1
|
Zuo G, Li M, Guo X, Wang L, Yao Y, Huang JA, Liu Z, Lin Y. Fu brick tea supplementation ameliorates non-alcoholic fatty liver disease and associated endotoxemia via maintaining intestinal homeostasis and remodeling hepatic immune microenvironment. Food Res Int 2025; 209:116207. [PMID: 40253128 DOI: 10.1016/j.foodres.2025.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent disorder of excessive fat accumulation and inflammation in the liver that currently lacks effective therapeutic interventions. Fu brick tea (FBT) has been shown to ameliorate liver damage and modulate gut microbiota dysbiosis in NAFLD, but the potential mechanisms have not been comprehensively elucidated, especailly whether its hepatoprotective effects are determined to depend on the homeostasis of gut microbiota, intestinal barrier function and hepatic immune microenvironment. In this study, our results further demonstrated that FBT not only alleviated NAFLD symptoms and related endotoxemia in high-fat diet (HFD)-fed rats, but also attenuated intestinal barrier dysfunction and associated inflammation, also confirmed in Caco-2 cell experiment. Meanwhile, FBT intervention significantly relieved HFD-induced gut microbiota dysbiosis, characterized by increased diversity and composition, particularly facilitating beneficial microbes, including short chain fatty acids (SCFAs) and bile acids producers, such as Blautia and Fusicatenibacter, and inhibiting Gram-negative bacteria, such as Prevotella_9 and Phascolarctobacterium. Also, the gut microbiota-dependent hepatoprotective effects of FBT were verified by fecal microbiota transplantation (FMT) experiment. Thus, the beneficial moulation of gut microbiota altered by FBT in levels of SCFAs, bile acids and lipopolysaccharides, intestinal barrier function and TLR4/NF-κB pathway contributed to alleviate liver steatosis and inflammation. Additionally, the hepatoprotective effects of FBT was further demonstrated by suppressing Kupffer cell activation and regulating lipid metabolism using an ex vivo model of liver organoid. Therefore, FBT supplementation can maintain intenstinal homeostasis and remodel hepatic immune microenvironment to prevent NAFLD and associated endotoxemia.
Collapse
Affiliation(s)
- Gaolong Zuo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Menghua Li
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaoli Guo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Ling Wang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Yanyan Yao
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
2
|
Bu W, Wu W, Cheng J. Effect of epidural labour analgesia on gastric emptying during labour: A prospective controlled study. Eur J Obstet Gynecol Reprod Biol 2025; 308:169-173. [PMID: 40068470 DOI: 10.1016/j.ejogrb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Epidural analgesia is frequently used to alleviate labour pain, and dietary management during labour is of crucial importance. Therefore, this study investigates the impact of epidural analgesia for labour on gastric emptying in parturient women. METHODS A total of 70 full-term parturient women were recruited and divided into two groups: the epidural analgesia group (LA, n = 35) and the non-epidural analgesia group (NA, n = 35). Fasting gastric antrum cross-sectional area (CSA0) was assessed using B-mode ultrasonography at T0. Both groups then consumed 300 g of millet porridge (600KJ). Post-meal, CSAs were measured at 60 min (CSA1, T1), 90 min (CSA2, T2), and 120 min (CSA3, T3) using ultrasonography. Pain scores were recorded for both groups at these four time points, and gastric emptying time was noted. RESULTS The CSA in the NA group were larger than those in the LA group (CAS1:11.4 ± 0.8 vs 10.2 ± 0.6;CAS2:9.3 ± 0.6 vs 8.3 ± 0.5,CAS3:7.4 ± 0.5 vs 6.5 ± 0.4; P = 0.00). The gastric emptying time in the LA group was shorter than that in the NA group (197.5 ± 27.2 vs. 220.9 ± 29.2, P = 0.00). CONCLUSIONS Epidural analgesia facilitates gastric emptying during labour. Therefore, the administration of epidural analgesia during labour does not adversely affect maternal dietary preferences. PLAIN LANGUAGE SUMMARY During labour, women often endure severe pain, prompting the widespread use of epidural analgesia for pain relief. However, the dietary considerations for women opting for epidural analgesia during labour have increasingly garnered attention. Numerous studies have now corroborated that moderate food consumption can supply energy to women without posing any detrimental effects. Our research has observed that epidural analgesia can expedite gastric emptying during labour. Previous clinical experience suggested that patients should not eat before or after anesthesia, but this study shows that even if a parturient opts for epidural labor analgesia, she can still continue to consume a certain amount of semi-solid food to provide energy throughout the labor process, without needing to worry about an increased risk of vomiting.
Collapse
Affiliation(s)
- Wenhao Bu
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070,China.
| | - Wei Wu
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan 430080,China.
| | - Jing Cheng
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070,China.
| |
Collapse
|
3
|
Al-Qadami G, Raposo A, Chien CC, Ma C, Priebe I, Hor M, Fung K. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G252-G276. [PMID: 39716040 DOI: 10.1152/ajpgi.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and nonepithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, three-dimensional (3-D) mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the nonepithelial and microbial components of the intestinal microenvironment. As such, several coculture systems have been developed to coculture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These coculture models allow researchers to recreate the complex intestinal environment and study the intricate cross talk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid cocultures, and each approach has its own strengths and limitations. This review discusses the existing methods for coculturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
Collapse
Affiliation(s)
| | - Anita Raposo
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Chia-Chi Chien
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Chenkai Ma
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Ilka Priebe
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Maryam Hor
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Kim Fung
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Di Mattia M, Sallese M, Lopetuso LR. Unfolded protein response: An essential element of intestinal homeostasis and a potential therapeutic target for inflammatory bowel disease. Acta Physiol (Oxf) 2025; 241:e14284. [PMID: 39822064 DOI: 10.1111/apha.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development. Importantly, we also highlighted the promising potential of UPR components as therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Walter CEJ, Shankaran ZS, Kontham SS, Ramachandran K, Prakash N, Johnson T, JR SN. Investigating the association of microRNA polymorphisms and lifestyle factors with the susceptibility to common gastrointestinal cancers in an Indian population- A case control study. Heliyon 2025; 11:e41519. [PMID: 39850417 PMCID: PMC11755044 DOI: 10.1016/j.heliyon.2024.e41519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
The cancers of the gastrointestinal (GI) tract have become a common diagnosis worldwide contributing to a large number of mortalities. Though potentially curable they are mostly fatal due to late diagnosis and lack of accurate diagnostic markers. microRNA, micromanagers of gene expression have been associated to have distinct roles as oncogenes or tumour suppressors in several cancers including GI cancers. These miRNAs are known to harbour single nucleotide polymorphisms (SNPs) that lead to loss or gain of its functions and have been found to be associated with altering susceptibility of several cancers. The current study aimed to investigate the role of miRSNPs in common gastrointestinal cancers. A case control study was designed which included 210 GI cancer cases and 230 cancer free controls. The miRSNPs were successfully genotyped using MassARRAY technique. Association analysis revealed that miR-196a; rs11614913, pre-mir-423; rs6505162, pre-mir-605; rs2043556, pre-mir-149; rs2292832 and pri-mir-30c; rs928508 polymorphisms significantly altered the risk of common GI cancers. Multifactor dimensionality reduction analysis demonstrated that miRSNPs alter GI cancer risk by interacting with exposures like diabetes mellitus, alcohol consumption, diet and socioeconomic status in the study subjects. In conclusion it was found that presence of miRNA polymorphism and certain lifestyle factors alters susceptibility to GI cancers significantly.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
| | - Zioni Sangeetha Shankaran
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
- Biomedical Sciences, Faculty of Allied Health Sciences, Sree Balaji Medical College & Hospital, Chennai, India
| | - Sai Sushmitha Kontham
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
- Department of Medical Biotechnology, School of Allied Health Sciences, Malla Reddy University, Hyderabad, India
| | | | - Nandini Prakash
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
| | - Thanka Johnson
- Department of Pathology, Sree Balaji Medical College & Hospital, Chennai, India
| | - Sri Nisha JR
- Department of Prosthodontia, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai, India
| |
Collapse
|
6
|
Kimura Y, Taniguchi M. Effects of morroniside isolated from Cornus officinalis fruits on functional gastrointestinal disorders and gastric ulcer in mice. Fitoterapia 2024; 179:106249. [PMID: 39395697 DOI: 10.1016/j.fitote.2024.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The dried fruits of Cornus officinalis (Cornaceae) are used in Kampo medicine (e.g. Hachimigan and Goshajinkigan) to treat senile osteoporosis, diabetes, gastric atony, frequent urination, and diarrhea/constipation associated with aging. The present study investigated the effects of a C. officinalis fruit extract and morroniside, an iridoid compound from isolated these fruits, on the reduction in gastric emptying small intestinal motility caused by 5-hydroxytryptamine (5-HT) and 1-(3-chlorophenyl) biguanide (5-HT3 receptor agonist), and gastric ulcers induced by 150 or 75 mM HCl/90 % EtOH (HCl-EtOH) and/or 5-HT in mice. C. officinalis extract (500 mg/kg) and morroniside (20 and 50 mg/kg) suppressed the reduction in gastric emptying induced by 5-HT- and 5-HT3 agonist. C. officinalis extract, morroniside and 5-HT3 receptor antagonist (ramosetron) attenuated 5-HT-induced diarrhea. Furthermore, morroniside (20 and 50 mg/kg) prevented EtOH/HCl-induced gastric ulcers and those caused by 5-HT. Morroniside (20 and 50 mg/kg) attenuated elevations in the plasma levels of corticosterone, corticotropin-releasing factor (CRF), and adrenocorticotropic hormone (ACTH) in 75 mM HCl/90 % EtOH- and 5-HT-treated mice. The results obtained herein suggest the potential of morroniside as an effective treatment for irritable bowel syndrome, such as diarrhea and functional dyspepsia (reductions in gastric emptying and small intestinal motility), caused by 5-HT. The present study suggests a role for morroniside in the regulation of elevations in CRF, ACTH, and corticosterone levels through hypothalamic-pituitary-adrenal axis activity induced by stress loading, such as a 5-HT treatment and/or HCl/EtOH stimulation.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Department of Biochemical Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; Department of Natural Product Research Sciences, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan.
