1
|
Wen Y. The Role of Immune Cells in Liver Regeneration. LIVERS 2023; 3:383-396. [DOI: 10.3390/livers3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The liver is the only organ that can regenerate and regain its original tissue-to-body weight ratio within a short period of time after tissue loss. Insufficient liver regeneration in patients after partial hepatectomy or liver transplantation with partial liver grafts often leads to post-hepatectomy liver failure or small-for-size syndrome, respectively. Enhancing liver regeneration after liver injury might improve outcomes and increase patient survival. Liver regeneration comprises hepatocyte proliferation, and hepatic progenitor cell expansion and differentiation into hepatocytes. The immune system is intensively involved in liver regeneration. The current review provides a comprehensive overview of the diverse roles played by immune cells in liver regeneration. Macrophages, neutrophils, eosinophils, basophils, mast cells, platelets, dendritic cells, type 1 innate lymphoid cells, B cells, and T cells are implicated in promoting liver regeneration, while natural killer cells and overactivated natural killer T cells are supposed to inhibit hepatocyte proliferation. We also highlight the predominant underlying mechanisms mediated by immune cells, which may contribute to the development of novel strategies for promoting liver regeneration in patients with liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Xu J, Chen P, Yu C, Shi Q, Wei S, Li Y, Qi H, Cao Q, Guo C, Wu X, Di G. Hypoxic bone marrow mesenchymal stromal cells‐derived exosomal
miR
‐182‐5p promotes liver regeneration via
FOXO1
‐mediated macrophage polarization. FASEB J 2022; 36:e22553. [DOI: 10.1096/fj.202101868rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Xu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Peng Chen
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Chaoqun Yu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Qiangqiang Shi
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Susu Wei
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Yaxin Li
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Hongzhao Qi
- Institute for Translational Medicine Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co.Ltd Qingdao China
| | - Chuanlong Guo
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Xianggen Wu
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guohu Di
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
3
|
Fathi F, Sanei B, Ganjalikhani Hakemi M, Saidi RF, Rezaei A. Liver Resection Promotes (Regulates) Proinflammatory Cytokines in Patients with Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021; 2021:5593655. [PMID: 33987145 PMCID: PMC8093046 DOI: 10.1155/2021/5593655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several animal studies have shown the roles of cytokines in regulating liver regeneration following liver resection (LR), which is a type of surgery designed to remove cancerous tumors from the liver. This study investigated how the expressions and serum levels of some pro- and anti-inflammatory cytokines in patients with hepatocellular carcinoma (HCC) were changed during LR. METHODS Liver tissues from 15 patients with HCC were collected and the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), IL-1α, IL-1 β, IL-10, and transforming growth factor-beta1 (TGF-β1) were assessed using real-time PCR assay at different times before and after LR. The serum values of TNF-α and IL-6 were also measured by ELISA. RESULTS After 60 and 90 minutes of LR, IL-6 gene expression was significantly increased (P < 0.001 - 0.05). The same trend was also observed in TNF-α expression after 90 minutes of LR (P < 0.01). No significant changes were observed in the expressions of IL-1α, IL-1β, IL-10, and TGF-β1 before and after LR. In addition, LR had significant effects on TNF-α and IL-6 serum levels (P < 0.05 - 0.0001). CONCLUSION Our data provided further evidence to reveal that IL-6 and TNF-α cytokines are critical to improve liver regeneration.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnam Sanei
- Department of Hepatobiliary & Pancreatic Surgery and Liver Transplantation, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza F. Saidi
- Division of Transplant Services, Department of Surgery, SUNY Upstate Medical University Syracuse, Syracuse, NY 13210, USA
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
The Role of IL-1 Family Members and Kupffer Cells in Liver Regeneration. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6495793. [PMID: 27092311 PMCID: PMC4820608 DOI: 10.1155/2016/6495793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Interleukin-1 (IL-1) family and Kupffer cells are linked with liver regeneration, but their precise roles remain unclear. IL-1 family members are pleiotropic factors with a range of biological roles in liver diseases, inducing hepatitis, cirrhosis, and hepatocellular carcinoma, as well as liver regeneration. Kupffer cells are the main source of IL-1 and IL-1 receptor antagonist (IL-1Ra), the key members of IL-1 family. This systemic review highlights a close association of IL-1 family members and Kupffer cells with liver regeneration, although their specific roles are inconclusive. Moreover, IL-1 members are proposed to induce effects on liver regeneration through Kupffer cells.
Collapse
|
6
|
Abstract
Bovine viral diarrhea virus (BVDV) has long been associated with a wide variety of clinical syndromes and immune dysregulation, many which result in secondary bacterial infections. Current understanding of immune cell interactions that result in activation and tolerance are explored in light of BVDV infection including: depletion of lymphocytes, effects on neutrophils, natural killer cells, and the role of receptors and cytokines. In addition, we review some new information on the effect of BVDV on immune development in the fetal liver, the role of resident macrophages, and greater implications for persistent infection.
Collapse
|
7
|
Sasaki E, Iida A, Oda S, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Pathogenetic analyses of carbamazepine-induced liver injury in F344 rats focused on immune- and inflammation-related factors. ACTA ACUST UNITED AC 2015; 68:27-38. [PMID: 26391595 DOI: 10.1016/j.etp.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/03/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
Drug-induced liver injury is one of the major reasons for a drug to be withdrawn postmarketing. Carbamazepine (CBZ), an anticonvulsant agent, has been reported rarely to cause liver failure in humans. We recently generated a rat model of CBZ-induced liver injury using F344 rats for five consecutive days of CBZ administration combined with a glutathione (GSH) depletor, L-buthionine S,R-sulfoximine, treatment. The involvement of metabolic activation was demonstrated in developing CBZ-induced liver injury, and a difference in metabolic activation reactions between mice and rats was indicated. In this study, we analyzed the pathogenetic mechanism of CBZ-induced liver injury, primarily focusing on immune- and inflammation-related factors using the rat model for CBZ-induced liver injury. After the last CBZ administration, plasma alanine aminotransfearase (ALT) levels were drastically increased. In the histopathological evaluation, time-dependent hepatocellular degeneration and necrosis were observed in the centrilobular region. Different from mice, although hepatic mRNA expression levels of inflammation-related genes were increased, T-helper cell-related genes were not predominantly changed in rats. The number of ED1- and ED2-positive macrophages was increased in injured centrilobular areas in the liver with CBZ-induced liver injury. Treatment with a Kupffer cell depletor, gadolinium chloride, prevented the elevation of plasma ALT levels and an increase in the hepatic mRNA expression levels of inflammation-related genes. Hepatic adenosine triphosphate (ATP) contents were significantly decreased 24 h after CBZ administration. Therefore, the Kupffer cells-mediated inflammation was predominant in the development of the CBZ-induced liver injury in rats.
Collapse
Affiliation(s)
- Eita Sasaki
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Azumi Iida
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1765-78. [DOI: 10.1016/j.bbadis.2015.05.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
9
|
Tolba RH, Fet N, Yonezawa K, Taura K, Nakajima A, Hata K, Okamura Y, Uchinami H, Klinge U, Minor T, Yamaoka Y, Yamamoto Y. Role of preferential cyclooxygenase-2 inhibition by meloxicam in ischemia/reperfusion injury of the rat liver. Eur Surg Res 2014; 53:11-24. [PMID: 24854565 DOI: 10.1159/000362411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) is one of the major clinical problems in liver and transplant surgery. Livers subjected to warm ischemia in vivo often show a severe dysfunction and the release of numerous inflammatory cytokines and arachidonic acid metabolites. Cyclooxygenase (COX)-2 is the inducible isoform of an intracellular enzyme that converts arachidonic acid into prostaglandins. The aim of the study was to evaluate the effect of COX-2 inhibition and the role of Kupffer cells in IRI of the liver. METHODS Male Wistar rats [250- 280 g body weight (BW)] were anesthetized and subjected to 30-min warm ischemia of the liver (Pringle's maneuver) and 60-min reperfusion after median laparotomy. The I/R group received no additional treatment. In the COX-2 inhibitor (COX-2I) group, the animals received 1 mg/kg BW meloxicam prior to operation. Gadolinium chloride (GdCl3) (10 mg/kg BW) was given 24 h prior to operation in the GdCl3 and GdCl3 + COX-2I groups for the selective depletion of Kupffer cells. The GdCl3 + COX-2I group received both GdCl3 and meloxicam treatment prior to operation. Blood and liver samples were obtained at the end of the experiments for further investigations. RESULTS After 30 min of warm ischemia in vivo, severe hepatocellular damage was observed in the I/R group. These impairments could be significantly prevented by the selective COX-2 inhibition and the depletion of Kupffer cells. Alanine aminotransferase was significantly reduced upon meloxicam and GdCl3 treatment compared to the I/R group: I/R, 3,240 ± 1,262 U/l versus COX-2I, 973 ± 649 U/l, p < 0.001; I/R versus GdCl3, 1,611 ± 600 U/l, p < 0.05, and I/R versus GdCl3 + COX-2I, 1,511 ± 575 U/l, p < 0.01. Plasma levels of tumor necrosis factor alpha (TNF-α) were significantly reduced in the COX-2I treatment group compared to I/R (3.5 ± 1.5 vs. 16.3 ± 11.7 pg/ml, respectively; p < 0.05). Similarly, the amount of TxB2, a marker for COX-2 metabolism, was significantly reduced in the meloxicam treatment groups compared to the I/R group: I/R, 22,500 ± 5,210 pg/ml versus COX-2I, 1,822 ± 938 pg/ml, p < 0.001, and I/R versus GdCl3 + COX-2I, 1,530 ± 907 pg/ml, p < 0.001. All values are given as mean ± SD (n = 6). CONCLUSION These results suggest that the inhibition of COX-2 suppressed the initiation of an inflammatory cascade by attenuating the release of TNF-α, which is an initiator of the inflammatory reaction in hepatic IRI. Therefore, we conclude that preferential inhibition of COX-2 is a possible therapeutic approach against warm IRI of the liver.
