency as OLFM4− neutrophils. Here we show
that within neutrophil extracellular traps (NETs) OLFM4+ and OLFM4− neutrophils
undergo NETosis and OLFM4 colocalizes. Finally, we generated an OLFM4 null mouse
and show that these mice are protected from death when challenged with sepsis,
providing further evidence that the OLFM4 expressing subpopulation of
neutrophils, or the OLFM4 they secrete, may be pathogenic during overwhelming
infection.
Collapse
Affiliation(s)
- Matthew N Alder
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, USA
| | - Jaya Mallela
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, USA
| | - Amy M Opoka
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, USA
| | - Patrick Lahni
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, USA
| | - David A Hildeman
- 2 Division of Immunobiology, Cincinnati Children's Hospital Medical Center, USA
| | - Hector R Wong
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, USA
| |
Collapse
|
27
|
Wang XY, Chen SH, Zhang YN, Xu CF. Olfactomedin-4 in digestive diseases: A mini-review. World J Gastroenterol 2018; 24:1881-1887. [PMID: 29740203 PMCID: PMC5937205 DOI: 10.3748/wjg.v24.i17.1881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactomedin-4 (OLFM4, GW112, hGC-1) is a glycoprotein belonging to the olfactomedin family. The expression of OLFM4 is strong in the small intestine, colon and prostate, and moderate in the stomach and bone marrow. Previous studies have revealed that OLFM4 is closely associated with many digestive diseases. Up-regulation of OLFM4 has been detected in the Helicobacter pylori (H. pylori)-infected gastric mucosa, inflammatory bowel disease tissue and gastrointestinal malignancies, including gastric cancer, colorectal cancer, pancreatic cancer and gallbladder cancer. Down-regulation of OLFM4 has also been detected in some cases, such as in poorly differentiated, advanced-stage and metastatic tumors. Studies using OLFM4-deficient mouse models have revealed that OLFM4 acts as a negative regulator of H. pylori-specific immune responses and plays an important role in mucosal defense in inflammatory bowel disease. Patients with OLFM4-positive gastric cancer or colorectal cancer have a better survival rate than OLFM4-negative patients. However, the prognosis is worse in pancreatic cancer patients with high levels of expression of OLFM4. The NF-κB, Notch and Wnt signaling pathways are involved in the regulation of OLFM4 expression in digestive diseases, and its role in pathogenesis is associated with anti-inflammation, apoptosis, cell adhesion and proliferation. OLFM4 may serve as a potential specific diagnostic marker and a therapeutic target in digestive diseases. Further studies are required to explore the clinical value of OLFM4.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Sheng-Hui Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Nan Zhang
- Department of Geriatrics, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Cheng-Fu Xu
- Department of Gastroenterology, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
28
|
Jijon HB, Suarez-Lopez L, Diaz OE, Das S, De Calisto J, Yaffe MB, Pittet MJ, Mora JR, Belkaid Y, Xavier RJ, Villablanca EJ. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol 2018; 11:703-715. [PMID: 29139475 PMCID: PMC5953762 DOI: 10.1038/mi.2017.91] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/21/2017] [Indexed: 02/04/2023]
Abstract
Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4+ goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.