| | - Masahiko Taniguchi
- Department of Natural Product Research Sciences, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
| |
Collapse
|
7
|
Shahzad N, Ibrahim IAA, Alzahrani AR, Al-Ghamdi SS, Alanazi IMM, Ahmad MP, Singh AK, Alruqi MA, Shahid I, Equbal A, Azlina MFN. A comprehensive review on phytochemicals as potential therapeutic agents for stress-induced gastric ulcer. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2024; 10:793-808. [DOI: 10.1007/s43994-024-00140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/23/2024] [Indexed: 01/02/2025]
Abstract
AbstractGastric ulcers are the most common chronic gastrointestinal tract disorders, marked by an inflamed break of the mucus membrane covering the alimentary tract. According to recent research, stress-induced ulcers are widespread in our society. A stress ulcer is a mucosal defect that may become complicated due to upper gastrointestinal tract bleeding. The underlying cause of this condition is pH. Physiological stress leads to severe sickness by triggering the excessive secretion of peptic juices or gastric acid. There is a never-ending quest for safe and affordable medication for this disorder. Nature offers many medicinal plants that can be used to treat a wide range of human ailments. Due to their relatively harmless and comparatively free of harmful effects, health-promoting features, pharmacological practices, and affordability to common people to regulate various diseases, medicinal plants, and herbal preparations are gaining a lot of interest in scientific communities these days. Many studies have recently been performed to classify extracts and their constituents that may have a therapeutic effect on peptic ulcers. Therefore, this review aims to address the molecular mechanisms and pharmacological effects of various phytochemicals related to stress-induced gastric ulcers. Combining phytochemical constituents with modern drugs and treatment methods can lead to the development of therapeutic drugs for gastric ulcers. Gastric ulcers and other related diseases may be treated permanently with this approach.
Collapse
|
8
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Hinssen F, Mensink M, Huppertz T, van der Wielen N. Impact of aging on the digestive system related to protein digestion in vivo. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39601792 DOI: 10.1080/10408398.2024.2433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
For the current aging population, protein is an important macronutrient to counteract the development of sarcopenia. Protein digestion is influenced by the capacity of the digestive system. The current evidence is reviewed about the impact of aging on the human digestive system and related to protein digestion in vivo. Aging changes the digestive organs which impacts protein digestion. Dentition decreases and mastication changes, potentially affecting particle size reduction. Stomach gastric acidity is unchanged, gastric emptying is delayed, while total transit time remains unchanged. Production of enzymes by the pancreas is decreased, but any changes in the small intestine remain unresolved. Animal studies showed decreased fecal protein digestion in older compared to young animals. Human studies showed decreased postprandial peripheral plasma appearance of ingested amino acids and increased splanchnic extraction. The findings suggest that the deteriorating digestive system with aging results in decreased protein digestion. Interpretation of the results should be taken with caution because of interindividual differences in the aging process, and because studies on protein digestion in aging humans are scarce. More information is needed on healthy aging and its relation to the digestive tract and protein digestion, several methods including in vitro experiments are valuable in this perspective.
Collapse
Affiliation(s)
- Fenna Hinssen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marco Mensink
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thom Huppertz
- FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Animal Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Jia WW, Wu JH, Yang C, Liu DN, Wang XP, Sun RZ, Li CP, Hao CY. An additional gastrojejunostomy may reduce the incidence of moderate and severe delayed gastric emptying after distal segmental duodenectomy for gastrointestinal stromal tumors. World J Surg Oncol 2024; 22:303. [PMID: 39543700 PMCID: PMC11566445 DOI: 10.1186/s12957-024-03585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND To investigate whether an additional gastrojejunostomy reduces the incidence of delayed gastric emptying (DGE) following a distal segmental duodenectomy for duodenal and proximal jejunal gastrointestinal stromal tumors (GIST). MATERIALS AND METHODS This retrospective review of the GIST database at Peking University Cancer Hospital included 50 patients who underwent distal segmental duodenectomies for primary GIST in the duodenum or proximal jejunum within 20 cm of Treitz's ligament between January 2008 and December 2023. The patients were divided into two groups: non-bypass (without gastrojejunostomy) and bypass (with gastrojejunostomy and Braun's jejunojejunostomy). Perioperative characteristics and postoperative complications were analyzed. RESULTS Among the 50 patients, 27 underwent duodenojejunostomies without gastrojejunostomies and 23 with gastrojejunostomies and Braun's jejunojejunostomies. The incidence of grade B-C DGE was significantly lower in the bypass group (43.5% vs. 74.1%, p = 0.028). In addition, non-bypass surgery was an independent risk factor for increased grade B-C DGE (OR 3.67, 95% CI 1.07-12.64, p = 0.039). The bypass group showed a trend towards a shorter postoperative hospital stay (median: 14 days, range: 10-56) compared to the non-bypass group (median: 28 days, range: 6-75), but this difference did not reach statistical significance (p = 0.070). Operative time (min) was significantly longer in the multi-visceral resection group (381.0 ± 108.8 vs. 227.3 ± 87.6, p < 0.001), for tumors ≥ 6.3 cm compared to < 6.3 cm (337.0 ± 116.4 vs. 228.3 ± 99.8, p = 0.002), and in patients with positive preoperative symptoms versus asymptomatic patients (319.9 ± 118.0 vs. 210.2 ± 90.3, p = 0.031). CONCLUSION The addition of gastrojejunostomy and Braun's jejunojejunostomy in distal segmental duodenectomy can reduce the incidence of grade B-C DGE, potentially facilitating timely adjuvant imatinib therapy. Future multicenter studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Wei-Wei Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Cui Yang
- Department of Surgery, Medical Faculty Mannheim, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dao-Ning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Peng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rong-Ze Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Cheng-Peng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China.
- Department of Surgery, Medical Faculty Mannheim, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
11
|
Tu JJ, Zang YY, Shi YS, Teng XY. The TMEM63B Channel Facilitates Intestinal Motility and Enhances Proliferation of Intestinal Stem Cells. Cells 2024; 13:1784. [PMID: 39513891 PMCID: PMC11545518 DOI: 10.3390/cells13211784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The intestines are in a constant state of motion and self-renewal. The mechanical breakdown of food facilitates intestinal movement and aids digestion. It is believed that mechanical stimulation, triggered by changes in osmotic pressure within the intestines, plays a crucial role in regulating gastrointestinal motility. While TRPs and PIEZO1/2 have been identified as mechanosensitive ion channels involved in this process, there still exist numerous unidentified channels with similar properties. In this study, we demonstrate that the TMEM63B expressed in intestinal stem cells contributes to the regulation of intestinal motility and digestion. The deletion of TMEM63B in intestinal stem cells not only decelerates intestinal motility and impairs digestion but also attenuates the proliferation of intestinal stem cells and exacerbates DSS-induced colitis in mice. Collectively, our findings unveil the pivotal role of TMEM63B in governing optimal digestive function and modulating intestinal motility.