Collapse
Affiliation(s)
- René H Tolba
- Division of Surgical Research, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
11
|
Martino RB, Coelho AMM, Kubrusly MS, Leitão R, Sampietre SN, Machado MCC, Bacchella T, D'Albuquerque LAC. Pentoxifylline improves liver regeneration through down-regulation of TNF-α synthesis and TGF-β1 gene expression. World J Gastrointest Surg 2012; 4:146-51. [PMID: 22816029 PMCID: PMC3400043 DOI: 10.4240/wjgs.v4.i6.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 06/20/2012] [Accepted: 06/23/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism of pentoxifylline (PTX) improvement in liver regeneration.
RESULTS: Rats were randomized into 4 groups: Control rats; Sham - sham-operation rats; Saline - 70% hepatectomy plus saline solution; PTX - 70% hepatectomy plus PTX. At 2 and 6 h after hepatectomy, aspartate aminotransferase, alanine aminotransferase, tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) serum and hepatic tissue levels were determined. Tumor growth factor (TGF)-β1 gene expression in liver tissue was evaluated 24 h after hepatectomy by quantitative reverse transcriptase polymerase chain reaction analysis. Proliferation was analyzed by mitotic index and proliferating cell nuclear antigen (PCNA) staining 48 h after hepatectomy.
RESULTS: TNF-α and IL-6 serum levels increased at 2 and 6 h after hepatectomy. At 2 h after hepatectomy serum PTX was reduced but not hepatic levels of TNF-α and IL-6. A decrease in liver TGF-β1 gene expression and an increase in mitotic index and PCNA after hepatectomy were observed in the PTX treatment group in comparison to the saline group.
CONCLUSION: PTX improves liver regeneration by a mechanism related to down regulation of TNF-α production and TGF-β1 gene expression.
Collapse
Affiliation(s)
- Rodrigo Bronze Martino
- Rodrigo Bronze Martino, Ana Maria Mendonça Coelho, Márcia Saldanha Kubrusly, Regina Leitão, Sandra Nassa Sampietre, Marcel Cerqueira Cesar Machado, Telesforo Bacchella, Luiz Augusto Carneiro D'Albuquerque, Department of Gastroenterology (LIM/37), and Department of Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu CS, Jiang Y, Zhang LX, Chang CF, Wang GP, Shi RJ, Yang YJ. The role of Kupffer cells in rat liver regeneration revealed by cell-specific microarray analysis. J Cell Biochem 2012; 113:229-37. [PMID: 21898544 DOI: 10.1002/jcb.23348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver regeneration after partial hepatectomy is a process with various types of cells involved. The role of Kupffer cells (KCs) in liver regeneration is still controversial. In this study we isolated KCs from regenerating liver and conducted cell-specific microarray analysis. The results demonstrated that the controversial role of KCs in liver regeneration could be explained with the expression patterns of TGF-α, IL-6, TNF, and possibly IL-18 during liver regeneration. IL-18 may play an important role in negative regulation of liver regeneration. The functional profiles of gene expression in KCs also indicated that KC signaling might play a negative role in cell proliferation: signaling genes were down regulated before cell division. Immune response genes in KCs were also down regulated during liver regeneration, demonstrating similar expression profiles to that of hepatocytes. The expression patterns of key genes in these functional categories were consistent with the temporal functional profiles.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Papackova Z, Palenickova E, Dankova H, Zdychova J, Skop V, Kazdova L, Cahova M. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond) 2012; 9:22. [PMID: 22439764 PMCID: PMC3348013 DOI: 10.1186/1743-7075-9-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/22/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resident macrophages (Kupffer cells, KCs) in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF) diet rich in monounsaturated fatty acids. METHODS Male Wistar rats were fed either standard (SD) or high-fat (HF) diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. RESULTS We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. CONCLUSIONS We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Zuzana Papackova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Eliska Palenickova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Helena Dankova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Jana Zdychova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Vojtech Skop
- Institute for Chemical Technology, Prague, Czech Republic
| | - Ludmila Kazdova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Monika Cahova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| |
Collapse
|
14
|
Abstract
Alcoholic liver disease (ALD) is associated with a spectrum of liver injury ranging from steatosis and steatohepatitis to fibrosis and cirrhosis. While multifactorial pathogenesis plays a role in the disease progression, enhanced inflammation in the liver during ethanol exposure is a major feature of ALD. Dysregulated cytokine metabolism and activity are crucial to the initiation of alcohol-induced liver injury. The pro-inflammatory cytokine tumor necrosis factor (TNF-α) has been demonstrated to be one of the key factors in the various aspects of pathophysiology of ALD. The immunomodulatory cytokines such as interleukin 10 and interleukin 6 play roles in exerting hepatic protective effects. Adiponectin is an adipose tissue-derived hormone, which displays protective actions on ethanol-induced liver injury. Treatment for mice with adiponectin decreases TNF-α expression, steatosis and prevents alcohol-induced liver injury. Adiponectin exerts its anti-inflammatory effects via suppression of TNF-α expression and induction of anti-inflammatory cytokines such as IL-10. Adiponectin attenuates alcoholic liver injury by the complex network of multiple signaling pathways in the liver, leading to enhanced fatty acid oxidation and reduced steatosis. Interactions between pro- and anti-inflammatory cytokines such as TNFα and adiponectin and other cytokines are likely to play important roles in the development and progression of alcoholic liver disease.
Collapse
|
15
|
DeAngelis RA, Markiewski MM, Kourtzelis I, Rafail S, Syriga M, Sandor A, Maurya MR, Gupta S, Subramaniam S, Lambris JD. A complement-IL-4 regulatory circuit controls liver regeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:641-8. [PMID: 22184721 PMCID: PMC3253144 DOI: 10.4049/jimmunol.1101925] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of IL-4 in liver regeneration has not yet been recognized. In this article, we show that IL-4, produced by NKT cells that accumulate in regenerating livers after partial hepatectomy, contributes to this process by regulating the activation of complement after liver resection in mice. The mechanism of this regulation was associated with the maintenance of an appropriate level of IgM in mouse blood, because IgM deposited in liver parenchyma most likely initiated complement activation during liver regeneration. By controlling complement activation, IL-4 regulated the induction of IL-6, thereby influencing a key pathway involved in regenerating liver cell proliferation and survival. Furthermore, the secretion of IL-4 was controlled by complement through the recruitment of NKT cells to regenerating livers. Our study thus reveals the existence of a regulatory feedback mechanism involving complement and IL-4 that controls liver regeneration.
Collapse
Affiliation(s)
- Robert A. DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maciej M. Markiewski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Immunotherapeutic Research, Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX, USA
| | - Ioannis Kourtzelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stavros Rafail
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Syriga
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Sandor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mano R. Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Chemistry and Biochemistry, Graduate Program in Bioinformatics, and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Enhanced liver regeneration in IL-10-deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1614-21. [PMID: 21435447 DOI: 10.1016/j.ajpath.2011.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/20/2010] [Accepted: 01/04/2011] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), play a critical role in the initiation and progression of liver regeneration; however, relatively little is known about the role of anti-inflammatory cytokine IL-10 in liver regeneration after partial hepatectomy (PHx). Here, we examined the role of IL-10 in liver regeneration using a model of PHx in several strains of genetically modified mice. After PHx, expression of IL-10 mRNA in the liver and spleen was significantly elevated. Such elevation was diminished in TLR4 mutant mice. Compared with wild-type mice, IL-10(-/-) mice had higher levels of expression of proinflammatory cytokines (IL-6, TNF-α, and IFN-γ) and inflammatory markers (CCR2 and F4/80) in the liver, as well as higher serum levels of proinflammatory cytokines after PHx. The number of neutrophils and macrophages was also higher in the livers of IL-10(-/-) mice than in wild-type mice after PHx. Liver regeneration as determined by BrdU incorporation after PHx was higher in IL-10(-/-) mice than in wild-type mice, which was associated with higher levels of activation of IL-6 downstream signal STAT3 in the liver. An additional deletion of STAT3 in hepatocytes significantly reduced liver regeneration in IL-10(-/-) mice after PHx. Collectively, IL-10 plays an important role in negatively regulating liver regeneration via limiting inflammatory response and subsequently tempering hepatic STAT3 activation.