Collapse
Affiliation(s)
- Humberto B. Jijon
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Lucia Suarez-Lopez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Oscar E. Diaz
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Srustidhar Das
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Jaime De Calisto
- Center for Genomics and Bioinformatics, Dental School, Faculty of Sciences, Universidad Mayor, Chile
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Acute Care Surgery, Trauma, and Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Rodrigo Mora
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yasmine Belkaid
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eduardo J. Villablanca
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Liu C, Guo Y, Wu W, Zhang Z, Xu L, Wu K, Hu W, Liu G, Shi J, Xu C, Bi J, Sheng Y. Plasma olfactomedin 4 level in peripheral blood and its association with clinical features of breast cancer. Oncol Lett 2017; 14:8106-8113. [PMID: 29344255 DOI: 10.3892/ol.2017.7193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to investigate the expression of olfactomedin 4 (OLFM4) in plasma of patients with breast cancer and its association with diagnosis, metastasis and prognosis of breast cancer. OLFM4 gene expression level of peripheral blood plasma in 60 patients with breast cancer and 26 healthy donors was examined by ELISA. The expression of OLFM4 in tumor tissues of patients with breast cancer was evaluated by immunohistochemistry (protein expression) and reverse transcription-quantitative polymerase chain reaction (mRNA expression), respectively. Circulating tumor cells (CTCs) were detected in a certain set of patients. The expression of OLFM4 in plasma of the overall healthy people was higher compared with patients with breast cancer. The plasma OLFM4 level in patients with breast cancer was consistent with the expression of OLFM4 protein in tumor tissues (R2=1), indicating that the level of plasma OLFM4 expression may represent the expression of OLFM4 in breast cancer tissues. The plasma OLFM4 level in patients with histological grade I was significantly lower compared with grade III (P<0.05). Breast cancer patients with positive CTC were associated with low level of plasma OLFM4. These results suggest that low OLFM4 expression in plasma or tissue specimens of breast cancer patients is more likely to represent low histological differentiation and decreased invasive/metastatic capabilities. Taken together, plasma OLFM4 level may be considered as a biomarker for diagnosis and prognosis of breast cancer for cases where there are difficulties in obtaining tumor tissue samples.
Collapse
Affiliation(s)
- Chaoqian Liu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yan Guo
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Weiwei Wu
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Zhenzhen Zhang
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China.,Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Lu Xu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Kainan Wu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei Hu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Guoping Liu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Junyi Shi
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cheng Xu
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Jianwei Bi
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuan Sheng
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
30
|
Olfactomedin-4 Is a Candidate Marker for a Pathogenic Neutrophil Subset in Septic Shock. Crit Care Med 2017; 45:e426-e432. [PMID: 27635771 DOI: 10.1097/ccm.0000000000002102] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Heterogeneity in sepsis-related pathobiology presents a significant challenge. Resolving this heterogeneity presents an opportunity to understand pathobiology and improve patient care. Olfactomedin-4 is a neutrophil subset marker and may contribute to sepsis heterogeneity. Our objective was to evaluate the expression of olfactomedin-4 and characterize neutrophil heterogeneity in children with septic shock. DESIGN Single-center, prospective cohort, as well as secondary analysis of existing transcriptomic and proteomic databases. SETTING Tertiary care PICU. PATIENTS Patients from 5 days to 18 years old with septic shock were enrolled. Data collected included the expression of olfactomedin-4 messenger RNA, serum protein concentrations, and percentage of neutrophils that express olfactomedin-4. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Secondary analysis of existing transcriptomic data demonstrated that olfactomedin-4 is the most highly expressed gene in nonsurvivors of pediatric septic shock, compared with survivors. Secondary analysis of an existing proteomic database corroborated these observations. In a prospectively enrolled cohort, we quantified the percentage of olfactomedin-4+ neutrophils in patients with septic shock. Patients with a complicated course, defined as greater than or equal to two organ failures at day 7 of septic shock or 28-day mortality, had a higher percentage of olfactomedin-4+ neutrophils, compared with those without a complicated course. By logistic regression, the percentage of olfactomedin-4+ neutrophils was independently associated with increased risk of a complicated course (odds ratio, 1.09; 95% CI, 1.01-1.17; p = 0.024). CONCLUSIONS Olfactomedin-4 identifies a subpopulation of neutrophils in patients with septic shock, and those with a high percentage of olfactomedin-4+ neutrophils are at higher risk for greater organ failure burden and death. Olfactomedin-4 might serve as a marker of a pathogenic neutrophil subset in patients with septic shock.
Collapse
|
31
|
Liu Y, Wang F, Xu P. miR-590 accelerates lung adenocarcinoma migration and invasion through directly suppressing functional target OLFM4. Biomed Pharmacother 2017; 86:466-474. [DOI: 10.1016/j.biopha.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
|
32
|
Abstract
Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.