Collapse
Affiliation(s)
- Jing-Jing Tu
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yan-Yu Zang
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yun Stone Shi
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Xiao-Yu Teng
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| |
Collapse
|
12
|
Liu H, Yang G, Wang H. Oxytocin/Oxytocin Receptor Signalling in the Gastrointestinal System: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:10935. [PMID: 39456718 PMCID: PMC11508134 DOI: 10.3390/ijms252010935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The neuropeptide hormone oxytocin (OT) is involved in various physiological and pathological processes via the oxytocin receptor (OTR). While OT is most widely known as a reproductive system hormone and a nervous system neurotransmitter, the OT/OTR system has gradually gained much attention for its role in the gastrointestinal (GI) system, such as the GI motility, secretion, and bowel inflammatory reactions. Its importance in GI cancers has also been reported in the past few decades. The promising clinical observations have revealed OT's anti-nociceptive effect, protective effect over gut injury, and the potential of using microbiota to naturally increase endogenous OT levels, which shed a light on the management of GI disorders with lower side effects. However, no current comprehensive review is available on the actions of OT/OTR in the GI tract. This review aims to present the lesser-known role of the OT/OTR system in the GI tract, and the most recent findings are discussed regarding the distribution and functional role of OTR signalling in regulating (patho)physiological functions of the GI tract. Special emphasis is placed on its therapeutic potential for clinical management of GI disorders, such as GI pain, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). The recent characterisation of the OTR's crystal structure has advanced research for designing and identifying new OTR-specific molecules. Future in-depth basic and clinical research is needed to further elucidate the involvement and detailed mechanism of OT/OTR in GI disorders, and the development of OTR-specific ligands.
Collapse
Affiliation(s)
- Huiping Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (G.Y.); (H.W.)
| | | | | |
Collapse
|
13
|
Maurya R, Vikal A, Patel P, Narang RK, Kurmi BD. "Enhancing Oral Drug Absorption: Overcoming Physiological and Pharmaceutical Barriers for Improved Bioavailability". AAPS PharmSciTech 2024; 25:228. [PMID: 39354282 DOI: 10.1208/s12249-024-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
The oral route stands out as the most commonly used method for drug administration, prized for its non-invasive nature, patient compliance, and easy administration. Several elements influence the absorption of oral medications, including their solubility, permeability across mucosal membranes, and stability within the gastrointestinal (GI) environment. Research has delved into comprehending physicochemical, biochemical, metabolic, and biological obstacles that impact the bioavailability of a drug. To improve oral drug absorption, several pharmaceutical technologies and delivery methods have been studied, including cyclodextrins, micelles, nanocarriers, and lipid-based carriers. This review examines both traditional and innovative drug delivery methods, as well as the physiological and pharmacological barriers influencing medication bioavailability when taken orally. Additionally, it describes the challenges and advancements in developing formulations suitable for oral use.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- ISF College of Pharmacy and Research, Rattian Road, Moga, 142048, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
14
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
15
|
Qi R, Zhang B, Qiu X, Liu X, Bao S, Wang J, Wang Q, Yang Y, Yang H, Liu Z. Microbiome and metabolome analyses indicate variations in the gut microbiota that disrupt regulation of appetite. FASEB J 2024; 38:e70003. [PMID: 39157946 DOI: 10.1096/fj.202401360r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The mechanism connecting gut microbiota to appetite regulation is not yet fully understood. This study identifies specific microbial community and metabolites that may influence appetite regulation. In the initial phase of the study, mice were administered a broad-spectrum antibiotic cocktail (ABX) for 10 days. The treatment significantly reduced gut microbes and disrupted the metabolism of arginine and tryptophan. Consequently, ABX-treated mice demonstrated a notable reduction in feed consumption. The hypothalamic expression levels of CART and POMC, two key anorexigenic factors, were significantly increased, while orexigenic factors, such as NPY and AGRP, were decreased. Notably, the levels of appetite-suppressing hormone cholecystokinin in the blood were significantly elevated. In the second phase, control mice were maintained, while the ABX-treated mice received saline, probiotics, and short-chain fatty acids (SCFAs) for an additional 10 days to restore their gut microbiota. The microbiota reconstructed by probiotic and SCFA treatments were quite similar, while microbiota of the naturally recovering mice demonstrated greater resemblance to that of the control mice. Notably, the abundance of Akkermansia and Bacteroides genera significantly increased in the reconstructed microbiota. Moreover, microbiota reconstruction corrected the disrupted arginine and tryptophan metabolism and the abnormal peripheral hormone levels caused by ABX treatment. Among the groups, SCFA-treated mice had the highest feed intake and NPY expression. Our findings indicate that gut microbes, especially Akkermansia, regulate arginine and tryptophan metabolism, thereby influencing appetite through the microbe-gut-brain axis.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
| | - Bin Zhang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xin Liu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Shili Bao
- Rongchang District People's Hospital, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Haili Yang
- College of animal science and technology, Southwest University, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| |
Collapse
|
16
|
Elfers K, Sehnert AS, Wagner A, Zwirner U, Linge H, Kulik U, Poehnert D, Winny M, Gundert B, Aselmann H, Mazzuoli-Weber G. Functional and Structural Investigation of Myenteric Neurons in the Human Colon. GASTRO HEP ADVANCES 2024; 4:100537. [PMID: 39790245 PMCID: PMC11714724 DOI: 10.1016/j.gastha.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 01/12/2025]
Abstract
Background and Aims The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients. Methods Activity from myenteric neurons in wholemount preparations of different sampling sites of fresh, human colonic tissue was recorded using neuroimaging with the voltage sensitive dye 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine. Neuronal responses were analyzed following stimulation with nicotine and serotonin (5-HT) for differences based on the donor's age, the disorder indicative for surgery and the colonic region. Immunohistochemistry was performed to calculate the total neuronal numbers. Results Stimulation with nicotine and 5-HT elicited reproducible action potential discharge in a proportion of human myenteric neurons. The responses to 5-HT were significantly greater in tissues from older patients and from those with inflammatory disorders, while neuronal activity to nicotinergic stimulation was comparable in all patients. Neuronal numbers declined with rising patient's age and was highest in the sigmoid colon. Conclusion Neuroimaging with 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine was successfully adapted to record reproducible responses from human colonic myenteric neurons upon pharmacological stimulation. Evidence exists for an impact of age and inflammation on the serotonergic neuronal signaling and for differences in neuronal numbers in the distinct colonic regions as well as a neuronal decrease with age.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Sophia Sehnert
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alexander Wagner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Zwirner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Helena Linge
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Poehnert
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Markus Winny
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Benjamin Gundert
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Heiko Aselmann
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
17
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Katiyar P, Pandey S, Chauhan M, Rajput SK, Arya V. Swertia chirayita (Roxb.) H. Karst.: A Magnificent Natural Remedy for the
Management of Gastrointestinal Disorders. THE INTERNATIONAL JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY DISEASES 2024; 03. [DOI: 10.2174/0126662906301632240528055034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/26/2024]
Abstract
:
Gastrointestinal (GI) disorders encompassing conditions such as gastritis, peptic ul-cers, and inflammatory bowel disorders are major global health concerns affecting millions worldwide. Conventional treatment options often come with undesirable side effects, prompting the search for alternative therapies. The herb's influence on digestive processes, mucosal protec-tion, and modulation of gut microbiota shed light on maintaining potential GI health. Swertia chirayita (Gentianaceae), commonly known as 'Chirata', is a traditional medicinal herb that has been used for centuries in various cultures for its therapeutic benefits, particularly for GI ailments. Furthermore, this review highlights several scientific studies and clinical trials that support the traditional uses of S. chirayita in treating GI disorders. In conclusion, S. chirayita could be ben-eficial as a natural remedy with promising therapeutic potential for managing GI disorders. How-ever, there are still some scientific gaps, such as the identification of bioactive compounds, the structure-activity relationship, the mechanistic action of isolated bioactive compounds, the de-velopment of effective analytical methods for comprehensive quality control, and safety profiles, that need to be addressed. Understanding its molecular mechanisms and conducting further clin-ical trials will contribute to establishing S. chirayita as a valuable addition to the armamentarium of natural therapies for GI health.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Shalini Singh
- Department of Pharmaceutical
Sciences, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Shalini Mishra
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Maneesha Rana
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Rajesh Kumar Mishra
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Prashant Katiyar
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Shalvi Pandey
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Muskan Chauhan
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical
Sciences, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| |
Collapse
|
18
|
Gong CM, Huang HC, Liu JH, Yu SS, Chen YT. Auricular Acupressure Improve Constipation of Patients With Schizophrenia: A Pilot Randomized Controlled Study. Biol Res Nurs 2024; 26:418-428. [PMID: 38439651 DOI: 10.1177/10998004241236947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Background. Constipation is a common distressing problem in patients with schizophrenia that can cause complications and impair quality of life. Objective. The objective of this study was to investigate the efficacy of applying auricular acupressure (AA) treatment in improving constipation in patients with schizophrenia. Methods. A crossover randomized controlled trial design was performed from April 2022 to December 2023 at four psychiatric rehabilitation care centers. A total of 23 patients with schizophrenia received an AA intervention or usual care according to the designated treatment sequences. Measurements comprised subjective assessment of constipation by the Patient Assessment of Constipation-Symptoms (PAC-SYM) questionnaire, an objective assessment of the stool pattern rated by a Bristol stool form scale, and heart rate variability. A generalized estimating equation model was used for data analyses. Results. After completing an 8-week AA intervention stimulating the Shenmen, San Jiao, Large intestine and Rectum, the AA group exhibited lower scores in the PAC-SYM total score (difference = -12.66, ,0.001), and the subscales: abdominal (difference = -3.36, p < .001), rectal (difference = -3.51, p < .001), and stool (difference = -5.79, p < .001), compared to those receiving usual care. The cases of constipation indicated by type 1 and type 2 of the BSF scale significantly decreased after the 8-week AA intervention. Moreover, the AA group displayed more parasympathetic dominance compared to the usual care group, with a low frequency to high frequency ratio of -1.15. Conclusion. AA is an effective non-pharmacological method for improving subjective constipation symptoms and objective stool pattern in patients with schizophrenia.