Collapse
|
17
|
Singh P, Goode T, Dean A, Awad SS, Darlington GJ. Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver. J Gerontol A Biol Sci Med Sci 2011; 66:944-56. [PMID: 21719609 DOI: 10.1093/gerona/glr094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study on immune-related changes in the aged liver described immune cell infiltration and elevation of inflammation with age. Levels of interferon (IFN)-γ, a known cell cycle inhibitor, were elevated in the aging liver. Here, we determine the role played by IFN-γ in the delayed regenerative response observed in the aged livers. We observed elevated IFN signaling in both aged hepatocytes and regenerating livers post-partial hepatectomy. In vivo deletion of the major IFN-γ producers-the macrophages and the natural killer cells, leads to a reduction in the IFN-γ levels accompanied with the restoration of the DNA synthesis kinetics in the aged livers. Eighteen-month-old IFN-γ-/- mice livers, upon resection, exhibited an earlier entry into the cell cycle compared with age-matched controls. Thus, our study strongly suggests that an age-related elevation in inflammatory conditions in the liver often dubbed as "inflammaging" has a detrimental effect on the regenerative response.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Dermatology, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
18
|
Piantadosi CA, Withers CM, Bartz RR, MacGarvey NC, Fu P, Sweeney TE, Welty-Wolf KE, Suliman HB. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 2011; 286:16374-85. [PMID: 21454555 PMCID: PMC3091243 DOI: 10.1074/jbc.m110.207738] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/16/2011] [Indexed: 12/20/2022] Open
Abstract
The induction of heme oxygenase-1 (HO-1; Hmox1) by inflammation, for instance in sepsis, is associated both with an anti-inflammatory response and with mitochondrial biogenesis. Here, we tested the idea that HO-1, acting through the Nfe2l2 (Nrf2) transcription factor, links anti-inflammatory cytokine expression to activation of mitochondrial biogenesis. HO-1 induction after LPS stimulated anti-inflammatory IL-10 and IL-1 receptor antagonist (IL-1Ra) expression in mouse liver, human HepG2 cells, and mouse J774.1 macrophages but blunted tumor necrosis factor-α expression. This was accompanied by nuclear Nfe2l2 accumulation and led us to identify abundant Nfe2l2 and other mitochondrial biogenesis transcription factor binding sites in the promoter regions of IL10 and IL1Ra compared with pro-inflammatory genes regulated by NF-κΒ. Mechanistically, HO-1, through its CO product, enabled these transcription factors to bind the core IL10 and IL1Ra promoters, which for IL10 included Nfe2l2, nuclear respiratory factor (NRF)-2 (Gabpa), and MEF2, and for IL1Ra, included NRF-1 and MEF2. In cells, Hmox1 or Nfe2l2 RNA silencing prevented IL-10 and IL-1Ra up-regulation, and HO-1 induction failed post-LPS in Nfe2l2-silenced cells and post-sepsis in Nfe2l2(-/-) mice. Nfe2l2(-/-) mice compared with WT mice, showed more liver damage, higher mortality, and ineffective CO rescue in sepsis. Nfe2l2(-/-) mice in sepsis also generated higher hepatic TNF-α mRNA levels, lower NRF-1 and PGC-1α mRNA levels, and no enhancement of anti-inflammatory Il10, Socs3, or bcl-x(L) gene expression. These findings disclose a highly structured transcriptional network that couples mitochondrial biogenesis to counter-inflammation with major implications for immune suppression in sepsis.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Amemiya H, Kono H, Fujii H. Liver Regeneration is Impaired in Macrophage Colony Stimulating Factor Deficient Mice After Partial Hepatectomy: The Role of M-CSF-Induced Macrophages. J Surg Res 2011; 165:59-67. [DOI: 10.1016/j.jss.2009.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/18/2009] [Accepted: 08/03/2009] [Indexed: 01/31/2023]
|
20
|
Best DH, Coleman WB. Activation and Regulation of Reserve Liver Progenitor Cells. STEM CELL REGULATORS 2011; 87:93-109. [DOI: 10.1016/b978-0-12-386015-6.00026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Bautista M, Andres D, Cascales M, Morales-González JA, Sánchez-Reus MI. Effect of gadolinium chloride on liver regeneration following thioacetamide-induced necrosis in rats. Int J Mol Sci 2010; 11:4426-4440. [PMID: 21151447 PMCID: PMC3000091 DOI: 10.3390/ijms11114426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023] Open
Abstract
Gadolinium chloride (GD) attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. The effect of GD was studied in reference to postnecrotic liver regeneration induced in rats by thioacetamide (TA). Rats, intravenously pretreated with a single dose of GD (0.1 mmol/Kg), were intraperitoneally injected with TA (6.6 mmol/Kg). Hepatocytes were isolated from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication, and samples of blood and liver were obtained. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the time course of DNA distribution and ploidy were assayed in isolated hepatocytes. The levels of circulating cytokine TNFα was assayed in serum samples. TNFα was also determined by RT-PCR in liver extracts. The results showed that GD significantly reduced the extent of necrosis. The effect of GD induced noticeable changes in the post-necrotic regeneration, causing an increased percentage of hepatocytes in S phase of the cell cycle. Hepatocytes increased their proliferation as a result of these changes. TNFα expression and serum level were diminished in rats pretreated with GD. Thus, GD pre-treatment reduced TA-induced liver injury and accelerated postnecrotic liver regeneration. No evidence of TNFα implication in this enhancement of hepatocyte proliferation and liver regeneration was found. These results demonstrate that Kupffer cells are involved in TA-induced liver damage, as well as and also in the postnecrotic proliferative liver states.
Collapse
Affiliation(s)
- Mirandeli Bautista
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, 42080 Pachuca de Soto, Hgo, Mexico; E-Mail: (J.A.M.-G.)
| | - David Andres
- Instituto de Bioquímica (CSIC–UCM), Facultad de Farmacia, Ciudad Universitaria, Plaza de Ramón y Cajal S/N, 28040 Madrid, Spain; E-Mail: (M.I.S.-R.)
| | - María Cascales
- Instituto de Bioquímica (CSIC–UCM), Facultad de Farmacia, Ciudad Universitaria, Plaza de Ramón y Cajal S/N, 28040 Madrid, Spain; E-Mail: (M.I.S.-R.)
| | - José A. Morales-González
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, 42080 Pachuca de Soto, Hgo, Mexico; E-Mail: (J.A.M.-G.)
| | - María Isabel Sánchez-Reus
- Instituto de Bioquímica (CSIC–UCM), Facultad de Farmacia, Ciudad Universitaria, Plaza de Ramón y Cajal S/N, 28040 Madrid, Spain; E-Mail: (M.I.S.-R.)
| |
Collapse
|
22
|
Schwer CI, Stoll P, Pietsch U, Stein P, Laqua J, Goebel U, Hoetzel A, Schmidt R. Up-regulation of heme oxygenase-1 by sevoflurane is not dependent on Kupffer cells and associates with ERK1/2 and AP-1 activation in the rat liver. Int J Biochem Cell Biol 2010; 42:1876-83. [PMID: 20727416 DOI: 10.1016/j.biocel.2010.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022]
Abstract
Sevoflurane is a potent non-toxic inducer of the hepatoprotective enzyme heme oxygenase-1 (HO-1). So far, little is known about the underlying molecular mechanism. Therefore the aim of this study was to characterize the respective signal transduction pathway and in particular to elucidate the role of Kupffer cells in this context. Rats were treated with or without sevoflurane. The effects on hepatic HO-1 gene expression, mitogen-activated protein kinases and transcription factors were studied by Northern and Western blot analyses, immunostaining, electrophoretic mobility shift assays, and enzymatic activity assays. Kupffer cells were depleted by administration of clodronate liposomes in vivo to characterize their role in HO-1 signal transduction. In additional in vitro experiments, HO-1 mRNA expression in primary rat hepatocytes and HepG2 cells was assessed. Sevoflurane up-regulated HO-1 gene expression in pericentral hepatocytes and increased HO enzyme activity in vivo. This was associated with activation of ERK1/2 and activator protein-1. We identified c-jun/AP-1, JunD, c-fos, and Fra-1 as active subunits of the activator protein-1 complex. Administration of clodronate liposomes to rats led to depletion of Kupffer cells without affecting sevoflurane induced HO-1 expression. Moreover, sevoflurane up-regulated HO-1 mRNA in primary rat hepatocytes but not in HepG2 cells. Our results suggest that sevoflurane induced HO-1 gene expression in pericentral hepatocytes does not depend on Kupffer cells and is associated with activation of ERK1/2 and activator protein-1. Since we could recently demonstrate significant hepatoprotective effects of HO-1 induced by isoflurane, the present results may help to establish new concepts in hepatic organ protection.