Collapse
|
33
|
Xiong B, Lei X, Zhang L, Fu J. The clinical significance and biological function of olfactomedin 4 in triple negative breast cancer. Biomed Pharmacother 2016; 86:67-73. [PMID: 27939521 DOI: 10.1016/j.biopha.2016.11.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/15/2023] Open
Abstract
Olfactomedin 4 abnormal expression has been observed in several types of human cancer, but the status of olfactomedin 4 in triple negative breast cancer is still unknown. The aim of our study is to explore the clinical significance and biological function of olfactomedin 4 in triple negative breast cancer. The mRNA and protein expression of olfactomedin 4 in triple negative breast cancer tissues and cell lines was detected, and the correlation between olfactomedin 4 expression and clinicopathological factors was analyzed by immunohistochemistry. The biological function of olfactomedin 4 on tumor-metastasis was explored by Transwell migration assay and invasion assay in vitro. In our results, olfactomedin 4 mRNA and protein expression is decreased in triple-negative breast cancer tissues and cell lines. Olfactomedin 4 protein low-expression associated with lymph node metastasis, distant metastasis, clinical stage and poor prognosis of triple-negative breast cancer patients. Up-regulation of olfactomedin 4 suppresseed triple-negative breast cancer cells migration and invasion, and reduced cell metastasis-associated protein MMP 9 expression. In conclusion, olfactomedin 4 is a novel biomarker of triple-negative breast cancer for predicting prognosis and developing targeted molecular therapies.
Collapse
Affiliation(s)
- Bin Xiong
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Xuefeng Lei
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Lei Zhang
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Jia Fu
- Academy of Basic Medicine, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China.
| |
Collapse
|
34
|
Guo LL, He ZC, Yang CQ, Qiao PT, Yin GL. Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling. BMB Rep 2016; 48:630-5. [PMID: 26303970 PMCID: PMC4911205 DOI: 10.5483/bmbrep.2015.48.11.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Indexed: 01/17/2023] Open
Abstract
Downregulation of olfactomedin-4 (OLFM4) is associated with tumor progression, lymph node invasion and metastases. However, whether or not downregulation of OLFM4 is associated with epigenetic silencing remains unknown. In this study, we investigate the role of OLFM4 in gastric cancer cell invasion. We confirm the previous result that OLFM4 expression is increased in gastric cancer tissues and decreases with an increasing number of metastatic lymph nodes, which are associated with OLFM4 promoter hypermethylation. Overexpression of OLFM4 in gastric cancer cells had an inhibitory effect on cell invasion. Furthermore, we found that focal adhesion kinase (FAK) was negatively correlated with OLFM4 in regards to lymph node metastasis in gastric cancer tissues. Also, inhibition of FAK induced by OLFM4 knockdown resulted in a decrease in cell invasion. Thus, our study demonstrates that epigenetic silencing of OLFM4 enhances gastric cancer cell invasion via activation of FAK signaling. [BMB Reports 2015; 48(11): 630-635]
Collapse
Affiliation(s)
- Li-Li Guo
- Department of Gastroenterology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Zhao-Cai He
- Department of General Surgery, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Chang-Qing Yang
- Department of Gastroenterology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Pei-Tang Qiao
- Department of Gastroenterology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Guo-Ling Yin
- Department of radiotherapy, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, China
| |
Collapse
|
35
|
Fukuda K, Uehara Y, Nakata E, Inoue M, Shimazu K, Yoshida T, Kanda H, Nanjo H, Hosoi Y, Yamakoshi H, Iwabuchi Y, Shibata H. A diarylpentanoid curcumin analog exhibits improved radioprotective potential in the intestinal mucosa. Int J Radiat Biol 2016; 92:388-94. [PMID: 27043482 DOI: 10.3109/09553002.2016.1164910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To best enhance the effects of radiotherapy, it is important to minimize adverse events, including free radical-induced intestinal cell damage. Given the threat of nuclear power plant accidents or nuclear terrorism, there is an urgent need for radioprotectants to counteract the radiation-induced toxicity and/or injuries. Curcumin exhibits protective effects against gamma irradiation; however, its in vivo efficacy is decreased due to the low bioavailability. We examined the radioprotective effect of a newly synthesized curcumin analog, GO-Y031, on 11-Gy X-ray-induced intestinal mucosal damage in mice. MATERIALS AND METHODS The radioprotection experiments were conducted by using C57BL/6J or Jcl:ICR mice. Molecules related to radiation damage, including p53, Bax, Bcl-2, cleaved caspase-3, and reactive carbonyl species (RCS), were investigated immunohistochemically. RESULTS GO-Y031 protected against crypt hypoplasia relative to a mock treatment at 0.5% (weight/weight); the number of crypts were 11.00 ± 2.00/circumference (mm) in treated versus 6.86 ± 0.99/mm in mock-treated C57BL/6 mice (p = 0.0079). GO-Y031 also reduced the levels of RCS, p53, and cleaved caspase-3 accumulation in the irradiated intestinal cells. CONCLUSIONS GO-Y031 suppresses the accumulation of RCS and apoptosis-related molecules in irradiated cells. This compound may be a good primary radioprotective compound.