Collapse
Affiliation(s)
- Ciao-Min Gong
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chuan Huang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Ju-Han Liu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- School of Medicine, Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiou-Shiun Yu
- Yilan Yuanshan Medical Foundation, Yilan Yuanshan Hospital, Yilan, Taiwan
| | - Yu-Ting Chen
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Psychiatry, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| |
Collapse
|
19
|
Guo J, Zhang H, Hu H, Zhao T, Ji H, Ma L, Lu J, Yuan J, Xu B. Silent information regulator 2 deficiency exacerbates chronic cold exposure-induced colonic injury and p65 activation in mice. Gene 2024; 907:148276. [PMID: 38360128 DOI: 10.1016/j.gene.2024.148276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Cold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice. In a previous study, we showed that SIRT2 regulated p65 activation after cold exposure. In the current study, mice were exposed to 4 °C for 3 h/day for 3 weeks to simulate a chronic cold exposure environment. Chronic cold exposure shortened colon length, disrupted tight junctions in colonic epithelial tissue, and disordered colonic flora. Chronic cold exposure also increased p65 acetylation levels, promoted nuclear factor (NF)-κB activation, and increased the expression of its downstream pro-inflammatory factors, while SIRT2 knockdown aggravated the consequences of tissue structure disruption and increased inflammatory factors brought about by chronic cold exposure to some extent, but could alleviate the downregulation of colonic tight junction-related proteins to some extent. We also observed direct SIRT2 regulatory effects toward p65, and in Caco-2 cells treated with lipopolysaccharide (LPS), SIRT2 knockdown increased p65 acetylation levels and pro-inflammatory factor expression, while SIRT2 overexpression reversed these phenomena. Therefore, SIRT2 deletion exacerbated chronic cold exposure-induced colonic injury and p65 activation in mice. Mechanistically, p65 modification by SIRT2 via deacetylation may affect NF-κB signaling. These findings suggest that SIRT2 is a key target of colonic health maintenance under chronic cold exposure conditions.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huaixiu Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huijie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianrui Zhao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
20
|
Nazarko L. Stoma care: an update. Br J Community Nurs 2024; 29:184-188. [PMID: 38564443 DOI: 10.12968/bjcn.2024.29.4.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Each year an estimated 13 500 stoma surgeries are carried out in the UK (Kettle, 2019). Stoma surgery may involve the formation of a colostomy or an ileostomy. The person with a stoma may require help and support from the community nurse. This article aims to update readers on the indications for colostomy and ileostomy surgery and to enable them to support ostomates to reduce the risks of complications.
Collapse
|
21
|
Chen Z, Wang G, Wang W, Wang X, Huang Y, Jia J, Gao Q, Xu H, Xu Y, Ma Z, He L, Cheng J, Li C. PDE9A polymorphism and association analysis with growth performance and gastrointestinal weight of Hu sheep. Gene 2024; 900:148137. [PMID: 38184018 DOI: 10.1016/j.gene.2024.148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Phosphodiesterase 9A (PDE9A) plays a crucial role in activating the cGMP-dependent signaling pathway and may have important effects on the growth and development of the gastrointestinal tract in Hu sheep. In this study, we analyzed the single nucleotide polymorphisms of PDE9A in 988 Hu sheep and their correlation with growth performance, feed efficiency, and gastrointestinal development. Additionally, we examined the expression level of different PDE9A genotypes in the gastrointestinal tract of Hu sheep by using fluorescence quantitative PCR. The results revealed a moderate level of polymorphism (0.25 < PIC < 0.50) at the g.286248617 T > C mutation site located in the first intron of PDE9A in Hu sheep, with three genotypes: CC, CT, and TT. The weights of the omasum, colon, and cecum were significantly greater in the CC genotype than in the TT genotype (P < 0.05), and the expression level of PDE9A in the tissues of the rumen, ileum, cecum, and colon was notably lower in the CC genotype individuals (P < 0.05). These findings suggest that the polymorphism of PDE9A affects the weight of the stomach, colon, and cecum in Hu sheep through expression regulation. Overall, the results of this study suggest that the g.286248617 T > C mutation site in the first intron of PDE9A can serve as a potential molecular marker for breeding practices related to the gastrointestinal weight of Hu sheep.
Collapse
Affiliation(s)
- Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yunfei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
22
|
Wang ZY, Ma DR, Li MJ, Liang YY, Hu ZW, Li SJ, Zuo CY, Hao CW, Feng YM, Guo MN, Hao XY, Guo YL, Ma KK, Guo LN, Zhang C, Xu YM, Mao CY, Shi CH. Association between irritable bowel syndrome and Parkinson's disease by Cohort study and Mendelian randomization analysis. NPJ Parkinsons Dis 2024; 10:70. [PMID: 38548756 PMCID: PMC10978991 DOI: 10.1038/s41531-024-00691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.
Collapse
Affiliation(s)
- Zhi-Yun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong-Rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng-Wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chun-Yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chen-Wei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-Mei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Li Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke-Ke Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Na Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Gao W, Yan Y, Guan Z, Zhang J, Chen W. Effects of Bacillus coagulans TBC169 on gut microbiota and metabolites in gynecological laparoscopy patients. Front Microbiol 2024; 15:1284402. [PMID: 38596369 PMCID: PMC11002114 DOI: 10.3389/fmicb.2024.1284402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective The primary objective of this study is to investigate the mechanism by which Bacillus coagulans TBC169 accelerates intestinal function recovery in patients who have undergone gynecological laparoscopic surgery, using metabolomics and gut microbiota analysis. Methods A total of 20 subjects were selected and randomly divided into two groups: the intervention group (n = 10) receiving Bacillus coagulans TBC169 Tablets (6 pills, 1.05 × 108 CFU), and the control group (n = 10) receiving placebos (6 pills). After the initial postoperative defecation, fecal samples were collected from each subject to analyze their gut microbiota and metabolic profiles by high-throughput 16S rRNA gene sequencing analysis and untargeted metabonomic. Results There were no statistically significant differences observed in the α-diversity and β-diversity between the two groups; however, in the intervention group, there was a significant reduction in the relative abundance of unclassified_Enterobacteriaceae at the genus level. Furthermore, the control group showed increased levels of Holdemanella and Enterobacter, whereas the intervention group exhibited elevated levels of Intestinimonas. And administration of Bacillus coagulans TBC169 led to variations in 2 metabolic pathways: D-glutamine and D-glutamate metabolism, and arginine biosynthesis. Conclusion This study demonstrated that consuming Bacillus coagulans TBC169 after gynecological laparoscopic surgery might inhibit the proliferation of harmful Enterobacteriaceae; mainly influence 2 pathways including D-glutamine and D-glutamate metabolism, and arginine biosynthesis; and regulate metabolites related to immunity and intestinal motility; which can help regulate immune function, maintain intestinal balance, promote intestinal peristalsis, and thus accelerate the recovery of intestinal function.