Collapse
Affiliation(s)
- Christian Ingo Schwer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Laskin DL. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol 2010; 22:1376-85. [PMID: 19645497 DOI: 10.1021/tx900086v] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages function as control switches of the immune system, providing a balance between pro- and anti-inflammatory responses. To accomplish this, they develop into different subsets: classically (M1) or alternatively (M2) activated macrophages. Whereas M1 macrophages display a cytotoxic, proinflammatory phenotype, much like the soldiers of The Dark Side of The Force in the Star Wars movies, M2 macrophages, like Jedi fighters, suppress immune and inflammatory responses and participate in wound repair and angiogenesis. Critical to the actions of these divergent or polarized macrophage subpopulations is the regulated release of inflammatory mediators. When properly controlled, M1 macrophages effectively destroy invading pathogens, tumor cells, and foreign materials. However, when M1 activation becomes excessive or uncontrolled, these cells can succumb to The Dark Side, releasing copious amounts of cytotoxic mediators that contribute to disease pathogenesis. The activity of M1 macrophages is countered by The Force of alternatively activated M2 macrophages, which release anti-inflammatory cytokines, growth factors, and mediators involved in extracellular matrix turnover and tissue repair. It is the balance in the production of mediators by these two macrophage subpopulations that ultimately determines the outcome of the tissue response to chemical toxicants.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| |
Collapse
|
24
|
Ellett JD, Atkinson C, Evans ZP, Amani Z, Balish E, Schmidt MG, van Rooijen N, Schnellmann RG, Chavin KD. Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. THE JOURNAL OF IMMUNOLOGY 2010; 184:5849-58. [PMID: 20400698 DOI: 10.4049/jimmunol.0902024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kupffer cells (KCs) are thought to mediate hepatocyte injury via their production of proinflammatory cytokines and reactive oxygen species in response to stress. In this study, we depleted KCs from the liver to examine their role in total warm hepatic ischemia/reperfusion (I/R) injury with bowel congestion. We injected 8-wk-old C57BL/10J mice with liposome-encapsulated clodronate 48 h before 35 min of hepatic ischemia with bowel congestion, followed by 6 or 24 h of reperfusion. KC-depleted animals had a higher mortality rate than diluent-treated animals and a 10-fold elevation in transaminase levels that correlated with increases in centrilobular necrosis. There was extensive LPS binding to the endothelial cells, which correlated with an upregulation of endothelial adhesion molecules in the KC-depleted animals versus diluent-treated animals. There was an increase in the levels of proinflammatory cytokines in KC-depleted animals, and a concomitant decrease in IL-10 levels. When KC-depleted mice were treated with recombinant IL-10, their liver damage profile in response to I/R was similar to diluent-treated animals, and endothelial cell adhesion molecules and proinflammatory cytokine levels decreased. KCs are protective in the liver subjected to total I/R with associated bowel congestion and are not deleterious as previously thought. This protection appears to be due to KC secretion of the potent anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Justin D Ellett
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang H, Park O, Lafdil F, Shen K, Horiguchi N, Yin S, Fu XY, Kunos G, Gao B. Interplay of hepatic and myeloid signal transducer and activator of transcription 3 in facilitating liver regeneration via tempering innate immunity. Hepatology 2010; 51:1354-62. [PMID: 20041412 PMCID: PMC2850952 DOI: 10.1002/hep.23430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver regeneration triggered by two-thirds partial hepatectomy is accompanied by elevated hepatic levels of endotoxin, which contributes to the regenerative process, but liver inflammation and apoptosis remain paradoxically limited. Here, we show that signal transducer and activator of transcription 3 (STAT3), an important anti-inflammatory signal, is activated in myeloid cells after partial hepatectomy and its conditional deletion results in an enhanced inflammatory response. Surprisingly, this is accompanied by an improved rather than impaired regenerative response with increased hepatic STAT3 activation, which may contribute to the enhanced liver regeneration. Indeed, conditional deletion of STAT3 in both hepatocytes and myeloid cells results in elevated activation of STAT1 and apoptosis of hepatocytes, and a dramatic reduction in survival after partial hepatectomy, whereas additional global deletion of STAT1 protects against these effects. CONCLUSION An interplay of myeloid and hepatic STAT3 signaling is essential to prevent liver failure during liver regeneration through tempering a strong innate inflammatory response mediated by STAT1 signaling.
Collapse
Affiliation(s)
- Hua Wang
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ogyi Park
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fouad Lafdil
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kezhen Shen
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norio Horiguchi
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shi Yin
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin-Yuan Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Kunos
- Section on Neuroendocrinology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 2010; 16:1304-13. [PMID: 20238396 PMCID: PMC2842521 DOI: 10.3748/wjg.v16.i11.1304] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is often associated with alcohol-related medical conditions. The key inducer of such inflammation, and also the best understood, is gut microflora-derived lipopolysaccharide (LPS). Alcohol can significantly increase the translocation of LPS from the gut. In healthy individuals, the adverse effects of LPS are kept in check by the actions and interactions of multiple organs. The liver plays a central role in detoxifying LPS and producing a balanced cytokine milieu. The central nervous system contributes to anti-inflammatory regulation through neuroimmunoendocrine actions. Chronic alcohol use impairs not only gut and liver functions, but also multi-organ interactions, leading to persistent systemic inflammation and ultimately, to organ damage. The study of these interactions may provide potential new targets for therapeutic intervention.
Collapse
|
27
|
Gandhi CR, Murase N, Starzl TE. Cholera toxin-sensitive GTP-binding protein-coupled activation of augmenter of liver regeneration (ALR) receptor and its function in rat kupffer cells. J Cell Physiol 2010; 222:365-73. [PMID: 19859909 PMCID: PMC3034370 DOI: 10.1002/jcp.21957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitogenic effect of augmenter of liver regeneration (ALR), a protein produced and released by hepatocytes, on hepatocytes in vivo but not in vitro suggests that the effect is mediated by nonparenchymal cells. Since mediators produced by Kupffer cells are implicated in hepatic regeneration, we investigated receptor for ALR and its functions in rat Kupffer cells. Kupffer cells were isolated from rat liver by enzymatic digestion and centrifugal elutriation. Radioligand ([(125)I] ALR) receptor binding, ALR-induced GTP/G-protein association, and nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and interleukin-6 (IL-6) synthesis were determined. High-affinity receptor for ALR, belonging to the G-protein family, with K(d) of 1.25 +/- 0.18 nM and B(max) of 0.26 +/- 0.02 fmol/microg DNA was identified. ALR stimulated NO, TNF-alpha, and IL-6 synthesis via cholera toxin-sensitive G-protein, as well as p38-MAPK activity and nuclear translocation of NFkappaB. While inhibitor of NFkappaB (MG132) inhibited ALR-induced NO synthesis, MG132 and p38-MAPK inhibitor (SB203580) abrogated ALR-induced TNF-alpha and IL-6 synthesis. ALR also prevented the release of mediator(s) from Kupffer cells that cause inhibition of DNA synthesis in hepatocytes. Administration of ALR to 40% partially hepatectomized rats increased expression of TNF-alpha, IL-6, and inducible nitric oxide synthase (iNOS) and caused augmentation of hepatic regeneration. These results demonstrate specific G-protein coupled binding of ALR and its function in Kupffer cells and suggest that mediators produced by ALR-stimulated Kupffer cells may elicit physiologically important effects on hepatocytes.