Collapse
Affiliation(s)
- Koji Fukuda
- a Department of Clinical Oncology , Graduate School of Medicine, Akita University , Akita , Japan
| | - Yoshihiko Uehara
- b Laboratory for Radiation Biology , Tohoku University , Sendai , Japan
| | - Eiko Nakata
- c Department of Radiation Oncology , Graduate School of Medicine, Tohoku University , Sendai , Japan
| | - Masahiro Inoue
- a Department of Clinical Oncology , Graduate School of Medicine, Akita University , Akita , Japan
| | - Kazuhiro Shimazu
- a Department of Clinical Oncology , Graduate School of Medicine, Akita University , Akita , Japan
| | - Taichi Yoshida
- a Department of Clinical Oncology , Graduate School of Medicine, Akita University , Akita , Japan
| | - Hiroaki Kanda
- d Division of Pathology , Cancer Institute, Japanese Foundation for Cancer Research , Tokyo , Japan
| | - Hiroshi Nanjo
- e Department of Clinical Pathology , Graduate School of Medicine, Akita University , Akita , Japan
| | - Yoshio Hosoi
- b Laboratory for Radiation Biology , Tohoku University , Sendai , Japan
| | - Hiroyuki Yamakoshi
- f Department of Organic Chemistry , Graduate School of Pharmaceutical, Tohoku University , Sendai , Japan
| | - Yoshiharu Iwabuchi
- f Department of Organic Chemistry , Graduate School of Pharmaceutical, Tohoku University , Sendai , Japan
| | - Hiroyuki Shibata
- a Department of Clinical Oncology , Graduate School of Medicine, Akita University , Akita , Japan
| |
Collapse
|
36
|
Li H, Liu W, Chen W, Zhu J, Deng CX, Rodgers GP. Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated with upregulation of the hedgehog-signaling pathway. Sci Rep 2015; 5:16974. [PMID: 26581960 PMCID: PMC4652203 DOI: 10.1038/srep16974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Loss of olfactomedin 4 (OLFM4) gene expression is associated with the progression of human prostate cancer, but its role and the molecular mechanisms involved in this process have not been completely understood. In this study, we found that Olfm4-knockout mice developed prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Importantly, we found that the hedgehog-signaling pathway was significantly upregulated in the Olfm4-knockout mouse model. We also found that restoration of OLFM4 in human prostate-cancer cells that lack OLFM4 expression significantly downregulated hedgehog signaling-pathway component expression. Furthermore, we demonstrated that the OLFM4 protein interacts with sonic hedgehog protein, as well as significantly inhibits GLI-reporter activity. Bioinformatic and immunohistochemistry analyses revealed that decreased OLFM4 and increased SHH expression was significantly associated with advanced human prostate cancer. Thus, olfactomedin 4 appears to play a critical role in regulating progression of prostate cancer, and has potential as a new biomarker for prostate cancer.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomics Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Hardingham JE, Grover P, Winter M, Hewett PJ, Price TJ, Thierry B. Detection and Clinical Significance of Circulating Tumor Cells in Colorectal Cancer--20 Years of Progress. Mol Med 2015; 21 Suppl 1:S25-31. [PMID: 26605644 DOI: 10.2119/molmed.2015.00149] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTC) may be defined as tumor- or metastasis-derived cells that are present in the bloodstream. The CTC pool in colorectal cancer (CRC) patients may include not only epithelial tumor cells, but also tumor cells undergoing epithelial-mesenchymal transition (EMT) and tumor stem cells. A significant number of patients diagnosed with early stage CRC subsequently relapse with recurrent or metastatic disease despite undergoing "curative" resection of their primary tumor. This suggests that an occult metastatic disease process was already underway, with viable tumor cells being shed from the primary tumor site, at least some of which have proliferative and metastatic potential and the ability to survive in the bloodstream. Such tumor cells are considered to be responsible for disease relapse in these patients. Their detection in peripheral blood at the time of diagnosis or after resection of the primary tumor may identify those early-stage patients who are at risk of developing recurrent or metastatic disease and who would benefit from adjuvant therapy. CTC may also be a useful adjunct to radiological assessment of tumor response to therapy. Over the last 20 years many approaches have been developed for the isolation and characterization of CTC. However, none of these methods can be considered the gold standard for detection of the entire pool of CTC. Recently our group has developed novel unbiased inertial microfluidics to enrich for CTC, followed by identification of CTC by imaging flow cytometry. Here, we provide a review of progress on CTC detection and clinical significance over the last 20 years.