Collapse
Affiliation(s)
- Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaobo Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
24
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
25
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
27
|
de Amorim Ferreira M, Ferreira J. Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review. Curr Neuropharmacol 2024; 22:1909-1922. [PMID: 37581322 PMCID: PMC11284728 DOI: 10.2174/1570159x21666230811102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE Identify the participation of Cav2.3 in pain and analgesia. METHODS To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.
Collapse
Affiliation(s)
| | - Juliano Ferreira
- Graduate Program of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
28
|
Papadopoulou A, Amil-Dias J, Auth MKH, Chehade M, Collins MH, Gupta SK, Gutiérrez-Junquera C, Orel R, Vieira MC, Zevit N, Atkins D, Bredenoord AJ, Carneiro F, Dellon ES, Gonsalves N, Menard-Katcher C, Koletzko S, Liacouras C, Marderfeld L, Oliva S, Ohtsuka Y, Rothenberg ME, Strauman A, Thapar N, Yang GY, Furuta GT. Joint ESPGHAN/NASPGHAN Guidelines on Childhood Eosinophilic Gastrointestinal Disorders Beyond Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 2024; 78:122-152. [PMID: 37399187 DOI: 10.1097/mpg.0000000000003877] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/13/2019] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Eosinophilic gastrointestinal disorders beyond eosinophilic esophagitis (non-EoE EGIDs) are rare chronic inflammatory disorders of the gastrointestinal (GI) tract. Diagnosis is based on clinical symptoms and histologic findings of eosinophilic inflammation after exclusion of a secondary cause or systemic disease. Currently, no guidelines exist for the evaluation of non-EoE EGIDs. Therefore, the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) formed a task force group to provide consensus guidelines for childhood non-EoE EGIDs. METHODS The working group was composed of pediatric gastroenterologists, adult gastroenterologists, allergists/immunologists, and pathologists. An extensive electronic literature search of the MEDLINE, EMBASE, and Cochrane databases was conducted up to February 2022. General methodology was used in the formulation of recommendations according to the Appraisal of Guidelines for Research and Evaluation (AGREE) II and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to meet current standards of evidence assessment. RESULTS The guidelines provide information on the current concept of non-EoE EGIDs, disease pathogenesis, epidemiology, clinical manifestations, diagnostic and disease surveillance procedures, and current treatment options. Thirty-four statements based on available evidence and 41 recommendations based on expert opinion and best clinical practices were developed. CONCLUSION Non-EoE EGIDs literature is limited in scope and depth, making clear recommendations difficult. These consensus-based clinical practice guidelines are intended to assist clinicians caring for children affected by non-EoE EGIDs and to facilitate high-quality randomized controlled trials of various treatment modalities using standardized, uniform disease definitions.
Collapse
Affiliation(s)
- Alexandra Papadopoulou
- Division of Gastroenterology and Hepatology, First Department of Pediatrics, University of Athens, Children's Hospital Agia Sofia, Athens, Greece
| | | | - Marcus Karl-Heinz Auth
- Paediatric Gastroenterology, Hepatology and Nutrition, Alder Hey Children's NHS Foundation Trust and University of Liverpool, Liverpool, UK
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sandeep K Gupta
- Community Health Network; and Section of Pediatric Gastroenterology, Hepatology and Nutrition, Riley Hospital for Children, Indiana University, Indianapolis, IN
| | - Carolina Gutiérrez-Junquera
- Pediatric Gastroenterology Unit, University Hospital Puerta de Hierro Majadahonda, Autonomous University of Madrid, Madrid, Spain
| | - Rok Orel
- Department of Gastroenterology, Hepatology and Nutrition, Ljubljana University Children's Hospital, Ljubljana, Slovenia
| | - Mario C Vieira
- Center for Pediatric Gastroenterology, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Noam Zevit
- Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Atkins
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Albert J Bredenoord
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Fatima Carneiro
- Centro Hospitalar Universitário de São João (CHUSJ)/Faculty of Medicine of the University of Porto (FMUP) and Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)/i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Evan S Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Nirmala Gonsalves
- Division of Gastroenterology & Hepatology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Calies Menard-Katcher
- Digestive Health Institute and Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Disease Program, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Chris Liacouras
- Center for Pediatric Eosinophilic Diseases, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luba Marderfeld
- The Ottawa Hospital, IBD Center, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Salvatore Oliva
- Maternal and Child Health Department, Pediatric Gastroenterology and Liver Unit, Sapienza - University of Rome, Rome, Italy
| | - Yoshikazu Ohtsuka
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alex Strauman
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, GOS Institute of Child Health, University College London, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- Woolworths Centre for Child Nutrition Research, Queensland University of Technology, Brisbane, Australia
| | - Guan-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Glenn T Furuta
- Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, Gastrointestinal Eosinophilic Disease Program, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
29
|
Leng ZY, Wang JH, Gao L, Shi K, Hua HB. Efficacy of pantoprazole plus perforation repair for peptic ulcer and its effect on the stress response. World J Gastrointest Surg 2023; 15:2757-2764. [PMID: 38222001 PMCID: PMC10784820 DOI: 10.4240/wjgs.v15.i12.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/25/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Peptic ulcer (PU) is an abnormal phenomenon in which there is rupture of the mucosa of the digestive tract, which not only affects patients' normal life but also causes an economic burden due to its high medical costs. AIM To investigate the efficacy of pantoprazole (PPZ) plus perforation repair in patients with PU and its effect on the stress response. METHODS The study subjects were 108 PU patients admitted between July 2018 and July 2022, including 58 patients receiving PPZ plus perforation repair [research group (RG)] and 50 patients given simple perforation repair [control group (CG)]. The efficacy, somatostatin (SS) concentration, stress reaction [malondialdehyde (MDA), lipid peroxide (LPO)], inflammatory indices [tumor necrosis factor (TNF)-α, C-reactive protein (CRP), interleukin (IL)-1β], recurrence, and complications (perforation, hemorrhage, and pyloric obstruction) were compared. RESULTS The overall response rate was higher in the RG than in the CG. Patients in the RG had markedly elevated SS after treatment, which was higher than that of the CG, while MDA, LPO, TNF-, CRP, and IL-1β were significantly reduced to lower levels than those in the CG. Lower recurrence and complication rates were identified in the RG group. CONCLUSION Therefore, PPZ plus perforation repair is conducive to enhancing treatment outcomes in PU patients, reducing oxidative stress injury and excessive inflammatory reactions, and contributing to low recurrence and complication rates.
Collapse
Affiliation(s)
- Zi-Yan Leng
- The Second Hospital of Traditional Chinese Medicine of Jiangsu Province, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jia-Hao Wang
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lei Gao
- School of Chinese Medicine & School of Integrated, Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ke Shi
- Department of Spleen and Gastroenterology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, Jiangsu Province, China
| | - Hai-Bing Hua
- Department of Spleen and Gastroenterology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, Jiangsu Province, China
| |
Collapse
|
30
|
Wei T, Tan D, Zhong S, Zhang H, Deng Z, Li J. Differences in Absorption and Metabolism between Structured 1,3-Oleate-2-palmitate Glycerol and 1-Oleate-2-palmitate-3-linoleate Glycerol on C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19610-19621. [PMID: 38038963 DOI: 10.1021/acs.jafc.3c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
This study investigated differences in absorption and metabolism between 1,3-oleate-2-palmitate glycerol (OPO) and 1-oleate-2-palmitate-3-linoleate glycerol (OPL) using C57BL/6J mice. OPL was associated with higher postprandial plasma total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) concentrations, and the ratio of LDL-C to high-density lipoprotein cholesterol (HDL-C) compared to those of OPO (p > 0.05). OPO significantly increased postprandial oleic acid (OA) concentrations compared to OPL over the entire monitoring period (p < 0.05), while OPL significantly elevated linoleic acid (LA) levels compared to OPO (p < 0.05). After 1 month of feeding, the mice in both OPO and OPL groups showed lower final weight, weight gain, and liver TG, LDL-C, and LDL/HDL concentrations compared to the control (soybean oil) group. Lipidomics results showed that OPO increased the biosynthesis of very long-chain fatty acids and decreased the abundance of AcCa (16:1), AcCa (18:2), AcCa (18:1), AcCa (16:0), CarE (16:0), and CarE (16:1) relative to OPL. These lipid metabolites were positively correlated with liver TG, LDL-C, and LDL/HDL levels and negatively related to peroxisome proliferator-activated receptors α (PPARα) and acyl-CoA oxidase (ACOX1) expression. This study showed differences in physiologic functions between OPO and OPL and provided support for the future application of OPL in infant formula.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Dengfeng Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shengyue Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd., Shanghai 200137, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
31
|
Sasidharan A, Peethambar BA, Kumar KS, Kumar AV, Hiregange A, Fawkes N, Collins JF, Grosche A, Vidyasagar S. Advancing peristalsis deciphering in mouse small intestine by multi-parameter tracking. Commun Biol 2023; 6:1237. [PMID: 38062160 PMCID: PMC10703907 DOI: 10.1038/s42003-023-05631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Assessing gastrointestinal motility lacks simultaneous evaluation of intraluminal pressure (ILP), circular muscle (CM) and longitudinal muscle (LM) contraction, and lumen emptying. In this study, a sophisticated machine was developed that synchronized real-time recordings to quantify the intricate interplay between CM and LM contractions, and their timings for volume changes using high-resolution cameras with machine learning capability, the ILP using pressure transducers and droplet discharge (DD) using droplet counters. Results revealed four distinct phases, BPhase, NPhase, DPhase, and APhase, distinguished by pressure wave amplitudes. Fluid filling impacted LM strength and contraction frequency initially, followed by CM contraction affecting ILP, volume, and the extent of anterograde, retrograde, and segmental contractions during these phases that result in short or long duration DD. This comprehensive analysis sheds light on peristalsis mechanisms, understand their sequence and how one parameter influenced the other, offering insights for managing peristalsis by regulating smooth muscle contractions.