Collapse
Affiliation(s)
- Chandrashekhar R. Gandhi
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas E. Starzl
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
|
29
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder of our times. Simple steatosis, a seemingly innocent manifestation of NAFLD, may progress into steatohepatitis and cirrhosis, but this process is not well understood. Since NAFLD is associated with obesity and insulin resistance, mechanisms that link lipid metabolism to inflammation offer insights into the pathogenesis. An important parallel between obesity-related pathology of adipose tissue and liver pertains to the emerging role of macrophages and evidence is growing that Kupffer cells critically contribute to progression of NAFLD. Toll-like receptors, in particular TLR4, represent a major conduit for danger recognition linked to Kupffer cell activation and this process may be perturbed at multiple steps in NAFLD. Steatosis may interfere with sinusoid microcirculation and hepatocellular clearance of microbial and host-derived danger signals, enhancing responsiveness of Kupffer cells. Altered lipid homeostasis in NAFLD may unfavourably affect TLR4 receptor complex assembly and sorting, interfere with signalling flux redistribution, promote amplification loops, and impair negative regulation including alternative activation of Kupffer cells. These events are further promoted by altered adipokine secretion and reactive oxygen species production. Specific targeting of these interactions may provide more effective strategies in the treatment of NAFLD.
Collapse
Affiliation(s)
- György Baffy
- Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Section of Gastroenterology, 150 S. Huntington Ave., Boston, MA 02130, USA.
| |
Collapse
|
30
|
Corazza N, Badmann A, Lauer C. Immune cell-mediated liver injury. Semin Immunopathol 2009; 31:267-77. [DOI: 10.1007/s00281-009-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
|
31
|
Kumagai K, Ito K, Ando Y, Hakamata S, Teranishi M, Nakayama H, Manabe S. Neutralization of IL-10 exacerbates cycloheximide-induced hepatocellular apoptosis and necrosis. Toxicol Pathol 2009; 37:536-546. [PMID: 19395591 DOI: 10.1177/0192623309336153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cycloheximide (CHX)-induced liver injury in rats has been characterized by hepatocellular apoptosis and necrosis. We previously reported that Kupffer cell inactivation causes a reduction of IL-10 production, resulting in the exacerbation of CHX-induced liver injury. In this study, we directly evaluate the role of IL-10 in liver injury by a pretreatment with anti-IL-10 neutralizing antibody (IL-10Ab). Rats were given goat IgG or IL-10Ab before being treated with CHX (CHX group or IL-10Ab/CHX group). In the CHX group, the CHX treatment markedly induced hepatic mRNA and serum protein levels of IL-10. The up-regulation of IL-10 was significantly suppressed in the IL-10Ab/CHX group. Blocking IL-10 in the IL-10Ab/CHX group led to greater increases in hepatic mRNA and serum levels of proinflammatory cytokines, such as TNF-alpha and IL-6. The IL-10Ab/CHX group developed more severe hepatocellular apoptosis, neutrophil transmigration, and necrotic change of hepatocytes compared with the CHX group. The caspase activities and mRNA levels of Cc120, LOX-1, and E-selectin in the livers were significantly higher in the IL-10Ab/CHX group than the CHX group. These results demonstrate that IL-10 plays an important role in counteracting the effect of proinflammatory cytokines, such as a TNF signaling cascade, and in attenuating the CHX-induced liver injury.
Collapse
Affiliation(s)
- Kazuyoshi Kumagai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Fukuroi, Shizuoka 437-0065, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Domínguez‐Soto Á, Aragoneses‐Fenoll L, Gómez‐Aguado F, Corcuera MT, Clária J, García‐Monzón C, Bustos M, Corbí AL. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology 2009; 49:287-96. [PMID: 19111020 PMCID: PMC7165556 DOI: 10.1002/hep.22678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Human LSECtin (liver and lymph node sinusoidal endothelial cell C-type lectin, CLEC4G) is a C-type lectin encoded within the L-SIGN/DC-SIGN/CD23 gene cluster. LSECtin acts as a pathogen attachment factor for Ebolavirus and the SARS coronavirus, and its expression can be induced by interleukin-4 on monocytes and macrophages. Although reported as a liver and lymph node sinusoidal endothelial cell-specific molecule, LSECtin could be detected in the MUTZ-3 dendritic-like cell line at the messenger RNA (mRNA) and protein level, and immunohistochemistry analysis on human liver revealed its presence in Kupffer cells coexpressing the myeloid marker CD68. The expression of LSECtin in myeloid cells was further corroborated through the analysis of the proximal regulatory region of the human LSECtin gene, whose activity was maximal in LSECtin+ myeloid cells, and which contains a highly conserved PU.1-binding site. PU.1 transactivated the LSECtin regulatory region in collaboration with hematopoietic-restricted transcription factors (Myb, RUNX3), and was found to bind constitutively to the LSECtin proximal promoter. Moreover, knockdown of PU.1 through the use of small interfering RNA led to a decrease in LSECtin mRNA levels in THP-1 and monocyte-derived dendritic cells, thus confirming the involvement of PU.1 in the myeloid expression of the lectin. CONCLUSION LSECtin is expressed by liver myeloid cells, and its expression is dependent on the PU.1 transcription factor.
Collapse
Affiliation(s)
| | | | | | | | - Joan Clária
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Barcelona, Spain
| | - Carmelo García‐Monzón
- Hospital Universitario Santa Cristina, Madrid, Spain (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)
| | - Matilde Bustos
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Angel L. Corbí
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
33
|
Kumagai K, Kiyosawa N, Ito K, Yamoto T, Teranishi M, Nakayama H, Manabe S. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury. Toxicology 2007; 241:106-18. [PMID: 17900782 DOI: 10.1016/j.tox.2007.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/16/2007] [Indexed: 12/30/2022]
Abstract
In our previous study, we found that cycloheximide (CHX) induces hepatocellular necrosis as well as hepatocellular apoptosis. This article evaluates the role of Kupffer cells on cycloheximide-induced hepatic injury using gadolinium chloride (GdCl(3)) for the inhibition of Kupffer cells. One group of rats was treated with CHX (CHX group), and another was treated with GdCl(3) before being treated with the same dose of CHX (GdCl(3)/CHX group). The necrotic change in the GdCl(3)/CHX group was exacerbated under the induction of hepatocellular apoptosis by the CHX treatment. A substantial diminution of the number of ED1- or ED2-positive cells was demonstrated in the GdCl(3)/CHX group compared to the CHX group. In addition, the degree of decrease in ED2-positive cells was more apparent than that in ED1-positive cells. Increases in the mRNA levels of IL-10 and Stat3 were observed in the CHX group, but not in the GdCl(3)/CHX group. On the other hand, the hepatic mRNA levels of chemokines and adhesion molecules such as Ccl20, LOX-1, and E-selectin were significantly increased only in the GdCl(3)/CHX group. Thus, Kupffer cell inactivation by the GdCl(3) treatment leads to a loss of the capacity to produce IL-10, supposedly resulting in the enhancement of pro-inflammatory cytokine activities such as tumor necrosis factor (TNF) signaling. These events are suggested to be a factor of the inflammatory exacerbation in the livers of the GdCl(3)/CHX group. In conclusion, Kupffer cells may play a role in protecting hepatic necroinflammatory changes by releasing anti-inflammatory cytokines following the hepatocellular apoptosis resulting from CHX treatment.
Collapse
Affiliation(s)
- Kazuyoshi Kumagai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ong SY, Dai H, Leong KW. Hepatic differentiation potential of commercially available human mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 12:3477-85. [PMID: 17518684 DOI: 10.1089/ten.2006.12.3477] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.