Collapse
Affiliation(s)
- Jennifer E Hardingham
- Molecular Oncology Group, Haematology-Oncology Department, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, South Australia.,School of Medicine, University of Adelaide, South Australia.,Centre for Personalized Medicine, University of Adelaide, South Australia
| | - Phulwinder Grover
- Department of Surgery, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Marnie Winter
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia
| | - Peter J Hewett
- Department of Surgery, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Timothy J Price
- School of Medicine, University of Adelaide, South Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Benjamin Thierry
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia
| |
Collapse
|
38
|
Clemmensen SN, Glenthøj AJ, Heebøll S, Nielsen HJ, Koch C, Borregaard N. Plasma levels of OLFM4 in normals and patients with gastrointestinal cancer. J Cell Mol Med 2015; 19:2865-73. [PMID: 26416558 PMCID: PMC4687705 DOI: 10.1111/jcmm.12679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022] Open
Abstract
Olfactomedin 4 (OLFM4) is a secreted glycoprotein predominantly expressed in bone marrow and gastrointestinal tissues. Aberrant expression of OLFM4 has been shown in several cancers. However, the clinical significance hereof is currently controversial. OLFM4 has been proposed as a candidate biomarker of gastrointestinal cancers. To address this, we developed monoclonal antibodies against synthetic peptides representing various segments of OLFM4. We examined expression of OLFM4 in epithelial cells by immunohistochemistry and found that OLFM4 is highly expressed in proliferating benign epithelial cells and in some carcinoma cells. We developed an Enzyme Linked Immunosorbent Assay for OLFM4 and investigated whether plasma levels of OLFM4 reflect colorectal malignancies, but were unable to see any such association. Instead, we observed two populations of individuals with respect to OLFM4 levels in plasma, the majority with OLFM4 in plasma between 0 and 0.1 μg/ml, mean 0.028 μg/ml while 10% of both normals and patients with cancers had OLFM4 between 4 and 60 μg/ml, mean 15 μg/ml. The levels were constant over time. The background for this high plasma level is not known, but must be taken into account if OLFM4 is used as biomarker for GI cancers.
Collapse
Affiliation(s)
- Stine N Clemmensen
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Anders J Glenthøj
- Department of Pathology, National University Hospital, Copenhagen, Denmark
| | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Claus Koch
- Department of Biomedicine, University of Southern Denmark, Odense, Denmark
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| |
Collapse
|
39
|
Brand HK, Ahout IML, de Ridder D, van Diepen A, Li Y, Zaalberg M, Andeweg A, Roeleveld N, de Groot R, Warris A, Hermans PWM, Ferwerda G, Staal FJT. Olfactomedin 4 Serves as a Marker for Disease Severity in Pediatric Respiratory Syncytial Virus (RSV) Infection. PLoS One 2015; 10:e0131927. [PMID: 26162090 PMCID: PMC4498630 DOI: 10.1371/journal.pone.0131927] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022] Open
Abstract
Background Respiratory viral infections follow an unpredictable clinical course in young children ranging from a common cold to respiratory failure. The transition from mild to severe disease occurs rapidly and is difficult to predict. The pathophysiology underlying disease severity has remained elusive. There is an urgent need to better understand the immune response in this disease to come up with biomarkers that may aid clinical decision making. Methods In a prospective study, flow cytometric and genome-wide gene expression analyses were performed on blood samples of 26 children with a diagnosis of severe, moderate or mild Respiratory Syncytial Virus (RSV) infection. Differentially expressed genes were validated using Q-PCR in a second cohort of 80 children during three consecutive winter seasons. FACS analyses were also performed in the second cohort and on recovery samples of severe cases in the first cohort. Results Severe RSV infection was associated with a transient but marked decrease in CD4+ T, CD8+ T, and NK cells in peripheral blood. Gene expression analyses in both cohorts identified Olfactomedin4 (OLFM4) as a fully discriminative marker between children with mild and severe RSV infection, giving a PAM cross-validation error of 0%. Patients with an OLFM4 gene expression level above -7.5 were 6 times more likely to develop severe disease, after correction for age at hospitalization and gestational age. Conclusion By combining genome-wide expression profiling of blood cell subsets with clinically well-annotated samples, OLFM4 was identified as a biomarker for severity of pediatric RSV infection.