Collapse
Affiliation(s)
- Anusree Sasidharan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | | | - Ashok V Kumar
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | | | | | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Astrid Grosche
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
32
|
Didamoony MA, Soubh AA, Atwa AM, Ahmed LA. Innovative preconditioning strategies for improving the therapeutic efficacy of extracellular vesicles derived from mesenchymal stem cells in gastrointestinal diseases. Inflammopharmacology 2023; 31:2973-2993. [PMID: 37874430 PMCID: PMC10692273 DOI: 10.1007/s10787-023-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal (GI) diseases have become a global health issue and an economic burden due to their wide distribution, late prognosis, and the inefficacy of recent available medications. Therefore, it is crucial to search for new strategies for their management. In the recent decades, mesenchymal stem cells (MSCs) therapy has attracted attention as a viable option for treating a myriad of GI disorders such as hepatic fibrosis (HF), ulcerative colitis (UC), acute liver injury (ALI), and non-alcoholic fatty liver disease (NAFLD) due to their regenerative and paracrine properties. Importantly, recent studies have shown that MSC-derived extracellular vesicles (MSC-EVs) are responsible for most of the therapeutic effects of MSCs. In addition, EVs have revealed several benefits over their parent MSCs, such as being less immunogenic, having a lower risk of tumour formation, being able to cross biological barriers, and being easier to store. MSC-EVs exhibited regenerative, anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic effects in different experimental models of GI diseases. However, a key issue with their clinical application is the maintenance of their stability and efficacy following in vivo transplantation. Preconditioning of MSC-EVs or their parent cells is one of the novel methods used to improve their effectiveness and stability. Herein, we discuss the application of MSC-EVs in several GI disorders taking into account their mechanism of action. We also summarise the challenges and restrictions that need to be overcome to promote their clinical application in the treatment of various GI diseases as well as the recent developments to improve their effectiveness. A representation of the innovative preconditioning techniques that have been suggested for improving the therapeutic efficacy of MSC-EVs in GI diseases. The pathological conditions in various GI disorders (ALI, UC, HF and NAFLD) create a harsh environment for EVs and their parents, increasing the risk of apoptosis and senescence of MSCs and thereby diminishing MSC-EVs yield and restricting their large-scale applications. Preconditioning with pharmacological agents or biological mediators can improve the therapeutic efficacy of MSC-EVs through their adaption to the lethal environment to which they are subjected. This can result in establishment of a more conducive environment and activation of numerous vital trajectories that act to improve the immunomodulatory, reparative and regenerative activities of the derived EVs, as a part of MSCs paracrine system. ALI, acute liver injury; GI diseases, gastrointestinal diseases; HF, hepatic fibrosis; HSP, heat shock protein; miRNA, microRNA; mRNA, messenger RNA; MSC-EVs, mesenchymal stem cell-derived extracellular vesicles; NAFLD, non-alcoholic fatty liver disease; UC, ulcerative colitis.
Collapse
Affiliation(s)
- Manar A Didamoony
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt.
| | - Ayman A Soubh
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Ahram Canadian University, 4th Industrial Zone, Banks Complex, 6th of October City, Giza, 12451, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt
| | - Lamiaa A Ahmed
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
33
|
Qiao L, Dou X, Song X, Chang J, Zeng X, Zhu L, Yi H, Xu C. Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:99-113. [PMID: 38023380 PMCID: PMC10665811 DOI: 10.1016/j.aninu.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 12/01/2023]
Abstract
Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lixu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
34
|
Bulc M, Całka J, Palus K. Changes in the Phenotype of Intramural Inhibitory Neurons of the Porcine Descending Colon Resulting from Glyphosate Administration. Int J Mol Sci 2023; 24:16998. [PMID: 38069321 PMCID: PMC10707063 DOI: 10.3390/ijms242316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Environmental contamination and the resulting food contamination represent a serious problem and pose a major threat to animal and human health. The gastrointestinal tract is directly exposed to a variety of substances. One is glyphosate, whose presence in the soil is commonly observed. This study demonstrates the effects of low and high glyphosate doses on the populations of intramural neurons of the porcine descending colon. An analysis was performed on neurons ex-pressing the vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, a neuronal isoform of nitrogen oxide synthase, and galanin. Even a low dose of glyphosate increased the number of neurons immunoreactive against the studied substances. However, the changes depended on both the plexus analysed and the substance tested. Meanwhile, a high glyphosate dose resulted in quantitative changes (an increase in the number) within neurons immunoreactive against all the studied neuropeptides/enzymes in the myenteric plexus and both submucosal plexuses. The response of the enteric nervous system in the form of an increase in the number of neurons immunoreactive against neuroprotective substances may suggest that glyphosate has a toxic effect on enteric neurons which attempt to increase their survivability through the released neuroprotective substances.
Collapse
Affiliation(s)
- Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland; (J.C.); (K.P.)
| | | | | |
Collapse
|
35
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
36
|
Hertel J, Heinken A, Fässler D, Thiele I. Causal inference on microbiome-metabolome relations in observational host-microbiome data via in silico in vivo association pattern analyses. CELL REPORTS METHODS 2023; 3:100615. [PMID: 37848031 PMCID: PMC10626217 DOI: 10.1016/j.crmeth.2023.100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Understanding the effects of the microbiome on the host's metabolism is core to enlightening the role of the microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association pattern analyses, combining microbiome metabolome association studies with in silico constraint-based community modeling. Via theoretical dissection of confounding and causal paths, we show that in silico in vivo association pattern analyses allow for causal inference on microbiome-metabolome relations in observational data. We justify the corresponding theoretical criterion by structural equation modeling of host-microbiome systems, integrating deterministic microbiome community modeling into population statistics approaches. We show the feasibility of our approach on a published multi-omics dataset (n = 347), demonstrating causal microbiome-metabolite relations for 26 out of 54 fecal metabolites. In summary, we generate a promising approach for causal inference in metabolic host-microbiome interactions by integrating hypothesis-free screening association studies with knowledge-based in silico modeling.
Collapse
Affiliation(s)
- Johannes Hertel
- School of Medicine, University of Galway, Galway, Ireland; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Almut Heinken
- School of Medicine, University of Galway, Galway, Ireland; UMRS Inserm 1256 NGERE (Nutrition-Genetics-Environmental Risks), Institute of Medical Research (Pôle BMS) - University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland; Discipline of Microbiology, University of Galway, Galway, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Ryan Institute, University of Galway, Galway, Ireland.
| |
Collapse
|
37
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Schlatter J. Special Issue "Recent Advances in Oral Drug Delivery Development". Pharmaceuticals (Basel) 2023; 16:1289. [PMID: 37765097 PMCID: PMC10538212 DOI: 10.3390/ph16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
This Special Issue, entitled "Recent Advances in Oral Drug Delivery Development", aims to demonstrate new advances and future trends in the field of oral drug delivery [...].