Collapse
Affiliation(s)
- Shin-Yeu Ong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
35
|
Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Loss of NF-kappaB activation in Kupffer cell-depleted mice impairs liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1570-7. [PMID: 17322066 DOI: 10.1152/ajpgi.00399.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KCs) are located in the liver sinusoids adjacent to hepatocytes and are capable of producing important growth-regulating mediators that exert both stimulatory and inhibitory influences on hepatocyte proliferation by paracrine mechanisms. To elucidate the overall effect of KC depletion on liver regeneration, mice were selectively and long-standing depleted of KCs by liposome-encapsulated dichloromethylene diphosphonate. Using in vivo fluorescence microscopy, immunohistochemistry, Western blot analysis, and NF-kappaB transcription factor DNA binding activity and cytokine assays, we analyzed livers of KC-depleted and KC-competent mice at days 3, 5, and 8 after partial (i.e., 68%) hepatectomy (PH). Selective KC elimination delayed cell proliferation, as indicated by significantly reduced PCNA and cyclin B1 protein expression in liver tissue at day 3 after PH. This was associated with a lower liver weight at day 8 upon PH. Resection-associated activation of NF-kappaB with translocation into parenchymal and nonparenchymal cell nuclei was diminished in livers of KC-depleted mice, primarily at day 3 after PH. KC-depleted mice further lacked the resection-induced rise in TNF-alpha and IL-6 serum concentrations. These findings imply that KCs play a stimulatory role in liver regeneration, mainly by activating NF-kappaB with influence on the cell cycle and by enhancing expression of the proliferative cytokines TNF-alpha and IL-6.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, Univ. of Rostock, 18055 Rostock, Germany
| | | | | | | | | |
Collapse
|
36
|
Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. ACTA ACUST UNITED AC 2007; 204:1057-69. [PMID: 17485518 PMCID: PMC2118577 DOI: 10.1084/jem.20070075] [Citation(s) in RCA: 1528] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophages (MPs) are important for skeletal muscle regeneration in vivo and may exert beneficial effects on myogenic cell growth through mitogenic and antiapoptotic activities in vitro. However, MPs are highly versatile and may exert various, and even opposite, functions depending on their activation state. We studied monocyte (MO)/MP phenotypes and functions during skeletal muscle repair. Selective labeling of circulating MOs by latex beads in CX3CR1(GFP/+) mice showed that injured muscle recruited only CX3CR1(lo)/Ly-6C(+) MOs from blood that exhibited a nondividing, F4/80(lo), proinflammatory profile. Then, within muscle, these cells switched their phenotype to become proliferating antiinflammatory CX3CR1(hi)/Ly-6C(-) cells that further differentiated into F4/80(hi) MPs. In vitro, phagocytosis of muscle cell debris induced a switch of proinflammatory MPs toward an antiinflammatory phenotype releasing transforming growth factor beta1. In co-cultures, inflammatory MPs stimulated myogenic cell proliferation, whereas antiinflammatory MPs exhibited differentiating activity, assessed by both myogenin expression and fusion into myotubes. Finally, depletion of circulating MOs in CD11b-diphtheria toxin receptor mice at the time of injury totally prevented muscle regeneration, whereas depletion of intramuscular F4/80(hi) MPs at later stages reduced the diameter of regenerating fibers. In conclusion, injured skeletal muscle recruits MOs exhibiting inflammatory profiles that operate phagocytosis and rapidly convert to antiinflammatory MPs that stimulate myogenesis and fiber growth.
Collapse
Affiliation(s)
- Ludovic Arnold
- Institut National de la Santé et de la Recherche Médicale, Unité 841, Institut Mondor de Recherche Biomédicale, Cell Interactions in the Neuromuscular System Team, Université Paris 12 Val-de-Marne, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dai WJ, Hu Z, Wu LF, Jiang HC, Wu YH, Pan SH. Clone culture of human interleukin-10 gene modified L02 hepatocytes and selection of cell strain with most interleukin-10 expression. Shijie Huaren Xiaohua Zazhi 2006; 14:1458-1461. [DOI: 10.11569/wcjd.v14.i15.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone and culture human interleukin-10 (IL-10) gene modified L02 hepatocytes and select the cell strain highly expressing IL-10.
METHODS: With preparation of previously constructed and purified eukaryotic expression plasmid vector pchIL-10, L02 hepatocytes were transfected and then the positive clones were selected with the help of G418 pressure. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of human IL-10 in the cells strain.
RESULTS: Sequencing and restriction endonuclease digestion confirmed that eukaryotic expression plasmid vector pchIL-10 was constructed successfully, and electrophoresis show a band of 540 bp. hIL-10 gene was highly expressed in L02 hepatocytes and the highest expression level was 69.875 ng/106 cell per hour.
CONCLUSION: Human interleukin-10 (IL-10) gene modified L02 hepatocytes can highly expresses hIl-10, which may be used in the antifibrotic or cirrhotic treatment.
Collapse
|
38
|
Schoen Smith JM, Lautt WW. The role of prostaglandins in triggering the liver regeneration cascade. Nitric Oxide 2005; 13:111-7. [PMID: 16006158 PMCID: PMC2925888 DOI: 10.1016/j.niox.2005.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/03/2005] [Accepted: 05/12/2005] [Indexed: 01/20/2023]
Abstract
Following injury or surgical resection, the liver has the remarkable ability to regenerate. Despite over 100 years of research, the trigger of the liver regeneration cascade has only recently been identified. Shear stress-induced nitric oxide (NO), released secondary to a hemodynamic event following partial hepatectomy (PHX), has been implicated as the trigger of the liver regeneration cascade. However, it is also known that prostaglandins (PGs) are released following PHX, and in response to shear stress. Therefore, it is hypothesized that PGs, released secondary to an increase in the blood flow-to-liver mass ratio following PHX, trigger the liver regeneration cascade, and that NO and PGs interact during the triggering event. An index of initiation of the liver regeneration cascade, c-fos mRNA expression 15 min after PHX, has been employed. As expected, c-fos mRNA expression increased 15 min after PHX and this increase was inhibited by the NO synthase antagonist, l-NAME. This inhibition was reversed by the NO donors, SIN-1 and SNAP, and by the PGs, PGE2 and PGI2. Also, the increase in c-fos mRNA expression was inhibited by indomethacin, a cyclooxygenase antagonist. This inhibition was also reversed by the NO donors, SIN-1 and SNAP, and by the PGs, PGE2 and PGI2. These results suggest that there is interaction between NO and PGs in triggering the liver regeneration cascade, and that in a situation where either NO or COX is inhibited, provision of excess exogenous NO or PGs can reverse the inhibition. This suggests that exogenous NO and/or PGs may play a role in potentiation of the liver regeneration cascade.
Collapse
Affiliation(s)
| | - W. Wayne Lautt
- Corresponding author. Fax: +1 204 975 7784. (W.W. Lautt)
| |
Collapse
|
39
|
Kinoshita M, Uchida T, Nakashima H, Ono S, Seki S, Hiraide H. Opposite effects of enhanced tumor necrosis factor-alpha production from Kupffer cells by gadolinium chloride on liver injury/mortality in endotoxemia of normal and partially hepatectomized mice. Shock 2005; 23:65-72. [PMID: 15614134 DOI: 10.1097/01.shk.0000144423.40270.96] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gadolinium chloride (GdCl3) reportedly inhibits Kupffer cell function including TNF-alpha production and thereby improves organ dysfunctions after LPS challenge, particularly in partially hepatectomized (PH) mice. In addition, TNF-alpha reportedly promotes the regeneration of hepatocytes after PH. However, we have frequently seen GdCl3 treatment increase the mortality of normal mice after LPS injection. Therefore, we investigated this controversial issue in the present study. The mice treated by GdCl3 (10 mg/kg, i.v.) at 24 h before LPS challenge showed increased serum TNF-alpha and ALT levels after LPS challenge and a decreased mouse survival rate. The Kupffer cells from GdCl3-treated mice consistently produced a much larger amount of TNF-alpha following in vitro LPS stimulation than those of the control mice despite the fact that the Kupffer cells decreased in number and also demonstrated decreased superoxide production. Anti-TNF-alpha Ab before LPS-injection greatly improved GdCl3-induced mouse mortality and the degree of liver injury. In marked contrast, the increased amount of TNF-alpha induced by GdCl3 improved the survival after LPS challenge in PH mice because TNF-alpha promoted hepatocyte mitosis/regeneration in PH liver as evidenced by the fact that the inhibition of TNF-alpha before PH suppressed hepatocyte regeneration and decreased survival after LPS challenge. In conclusion, GdCl3 depletes the superoxide-producing Kupffer cells but conversely enhances the function of TNF-alpha-producing Kupffer cells, which thereby leads to LPS-induced mortality. Meanwhile, the increased TNF-alpha production induced by GdCl3 supports liver regeneration and increases the survival after LPS challenge in PH mice.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Division of Basic Traumatology, National Defense Medical College Research Institute, Namiki, Tokorozawa 359-8513, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Sturm E, Havinga R, Baller JFW, Wolters H, van Rooijen N, Kamps JAAM, Verkade HJ, Karpen SJ, Kuipers F. Kupffer cell depletion with liposomal clodronate prevents suppression of Ntcp expression in endotoxin-treated rats. J Hepatol 2005; 42:102-9. [PMID: 15629514 DOI: 10.1016/j.jhep.2004.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 08/26/2004] [Accepted: 09/17/2004] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS In sepsis-associated cholestasis, expression of many genes involved in bile acid transport, including Ntcp, is suppressed by cytokines. Kupffer cells (KC) are an important source of cytokines in sepsis. To assess the consequences of KC depletion on hepatic Ntcp expression in endotoxemic rats. METHODS Sprague-Dawley rats received liposomal clodronate (CLO) or vehicle (PBS) to deplete KC prior to lipopolysaccharide (LPS) exposure. Plasma and liver samples were taken 1 and 16 h after LPS exposure. RESULTS Complete CLO-depletion of KC by was demonstrated by immunohistochemistry. Hepatic gene expression of IL-1beta and TNFalpha as well as TNFalpha plasma levels in CLO/LPS-injected animals were significantly reduced to a mean of 41, 36 and 23% of controls injected with LPS only. Ntcp RNA- and protein expression was significantly higher whereas plasma bile salt concentration was lower in CLO/LPS animals vs. animals injected with LPS only. Binding activity of transcription factors RXR:RAR and HNF1alpha was decreased in LPS only controls but preserved in CLO/LPS treated animals. CONCLUSIONS Clodronate-depletion of KC blocks cytokine-mediated Ntcp suppression upon endotoxin exposure. KC may represent pharmacological targets for treatment of sepsis-associated cholestasis.