Collapse
Affiliation(s)
- H. K. Brand
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - I. M. L. Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - D. de Ridder
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - A. van Diepen
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Y. Li
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Zaalberg
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - A. Andeweg
- Department of Virology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Roeleveld
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud university medical center, Nijmegen, the Netherlands
| | - R. de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - A. Warris
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - P. W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - G. Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| | - F. J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Jang BG, Lee BL, Kim WH. Olfactomedin-related proteins 4 (OLFM4) expression is involved in early gastric carcinogenesis and of prognostic significance in advanced gastric cancer. Virchows Arch 2015; 467:285-94. [PMID: 26070873 DOI: 10.1007/s00428-015-1793-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Olfactomedin 4 (OLFM4) has been demonstrated to be upregulated in various cancers and involved in many cellular processes such as cell adhesion, apoptosis, and cell proliferation. In gastric cancer, clinicopathological relevance of OLFM4 expression has been reported. However, there are few studies showing how expression of OLFM4 evolves during multistep gastric carcinogenesis. In this study, we investigated OLFM4 expression during gastric carcinogenesis using RNA in situ hybridization (ISH). We found that OLFM4 expression is absent in normal gastric mucosa, begins to appear at the isthmus region in gastric glands in chronic gastritis, and is remarkably increased in intestinal metaplasia (IM). Interestingly, gastric-type glands around IM frequently expressed OLFM4 before CDX2 was expressed, suggesting that OLFM4 might be involved in regulating CDX2 expression. However, overexpression of OLFM4 failed to induce CDX2 transcription. All gastric adenomas were strongly positive for OLFM4. OLFM4 expression was higher in intestinal type, well to moderately differentiated and early-stage adenocarcinomas, and decreased in poorly differentiated and advanced-stage gastric cancer (GC). Although OLFM4 expression had no prognostic value for GC overall (P = 0.441), it was associated with poor survival of GC in stage II, III, and IV (P = 0.018), suggesting that OLFM4 expression has prognostic significance for late-stage GC. Our findings suggest that OLFM4 is not only involved in early stages of gastric carcinogenesis but also a useful prognostic marker for advanced GC, which is encouraging for further studies exploring OLFM4 as a potential target for therapy of GC.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Ara-1-dong, Jeju, 690-767, Korea
| | | | | |
Collapse
|
41
|
Amirbeagi F, Thulin P, Pullerits R, Pedersen B, Andersson BA, Dahlgren C, Welin A, Bylund J. Olfactomedin-4 autoantibodies give unusual c-ANCA staining patterns with reactivity to a subpopulation of neutrophils. J Leukoc Biol 2015; 97:181-189. [PMID: 25387833 DOI: 10.1189/jlb.5a0614-311r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Testing for the presence of ANCAs in circulation is part of the clinical examinations routinely performed upon suspected autoimmune disorders, mainly vasculitis. The autoantibodies are typically directed toward neutrophil MPO or PR3. These are major granule-localized proteins, and similar to all hitherto-described ANCA antigens, they are expressed by all neutrophils, and ANCA-containing sera thus give rise to uniform reactivity toward all neutrophils in a sample. In this paper, we describe sera from 2 unrelated patients with diffuse inflammatory symptoms that gave rise to peculiar c-ANCA patterns, only reacting with a subpopulation (roughly 30%) of human neutrophils. By immunoblotting, both sera reacted to the same antigen, which was expressed in intracellular granules. The antigen could be released to the extracellular milieu through secretion but also through the formation of NETs. Neutrophils have long been considered a homogenous cell population, but it is becoming increasingly clear that distinct subpopulations, defined by the presence or absence of certain proteins, exist. One such marker that defines a neutrophil subset is the granule protein OLFM4. The unusual, subset-restricted c-ANCA sera reacted only with OLFM4-positive neutrophils, and MS analysis revealed that the autoantigen was, in fact, OLFM4. These data describe for the first time a c-ANCA pattern reactive to only a subpopulation of neutrophils and identify the granule protein OLFM4 as a novel autoantigen.