Collapse
Affiliation(s)
- Joël Schlatter
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Paul Doumer, Service de Pharmacie, 60140 Labruyère, France
| |
Collapse
|
39
|
Descamps-Solà M, Vilalta A, Jalsevac F, Blay MT, Rodríguez-Gallego E, Pinent M, Beltrán-Debón R, Terra X, Ardévol A. Bitter taste receptors along the gastrointestinal tract: comparison between humans and rodents. Front Nutr 2023; 10:1215889. [PMID: 37712001 PMCID: PMC10498470 DOI: 10.3389/fnut.2023.1215889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
For decades bitter taste receptors (TAS2R) were thought to be located only in the mouth and to serve as sensors for nutrients and harmful substances. However, in recent years Tas2r have also been reported in extraoral tissues such as the skin, the lungs, and the intestine, where their function is still uncertain. To better understand the physiological role of these receptors, in this paper we focused on the intestine, an organ in which their activation may be similar to the receptors found in the mouth. We compare the relative presence of these receptors along the gastrointestinal tract in three main species of biomedical research (mice, rats and humans) using sequence homology. Current data from studies of rodents are scarce and while more data are available in humans, they are still deficient. Our results indicate, unexpectedly, that the reported expression profiles do not always coincide between species even if the receptors are orthologs. This may be due not only to evolutionary divergence of the species but also to their adaptation to different dietary patterns. Further studies are needed in order to develop an integrated vision of these receptors and their physiological functionality along the gastrointestinal tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raúl Beltrán-Debón
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | - Ximena Terra
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | | |
Collapse
|
40
|
Miura M, Igarashi M, Isotani R, Nakagawa-Nagahama Y, Kuranami S, Naruse K, Kadowaki T, Yamauchi T. SIRT1 Controls Enteroendocrine Progenitor Cell Proliferation in High-Fat Diet-Fed Mice. Cell Mol Gastroenterol Hepatol 2023; 16:1040-1057. [PMID: 37598893 PMCID: PMC10685171 DOI: 10.1016/j.jcmgh.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND & AIMS We aimed to investigate how sirtuin 1 (SIRT1), a conserved mammalian Nicotinamide adenine dinucleotide+-dependent protein deacetylase, regulates the number of enteroendocrine cells (EECs). EECs benefit metabolism, and their increase potentially could treat type 2 diabetes and obesity. METHODS We used mice with specific Sirt1 disruption in the intestinal epithelium (VilKO, villin-Cre+, and Sirt1flox/flox mice) or enteroendocrine progenitor cells (EEPCs) (NgnKO, neurogenin 3-Cre+, Sirt1flox/flox mice) and mice with increased SIRT1 activity owing to overexpression (Sir2d mice) or 24-hour fasting. Mice were fed a high-fat diet (HFD), and blood glucagon-like peptide 1 (GLP-1) and glucose levels were measured. Intestinal tissues, EECs, and formed organoids were analyzed using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In HFD-fed VilKO and NgnKO mice, an increase in EECs (42.3% and 37.2%), GLP-1- or GLP-2-producing L cells (93.0% and 61.4%), and GLP-1 (85.7% and 109.6%) was observed after glucose loading, explaining the improved metabolic phenotype of HFD-VilKO mice. These increases were associated with up-regulated expression of neurogenin 3 (EEPC marker) in crypts of HFD-VilKO and HFD-NgnKO mice, respectively. Conversely, Sir2d or 24-hour fasted mice showed a decrease in EECs (21.6%), L cells (41.6%), and proliferative progenitor cells. SIRT1 overexpression- or knockdown-mediated change in the progenitor cell proliferation was associated with Wnt/β-catenin activity changes. Notably, Wnt/β-catenin inhibitor completely suppressed EEC and L-cell increases in HFD-VilKO mice or organoids from HFD-VilKO and HFD-NgnKO mice. CONCLUSIONS Intestinal SIRT1 in EECs modulates the EEPC cycle by regulating β-catenin activity and can control the number of EECs in HFD-fed mice, which is a previously unknown role.
Collapse
Affiliation(s)
- Masaomi Miura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Igarashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biology, Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Ryosuke Isotani
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Nakagawa-Nagahama
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kuranami
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Naruse
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
41
|
Scheurink TAW, Borkent J, Gangadin SS, El Aidy S, Mandl R, Sommer IEC. Association between gut permeability, brain volume, and cognition in healthy participants and patients with schizophrenia spectrum disorder. Brain Behav 2023; 13:e3011. [PMID: 37095714 PMCID: PMC10275537 DOI: 10.1002/brb3.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The barrier function of the gut is important for many organs and systems, including the brain. If gut permeability increases, bacterial fragments may enter the circulation, giving rise to increased systemic inflammation. Increases in bacterial translocation are reflected in higher values of blood markers, including lipopolysaccharide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14). Some pioneer studies showed a negative association between bacterial translocation markers and brain volumes, but this association remains scarcely investigated. We investigate the effect of bacterial translocation on brain volumes and cognition in both healthy controls and patients with a schizophrenia spectrum disorder (SSD). MATERIALS AND METHODS Healthy controls (n = 39) and SSD patients (n = 72) underwent an MRI-scan, venipuncture and cognition assessments. We investigated associations between LBP and sCD14 and brain volumes (intracranial volume, total brain volume, and hippocampal volume) using linear regression. We then associated LBP and sCD14 to cognitive function using a mediation analysis, with intracranial volume as mediator. RESULTS Healthy controls showed a negative association between hippocampal volume and LBP (b = -0.11, p = .04), and intracranial volume and sCD14 (b = -0.25, p = .07). Both markers were indirectly associated with lower cognitive functioning in healthy controls (LBP: b = -0.071, p = .028; sCD14: b = -0.213, p = .052), mediated by low intracranial volume. In the SSD patients, these associations were markedly less present. CONCLUSION These findings extend earlier studies suggesting that increased bacterial translocation may negatively affect brain volume, which indirectly impacts cognition, even in this young healthy group. If replicated, this finding stresses the importance of a healthy gut for the development and optimal functioning of the brain. Absence of these associations in the SSD group may indicate that other factors such as allostatic load, chronic medication use and interrupted educational carrier had larger impact and attenuated the relative contribution of bacterial translocation.
Collapse
Affiliation(s)
- Toon Anton Willem Scheurink
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jenny Borkent
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Shiral S. Gangadin
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sahar El Aidy
- Host‐Microbe Metabolic InteractionsGroningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Rene Mandl
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of PsychiatryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
42
|
Siciliani D, Kortner TM, Berge GM, Hansen AK, Krogdahl Å. Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon ( Salmo salar L) parr. J Nutr Sci 2023; 12:e61. [PMID: 37252685 PMCID: PMC10214143 DOI: 10.1017/jns.2023.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield.
Collapse
Affiliation(s)
- Daphne Siciliani
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
43
|
Zhang MQ, Wu GZ, Zhang JP, Hu CQ. The comparative analysis of gastrointestinal toxicity of azithromycin and 3'-decladinosyl azithromycin on zebrafish larvae. Toxicol Appl Pharmacol 2023; 469:116529. [PMID: 37100089 DOI: 10.1016/j.taap.2023.116529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
The most commonly reported side effect of azithromycin is gastrointestinal (GI) disorders, and the main acid degradation product is 3'-Decladinosyl azithromycin (impurity J). We aimed to compare the GI toxicity of azithromycin and impurity J on zebrafish larvae and investigate the mechanism causing the differential GI toxicity. Results of our study showed that the GI toxicity induced by impurity J was higher than that of azithromycin in zebrafish larvae, and the effects of impurity J on transcription in the digestive system of zebrafish larvae were significantly stronger than those of azithromycin. Additionally, impurity J exerts stronger cytotoxic effects on GES-1 cells than azithromycin. Simultaneously, impurity J significantly increased ghsrb levels in the zebrafish intestinal tract and ghsr levels in human GES-1 cells compared to azithromycin, and ghsr overexpression significantly reduced cell viability, indicating that GI toxicity induced by azithromycin and impurity J may be correlated with ghsr overexpression induced by the two compounds. Meanwhile, molecular docking analysis showed that the highest -CDOCKER interaction energy scores with the zebrafish GHSRb or human GHSR protein might reflect the effect of azithromycin and impurity J on the expression of zebrafish ghsrb or human ghsr. Thus, our results suggest that impurity J has higher GI toxicity than azithromycin due to its greater ability to elevate ghsrb expression in zebrafish intestinal tract.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gui-Zhi Wu
- National Center for ADR Monitoring, Beijing 100022, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
44
|
Conz A, Salmona M, Diomede L. Effect of Non-Nutritive Sweeteners on the Gut Microbiota. Nutrients 2023; 15:nu15081869. [PMID: 37111090 PMCID: PMC10144565 DOI: 10.3390/nu15081869] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The human gut microbiota, a complex community of microorganisms living in the digestive tract, consists of more than 1500 species distributed in more than 50 different phyla, with 99% of bacteria coming from about 30-40 species. The colon alone, which contains the largest population of the diverse human microbiota, can harbor up to 100 trillion bacteria. The gut microbiota is essential in maintaining normal gut physiology and health. Therefore, its disruption in humans is often associated with various pathological conditions. Different factors can influence the composition and function of the gut microbiota, including host genetics, age, antibiotic treatments, environment, and diet. The diet has a marked effect, impacting the gut microbiota composition, beneficially or detrimentally, by altering some bacterial species and adjusting the metabolites produced in the gut environment. With the widespread use of non-nutritive sweeteners (NNS) in the diet, recent investigations have focused on their effect on the gut microbiota as a mediator of the potential impact generated by gastrointestinal-related disturbances, such as insulin resistance, obesity, and inflammation. We summarized the results from pre-clinical and clinical studies published over the last ten years that examined the single effects of the most consumed NNS: aspartame, acesulfame-K, sucralose, and saccharin. Pre-clinical studies have given conflicting results for various reasons, including the administration method and the differences in metabolism of the same NNS among the different animal species. A dysbiotic effect of NNS was observed in some human trials, but many other randomized controlled trials reported a lack of significant impacts on gut microbiota composition. These studies differed in the number of subjects involved, their dietary habits, and their lifestyle; all factors related to the baseline composition of gut microbiota and their response to NNS. The scientific community still has no unanimous consensus on the appropriate outcomes and biomarkers that can accurately define the effects of NNS on the gut microbiota.