Collapse
Affiliation(s)
- Ekkehard Sturm
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dahle MK, Øverland G, Myhre AE, Stuestøl JF, Hartung T, Krohn CD, Mathiesen Ø, Wang JE, Aasen AO. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun 2004; 72:5704-11. [PMID: 15385469 PMCID: PMC517537 DOI: 10.1128/iai.72.10.5704-5711.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sepsis caused by gram-positive bacteria lacking lipopolysaccharide (LPS) has become a major and increasing cause of mortality in intensive-care units. We have recently demonstrated that the gram-positive-specific bacterial cell wall component lipoteichoic acid (LTA) stimulates the release of the proinflammatory cytokines in Kupffer cells in culture. In the present study, we have started to assess the signal transduction events by which LTA induces the production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and the anti-inflammatory cytokine IL-10 in rat Kupffer cells. LTA was found to trigger phosphorylation of mitogen-activated protein kinases (MAPK) (p38 MAPK and ERK 1/2) and protein kinase B (PKB). Compared to LPS, LTA was more potent in inducing PKB phosphorylation after 40 min, although we found that the cytokine responses were similar. For both bacterial molecules, blocking phosphatidylinositol 3-kinase (PI3-K; Ly294002) or Janus kinase 2 (JAK-2; AG490) particularly affected the induction of IL-6 and IL-10 release, whereas TNF-alpha levels were strongly reduced by inhibition of Src family tyrosine kinases (PP2). All three cytokines were reduced by inhibition of p38 MAPK (SB202190) or the broad-range tyrosine kinase inhibitor genistein, whereas IL-6 release was particularly blocked by inhibition of ERK 1/2 (PD98059). Divergences in the regulatory pathways controlling TNF-alpha, IL-10, and IL-6 production in Kupffer cells following LPS or LTA stimulation may create a basis for understanding how the balance between pro- and anti-inflammatory cytokines is regulated in the liver following infections by gram-positive or gram-negative bacteria.
Collapse
Affiliation(s)
- Maria K Dahle
- Institute for Surgical Research, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee CM, Yeoh GC, Olynyk JK. Differential effects of gadolinium chloride on Kupffer cells in vivo and in vitro. Int J Biochem Cell Biol 2004; 36:481-8. [PMID: 14687926 DOI: 10.1016/j.biocel.2003.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gadolinium chloride (GdCl) is commonly used to study the role of Kupffer cells in liver disease in vivo. The in vitro effects of GdCl on cultured Kupffer cells are poorly characterised. The aim of this study was to characterise rat Kupffer cell TNFalpha production, phagocytic function, and ED1 and ED2 antigen expression following the administration of GdCl. For in vivo experiments, rats received 10mg/kg GdCl IV or sterile saline. Lipopolysaccharide 3mg/kg IP (LPS) was administered 4h prior to sacrifice on Days 1-3, 5 or 8 following GdCl injection. Hepatic ED1 and ED2 positive macrophage numbers and TNFalpha mRNA levels were determined. For in vitro experiments, Kupffer cells were cultured in the presence of 0-270 microM GdCl for 24h following which viability, TNFalpha protein production in response to LPS (10 ng/ml), phagocytosis, and ED1 and ED2 staining were evaluated. In vivo, the proportion of ED1 positive cells which were ED2 positive was reduced from 87 to 3% and hepatic TNFalpha mRNA levels following LPS declined by 60% over Days 1-5 after injection of GdCl (P<0.01). In vitro, phagocytosis declined with increasing concentrations of GdCl. GdCl (0-27 microM) did not effect cultured Kupffer cell viability, TNFalpha production, ED1 or ED2 staining. We conclude that GdCl significantly reduces ED2 expression by Kupffer cells in vivo. In vitro, GdCl has a dose dependent effect on phagocytosis but only effects viability and TNFalpha production at high concentrations. ED2 expression of cultured Kupffer cells is not affected by GdCl.
Collapse
Affiliation(s)
- Clair M Lee
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital Campus, P.O. Box 480, Fremantle 6959, WA, Australia
| | | | | |
Collapse
|
43
|
Phaneuf D, Moscioni AD, LeClair C, Raper SE, Wilson JM. Generation of a mouse expressing a conditional knockout of the hepatocyte growth factor gene: demonstration of impaired liver regeneration. DNA Cell Biol 2004; 23:592-603. [PMID: 15383179 DOI: 10.1089/dna.2004.23.592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte growth/scatter factor (HGF/SF) is a pleiotropic cytokine originally identified as a potent mitogen for rat hepatocytes. Two HGF/SF knockout mouse models have been reported, both of which exhibit developmental abnormalities causing embryonic lethality. To circumvent this limitation, we created a mouse conditionally deficient in liver expression of HGF/SF to specifically investigate the role of this mitogen in the process of adult liver regeneration. Gene targeting technology was used to generate a mouse with loxP sites flanking exon 5 of the HGF/SF gene (ex5-flox). In the absence of cre recombinase activity, mice homozygous for ex5-flox were indistinguishable from wild-type littermates. To ablate HGF/SF gene expression in vitro, primary hepatocytes established from homozygous HGF(ex5-flox) mice were infected with a recombinant adenoviral vector coding for cre recombinase (AdCre1). PCR analyses of genomic DNA demonstrated greater than 90% ablation of the ex5-floxed gene sequence. In vivo, HGF(ex.5-flox) mice were administered AdCre1 vector and the ablation of the HGF gene confirmed by Southern blot analysis. To induce liver regeneration, mice were injected with the hepatotoxin carbon tetrachloride. The regenerative capacity of hepatocytes in mice administered cre recombinase was shown to be significantly reduced when compared with mice injected with an adenovirus expressing LacZ. A similar reduction in hepatocyte regeneration was observed in HGF(ex.5.flox) mice carrying the cre transgene under the control of the interferon-inducible (pI:pC) Mx1 promoter, as an alternative strategy to ablate the HGF/SF gene in liver. Our results confirm the mitogenic role of HGF/SF in liver regeneration.
Collapse
Affiliation(s)
- Daniel Phaneuf
- Gene Therapy Program, Division of Medical Genetics, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia 19104-4268, USA
| | | | | | | | | |
Collapse
|
44
|
Takayashiki T, Yoshidome H, Kimura F, Ohtsuka M, Shimizu Y, Kato A, Ito H, Shimizu H, Ambiru S, Togawa A, Miyazaki M. Increased expression of toll-like receptor 4 enhances endotoxin-induced hepatic failure in partially hepatectomized mice. J Hepatol 2004; 41:621-8. [PMID: 15464243 DOI: 10.1016/j.jhep.2004.06.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 06/21/2004] [Accepted: 06/30/2004] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Liver failure associated with infections after hepatectomy remains a cause of mortality. It has recently been reported that toll-like receptor 4 (TLR4) is involved in recognizing lipopolysaccharides (LPS). The aim of this study was to investigate the role of TLR4 in endotoxin-induced liver injury after hepatectomy. METHODS C3H/HeN and C3H/HeJ mice underwent 70% hepatectomy or sham surgery, and LPS was administered 48 h after surgery. Expression of TLR4 mRNA, nuclear factor-kappaB (NF-kappaB) activation, tumor necrosis factor-alpha (TNF-alpha) and serum ALT levels, histological findings, and myeloperoxidase content were examined. Survival after LPS administration was also determined. RESULTS Hepatic expression of TLR4 was significantly increased 6-72 h after hepatectomy. In mice with endotoxemia after hepatectomy, hepatic NF-kappaB activation was greatly increased. Hepatic mRNA and serum levels of TNF-alpha, and ALT levels were significantly elevated compared with sham operated controls. Focal necrosis with neutrophil infiltration was apparent, which is consistent with increased myeloperoxidase contents in endotoxemia after hepatectomy in C3H/HeN mice. These were completely absent in C3H/HeJ mice. Survival of C3H/HeN mice with endotoxemia after hepatectomy was significantly lower than that of C3H/HeJ mice. CONCLUSIONS Upregulated TLR4 expression and function after hepatectomy plays a pivotal role in endotoxin-induced liver injury after hepatectomy.