Collapse
Affiliation(s)
- Firoozeh Amirbeagi
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Pontus Thulin
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Rille Pullerits
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Bo Pedersen
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Bengt A Andersson
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Claes Dahlgren
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Amanda Welin
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| | - Johan Bylund
- Departments of *Rheumatology and Inflammation Research and Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg, Sweden; Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; and Department of Pulmonary Medicine, Norra Älvsborg County Hospital, Trollhättan, Sweden
| |
Collapse
|
42
|
Giammanco A, Blanc V, Montenegro G, Klos C, Xie Y, Kennedy S, Luo J, Chang SH, Hla T, Nalbantoglu I, Dharmarajan S, Davidson NO. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development. Cancer Res 2014; 74:5322-35. [PMID: 25085247 DOI: 10.1158/0008-5472.can-14-0726] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Valerie Blanc
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Grace Montenegro
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Coen Klos
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Susan Kennedy
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Jianyang Luo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Sung-Hee Chang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Ilke Nalbantoglu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri
| | - Sekhar Dharmarajan
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
43
|
In-depth proteomic delineation of the colorectal cancer exoproteome: Mechanistic insight and identification of potential biomarkers. J Proteomics 2014; 103:121-36. [PMID: 24681409 DOI: 10.1016/j.jprot.2014.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 12/30/2022]
|
44
|
Investigation of key genes associated with prostate cancer using RNA-seq data. Int J Biol Markers 2014; 29:e86-92. [PMID: 24366848 DOI: 10.5301/jbm.5000056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2013] [Indexed: 01/22/2023]
Abstract
We aimed to identify key genes associated with prostate cancer using RNA-sequencing (RNA-seq) data. RNA-seq data, including 1 cancer sample and 1 adjacent normal sample, were downloaded from the NCBI SRA database and the differentially expressed genes (DEGs) were identified with the software Cufflinks. Functional enrichment analysis was performed to uncover the biological functions of DEGs. Regulatory information was retrieved from the IPA database and a network was established. A total of 147 DEGs were obtained, including 96 downregulated and 51 upregulated DEGs. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that metabolism and signal transduction were the 2 major functions that were significantly influenced. Moreover, an interaction network was built. In conclusion, a number of DEGs was identified and their roles in the pathogenesis of cancer were supported by previous studies. More studies are necessary to further validate their usefulness in the diagnosis and treatment of prostate cancer.
Collapse
|
45
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
46
|
Guezguez A, Paré F, Benoit YD, Basora N, Beaulieu JF. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res 2014; 322:355-64. [PMID: 24534551 DOI: 10.1016/j.yexcr.2014.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Amel Guezguez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Fréderic Paré
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Yannick D Benoit
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| |
Collapse
|
47
|
Hasselbalch HC, Skov V, Stauffer Larsen T, Thomassen M, Hasselbalch Riley C, Jensen MK, Bjerrum OW, Kruse TA. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation. PLoS One 2014; 9:e85567. [PMID: 24454890 PMCID: PMC3890316 DOI: 10.1371/journal.pone.0085567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023] Open
Abstract
Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature – composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1), which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n = 1) and PV (n = 4) transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene-signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
- * E-mail: .
| | - Vibe Skov
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Morten K. Jensen
- Department of Hematology L, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology L, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
48
|
Lukic N, Visentin R, Delhaye M, Frossard JL, Lescuyer P, Dumonceau JM, Farina A. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1026-33. [PMID: 23872482 DOI: 10.1016/j.bbapap.2013.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and Ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Natalija Lukic
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Rémy Visentin
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Myriam Delhaye
- Department of Gastroenterology, Erasme Hospital, Free University of Brussels, Brussels BE-1070, Belgium
| | - Jean-Louis Frossard
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Pierre Lescuyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Jean-Marc Dumonceau
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland.