Collapse
Affiliation(s)
- Andrea Conz
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
45
|
Breznik JA, Jury J, Verdú EF, Sloboda DM, Bowdish DME. Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor. Am J Physiol Gastrointest Liver Physiol 2023; 324:G305-G321. [PMID: 36749921 DOI: 10.1152/ajpgi.00231.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Proinflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high-fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays and quantitated intestinal macrophages in ileum and colon tissues by multicolor flow cytometry after short (6 wk), intermediate (12 wk), and prolonged (18 wk) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and tumor necrosis factor (TNF). We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes nor a local proinflammatory response by monocyte-derived or tissue-resident macrophages in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wild-type and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.
Collapse
Affiliation(s)
- Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdú
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Liu D, Wei M, Yan W, Xie H, Sun Y, Yuan B, Jin Y. Potential applications of drug delivery technologies against radiation enteritis. Expert Opin Drug Deliv 2023; 20:435-455. [PMID: 36809906 DOI: 10.1080/17425247.2023.2183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION The incidence of abdominal tumors, such as colorectal and prostate cancers, continually increases. Radiation therapy is widely applied in the clinical treatment of patients with abdominal/pelvic cancers, but it often unfortunately causes radiation enteritis (RE) involving the intestine, colon, and rectum. However, there is a lack of suitable treatment options for effective prevention and treatment of RE. AREAS COVERED Conventional clinical drugs for preventing and treating RE are usually applied by enemas and oral administration. Innovative gut-targeted drug delivery systems including hydrogels, microspheres, and nanoparticles are proposed to improve the prevention and curation of RE. EXPERT OPINION The prevention and treatment of RE have not attracted sufficient attention in the clinical practice, especially compared to the treatment of tumors, although RE takes patients great pains. Drug delivery to the pathological sites of RE is a huge challenge. The short retention and weak targeting of conventional drug delivery systems affect the therapeutic efficiency of anti-RE drugs. Novel drug delivery systems including hydrogels, microspheres, and nanoparticles can allow drugs long-term retention in the gut and targeting the inflammation sites to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
47
|
Jiang M, Zhang X, Zhang Y, Liu Y, Geng R, Liu H, Sun Y, Wang B. The Effects of Perioperative Probiotics on Postoperative Gastrointestinal Function in Patients with Brain Tumors: A Randomized, Placebo-Controlled Study. Nutr Cancer 2023; 75:1132-1142. [PMID: 37139872 DOI: 10.1080/01635581.2023.2178929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The incidence of postoperative gastrointestinal dysfunction among neurosurgical patients is as high as 80%. Probiotics help to maintain gastrointestinal barrier defense, provide competitive adherence to mucus and epithelial cells, and regulate gastrointestinal motility. Therefore, the purpose of this study was to investigate whether probiotics enhance gastrointestinal health after craniotomy in patients with brain tumors. This study was a 15-day, prospective, randomized, double-blind, placebo-controlled trial for patients being treated with elective craniotomy for brain tumors. Participants were randomly divided into the probiotics group (4 g probiotics, twice daily) and placebo group. The primary outcome was the time of first stool after surgery. The secondary outcomes included assessments of the gastrointestinal function, changes in gastrointestinal permeability and clinical outcomes. We enrolled a total of 200 participants (probiotics: 100; placebo: 100) and followed the principles of intention-to-treat analysis. The time of first stool and flatus were significantly shorter in the probiotics group compared to the placebo group (P < 0.001, respectively). No significant trends were observed for any other of the secondary outcome variables. Our findings suggest that probiotics can improve the gastrointestinal mobility of patients received craniotomy, and this improvement cannot be explained by changes in gastrointestinal permeability.
Collapse
Affiliation(s)
- Mengyang Jiang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yiqiang Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ran Geng
- Zhongke Yikang Biological Technology Company, Beijing, China
| | - Haixia Liu
- Zhongke Yikang Biological Technology Company, Beijing, China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Cai X, Bao D, Hua R, Cai B, Wang L, Dong R, Hua L. A Comparative Study on the Distribution Pattern of Endocrine Cells in the Gastrointestinal Tract of Two Small Alpine Mammals, Plateau Zokor ( Eospalax baileyi) and Plateau Pika ( Ochotona curzoniae). Animals (Basel) 2023; 13:ani13040640. [PMID: 36830427 PMCID: PMC9951659 DOI: 10.3390/ani13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Endocrine cells can secrete a variety of gastrointestinal hormones that regulate gastrointestinal digestion and absorption, which, in turn, play an important role in animal growth, metabolism, and acclimation. The small alpine mammals, plateau zokor (Eospalax baileyi) and plateau pika (Ochotona curzoniae), live in a unique ecotope with cold, hypoxic environments and short plant-growing seasons, resulting in differential adaptive digestive strategies for foods. Studying the distribution pattern of endocrine cells in the gastrointestinal tract (GIT) of these two animals can lead to a better understanding of the survival strategies of animals in an alpine environment. In this study, we used histochemical and immunohistochemical methods to compare the distribution pattern of argyrophilic cells and the expression of 5-HT cells, Gas cells, and Glu cells in the GIT of the plateau zokor with those of the plateau pika. The results showed that these endocrine cells we studied were widely distributed in the gastrointestinal organs of both these small mammals, and their morphology and distribution location in the GIT were almost the same. However, there were significant differences in the distribution density of argyrophilic cells between different organs in the GIT. The distribution density of argyrophilic cells in the duodenum, jejunum, ileum, and rectum of plateau zokor was significantly lower than that of plateau pika (p < 0.05) and, in the cecum of plateau zokor, was significantly higher than that of plateau pika (p < 0.001). The positive expression of 5-HT cells in the corpus I, corpus II, and pylorus of the stomach, duodenum, ileum, and rectum of plateau zokor was significantly higher than that of plateau pika (p < 0.01). In addition, the positive expression of Glu cells in the cecum was significantly higher (p < 0.01) and in the duodenum and colon was significantly lower (p < 0.05) in the plateau zokor than in the plateau pika. We conclude that the distribution pattern of endocrine cells in the GIT is consistent with the respective animals' diets, with the plateau zokor feeding on high-fiber roots and plateau pika preferring to intake the aboveground parts of plants with lower fibers.
Collapse
|
49
|
Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023; 15:pharmaceutics15020484. [PMID: 36839807 PMCID: PMC9960885 DOI: 10.3390/pharmaceutics15020484] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The oral route is the most preferred route for systemic and local drug delivery. However, the oral drug delivery system faces the harsh physiological and physicochemical environment of the gastrointestinal tract, which limits the bioavailability and targeted design of oral drug delivery system. Innovative pharmaceutical approaches including nanoparticulate formulations, biomimetic drug formulations, and microfabricated devices have been explored to optimize drug targeting and bioavailability. In this review, the anatomical factors, biochemical factors, and physiology factors that influence delivering drug via oral route are discussed and recent advance in conventional and novel oral drug delivery approaches for improving drug bioavailability and targeting ability are highlighted. We also address the challenges and opportunities of oral drug delivery systems in future.
Collapse
|
50
|
Qin S, Zhang K, Ding X, Bai S, Wang J, Tian G, Xuan Y, Su Z, Zeng Q. Microbiome-metabolomics analysis insight into the effects of dietary resistant starch on intestinal integrity. Food Chem 2023; 401:134148. [DOI: 10.1016/j.foodchem.2022.134148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 01/06/2023]
|