Collapse
Affiliation(s)
- Tsukasa Takayashiki
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba, 260-0856 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yokoyama Y, Kitchens WC, Toth B, Schwacha MG, Rue LW, Bland KI, Chaudry IH. Role of IL-10 in regulating proinflammatory cytokine release by Kupffer cells following trauma-hemorrhage. Am J Physiol Gastrointest Liver Physiol 2004; 286:G942-6. [PMID: 14715528 DOI: 10.1152/ajpgi.00502.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IL-6 and TNF-alpha production by Kupffer cells is markedly stimulated following trauma-hemorrhage (T-H). Because IL-10 is an anti-inflammatory cytokine, the aim of this study was to determine whether IL-10 regulates Kupffer cell proinflammatory cytokine release following T-H. To study this, we subjected adult male Sprague-Dawley rats to sham operation or T-H. The procedure involved a 5-cm midline laparotomy and approximately 90 min of hemorrhagic shock (35 mmHg), followed by resuscitation with four times the shed blood volume in the form of Ringer's lactate. At 2 h after the end of resuscitation, livers were perfused in vitro and perfusate was collected. In separate studies, Kupffer cells were isolated and incubated with different concentrations of anti-IL-10 MAb. IgG was used as control. After 16 h of incubation, IL-6 and TNF-alpha levels were measured by ELISA. Plasma IL-10 levels increased significantly following T-H. IL-10 levels in the perfusate and IL-10 production by cultured Kupffer cells were also significantly higher in the T-H group. When Kupffer cells were incubated with 10 microg/ml of anti-IL-10 MAb, IL-6 and TNF-alpha production were significantly increased in both sham and T-H groups compared with those not treated with anti-IL-10 MAb. However, these changes were not observed when the cells were incubated with irrelevant (control) IgG. These results indicate that IL-10 production by Kupffer cells early after T-H may play a pivotal role in attenuating the proinflammatory cytokine environment, possibly in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Ninomiya M, Shimada M, Harada N, Soejima Y, Suehiro T, Maehara Y. The hydroxyl radical scavenger MCI-186 protects the liver from experimental cold ischaemia-reperfusion injury. Br J Surg 2004; 91:184-90. [PMID: 14760666 DOI: 10.1002/bjs.4401] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Oxidative stress contributes to hepatic ischaemia-reperfusion (IR) injury in a biphasic pattern. In addition to direct cytotoxic effects, oxidative stress also initiates the signal transduction processes that promote second-phase liver injury. The present study investigated the effects of the hydroxyl radical scavenger MCI-186 on the biphasic process of hepatic cold IR injury. METHODS After cold preservation for 16 h, rat livers were reperfused on an isolated liver perfusion system for 120 min with oxygenated Krebs-Henseleit bicarbonate buffer. Perfusate samples were obtained serially, and portal flow rates were also recorded. To determine whether MCI-186 affected cytokine levels that control the second-phase injury, levels of interleukin (IL) 10 and tumour necrosis factor (TNF) alpha were measured in the perfusate. RESULTS Addition of MCI-186 1 mg/l into the perfusate significantly improved portal flow (P<0.050), hepatic enzyme release into the perfusate (P=0.038), total bile production (P=0.029) and malondialdehyde concentration (P=0.038). Furthermore, treatment with MCI-186 led to a substantial increase in IL-10 release (P=0.032). TNF-alpha levels were not affected. CONCLUSIONS MCI-186, an agent ready for clinical use, appears to have direct and indirect protective effects against hepatic cold IR injury.
Collapse
Affiliation(s)
- M Ninomiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
7. CHEMOKINE AND CYTOKINE REGULATION OF LIVER INJURY. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2582(04)15007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Singh B, Pearce JW, Gamage LN, Janardhan K, Caldwell S. Depletion of pulmonary intravascular macrophages inhibits acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2003; 286:L363-72. [PMID: 14565942 DOI: 10.1152/ajplung.00003.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary intravascular macrophages (PIMs) are present in ruminants and horses. These species are highly sensitive to acute lung inflammation compared with non-PIM-containing species such as rats and humans. There is evidence that rats and humans may also recruit PIMs under certain conditions. We investigated precise contributions of PIMs to acute lung inflammation in a calf model. First, PIMs were recognized with a combination of in vivo phagocytic tracer Monastral blue and postembedding immunohistology with anti-CD68 monoclonal antibody. Second, gadolinium chloride depleted PIMs within 48 h of treatment (P < 0.05). Finally, PIMs contain TNF-alpha, and their depletion reduces cells positive for IL-8 (P < 0.05) and TNF-alpha (P < 0.05) and histopathological signs of acute lung inflammation in calves infected with Mannheimia hemolytica. The majority of IL-8-positive inflammatory cells in lung septa of infected calves were platelets. Platelets from normal cattle contained preformed IL-8 that was released upon in vitro exposure to thrombin (P < 0.05). These novel data show that PIMs, as the source of TNF-alpha, promote recruitment of inflammatory cells including IL-8-containing platelets to stimulate acute inflammation and pathology in lungs. These data may also be relevant to humans due to our ability to recruit PIMs.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada SK S7N 5B4.
| | | | | | | | | |
Collapse
|
49
|
Costelli P, Aoki P, Zingaro B, Carbó N, Reffo P, Lopez-Soriano FJ, Bonelli G, Argilés JM, Baccino FM. Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 2003; 10:997-1004. [PMID: 12934074 DOI: 10.1038/sj.cdd.4401281] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The liver is particularly susceptible to Fas-mediated cytotoxicity. Mice given an adequate parenteral dose of agonistic anti-Fas antibody (aFas) or of FasL are known to develop a devastating liver injury and to die in a few hours. The present work shows that mice lacking TNFR1 and TNFR2 (R(-)) both survive a single dose of aFas, otherwise rapidly lethal, and develop a mild form of hepatic damage, compared to the much more severe liver injury that in a few hours strikes wild-type mice (R(+)), eventually involving increased activity of proteases of different families (caspase 3-, 8-, and 9-like, calpains, cathepsin B). Neither the overall tissue levels of Fas and FasL nor Fas expression at the hepatocyte surface are altered in the liver of R(-) animals. The DNA-binding activity of the NF-kappaB transcription factor is enhanced after aFas treatment, but much more markedly in R(-) than in R(+) mice. Bcl2, while unchanged in untreated animals, is markedly upregulated in R(-) but not in R(+) mice challenged with aFas. The requirement of a normal TNFR1/TNFR2 phenotype for full deployment of the general and liver-specific aFas toxicity in mice most likely implies that treatment with aFas in some way results in activation of the TNFalpha-TNFRs system and that this activation synergizes with Fas-mediated signals in causing the fulminant liver injury and the animal death. The precise cellular and molecular details underlying this interplay between Fas- and TNFRs-mediated signaling systems in the general and liver-specific aFas toxicity largely remain to be clarified.
Collapse
MESH Headings
- Animals
- Antibodies/toxicity
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apoptosis
- Fas Ligand Protein
- Hepatitis, Animal/etiology
- Hepatitis, Animal/metabolism
- Hepatitis, Animal/pathology
- Liver/pathology
- Liver/ultrastructure
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/physiology
- fas Receptor/immunology
- fas Receptor/metabolism
Collapse
Affiliation(s)
- P Costelli
- Dipartimento di Medicina e Oncologia Sperimentale, Università di Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ito Y, Katagiri H, Ishii K, Kakita A, Hayashi I, Majima M. Effects of selective cyclooxygenase inhibitors on ischemia/reperfusion-induced hepatic microcirculatory dysfunction in mice. Eur Surg Res 2003; 35:408-16. [PMID: 12928598 DOI: 10.1159/000072174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Accepted: 01/30/2003] [Indexed: 11/19/2022]
Abstract
We examined the effects of selective cyclooxygenase (COX) inhibition on hepatic warm ischemia/reperfusion (I/R) injury in mice. A selective COX-1 inhibitor, SC-560, selective COX-2 inhibitors, NS-398 and celecoxib, and indomethacin were administered 30 min before ischemia. Four hours after reperfusion, an in vivo microscopic study showed that I/R caused significant accumulation of leukocytes adhering to the hepatic microvessels and nonperfused sinusoids. Levels of plasma alanine transaminase (ALT) and tumor necrosis factor (TNF)-alpha also showed increases. SC-560, NS-398, celecoxib and indomethacin significantly reduced hepatic responses to I/R including microcirculatory dysfunction and release of ALT and TNF-alpha. Moreover, the effects of the thromboxane (TX) A(2) (TXA(2)) synthase inhibitor OKY-046 and the TXA(2) receptor antagonist S-1452 on hepatic responses to I/R exhibited results similar to those obtained with COX inhibitors. These results suggest that COX-1 and COX-2 contribute to I/R-induced hepatic microvascular and hepatocellular injury partly through TNF-alpha production, and that TXs derived from COX are partly responsible for I/R-induced liver injury.
Collapse
Affiliation(s)
- Y Ito
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan.
| | | | | | | | | | | |
Collapse
|