| |
Collapse
|
49
|
Micci F, Panagopoulos I, Haugom L, Dahlback HSS, Pretorius ME, Davidson B, Abeler VM, Tropé CG, Danielsen HE, Heim S. Genomic aberration patterns and expression profiles of squamous cell carcinomas of the vulva. Genes Chromosomes Cancer 2013; 52:551-63. [PMID: 23404381 DOI: 10.1002/gcc.22053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
Little is known about the genomic abnormalities of squamous cell carcinomas (SCC) of the vulva and how they correlate with gene expression. We determined the genomic and expression profiles of 15 such SCC using karyotyping, DNA ploidy analysis, arrayCGH, and expression arrays. Four of the five cases with clonal chromosomal aberrations found by G-banding showed highly abnormal karyotypes with multiple rearrangements. The imbalances scored by arrayCGH mapped to different chromosomes with losses being more common than gains. Frequent losses were scored from 3p and 8p whereas gains were frequent from 3q and 8q (loss of 8p with concomitant gain of 8q mostly occurred via 8q isochromosome formation). This is the first study of vulvar tumors using arrayCGH, and some frequent imbalances could be defined precisely. Of particular note were the sometimes large, sometimes small deletions of 3p and 9p which had minute areas in 3p14 and 9p23 as minimal commonly deleted regions. FHIT (3p14) and PTPRD (9p23) are the only genes here. They were both lost in seven cases, including homozygous losses of PTPRD in four tumors. Using qPCR we could demonstrate deregulation of the FHIT gene in tumor cells. Hence, this gene is likely to play a pathogenetic role in vulvar SCC tumorigenesis. Expression array analyses also identified a number of other genes whose expression profile was altered. Notable among the downregulated genes were MAL (in 2q11), KRT4 (in 12q13), and OLFM4 (in 13q14), whereas upregulated genes included SPRR2G (in 1q21.3) and S100A7A (in 1q21.3).
Collapse
Affiliation(s)
- Francesca Micci
- Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lencinas A, Chhun DC, Dan KP, Ross KD, Hoover EA, Antin PB, Runyan RB. Olfactomedin-1 activity identifies a cell invasion checkpoint during epithelial-mesenchymal transition in the chick embryonic heart. Dis Model Mech 2012; 6:632-42. [PMID: 23264563 PMCID: PMC3634647 DOI: 10.1242/dmm.010595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endothelia in the atrioventricular (AV) canal of the developing heart undergo a prototypical epithelial mesenchymal transition (EMT) to begin heart valve formation. Using an in vitro invasion assay, an extracellular matrix protein, Olfactomedin-1 (OLFM1), was found to increase mesenchymal cell numbers in AV canals from embryonic chick hearts. Treatment with both anti-OLFM1 antibody and siRNA targeting OLFM1 inhibits mesenchymal cell formation. OLFM1 does not alter cell proliferation, migration or apoptosis. Dispersion, but lack of invasion in the presence of inhibiting antibody, identifies a specific role for OLFM1 in cell invasion during EMT. This role is conserved in other epithelia, as OLFM1 similarly enhances invasion by MDCK epithelial cells in a transwell assay. Synergy is observed when TGFβ2 and OLFM1 are added to MDCK cell cultures, indicating that OLFM-1 activity is cooperative with TGFβ. Inhibition of both OLFM1 and TGFβ in heart invasion assays shows a similar cooperative role during development. To explore OLFM1 activity during EMT, representative EMT markers were examined. Effects of OLFM1 protein and anti-OLFM1 on transcripts of cell-cell adhesion molecules and the transcription factors Snail-1, Snail-2, Twist1 and Sox-9 argue that OLFM1 does not initiate EMT. Rather, regulation of transcripts of Zeb1 and Zeb2, secreted proteases and mesenchymal cell markers by both OLFM1 and anti-OLFM1 is consistent with regulation of the cell invasion step of EMT. We conclude that OLFM1 is present and necessary during EMT in the embryonic chick heart. Its role in cell invasion and mesenchymal cell gene regulation suggests an invasion checkpoint in EMT where OLFM1 acts to promote cell invasion into the three-dimensional matrix.
Collapse
Affiliation(s)
- Alejandro Lencinas
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|