Minireviews
Copyright ©The Author(s) 2024.
World J Diabetes. Sep 15, 2024; 15(9): 1874-1888
Published online Sep 15, 2024. doi: 10.4239/wjd.v15.i9.1874
Table 1 Dysbiosis observed in various stages of diabetes mellitus
Complication/stage observedDysbiosis observed
Decreased
Increased
Diabetic nephropathyLactobacillus, Bifidobacterium, Bacteroides, Prevotella, Roseburia, Ruminococcaceae, and FaecalibacteriumEnterococcus, Enterobacteriaceae, Clostridaceae, Klebsiella, and Parabacterides
Diabetic neuropathyBacteroides and FaecalibacteriumEscherichia, Blautia, Ruminococcus torques, and Lachnoclostridium
Diabetic retinopathyBacteroidetes and ActinobacteriaEscherihia, Enterobacter, and Acidaminococcus
Cerebrovascular diseaseLachnospiraceae, Ruminococcaceae, Bacteroidetes, Prevotella, and FaecalibacteriumEnterobacteriaceae, Veillonellaceae, Bifidobacterium, Lactobacillus, and Oscillobacter
Cardiovascular diseaseRoseburia, Eubacterium spp, Bacteroides and FaecalibacteriumCollinsella, Escherichia-Shigella, Enterococcus, and the ratio of Firmicutes to Bacteroides
Peripheral vascular disease-Firmicutes, Actinobacteria, Verrucomicrobia, and Proteobacteria
Table 2 Effects of diabetic medications on gut microbiome
Medication
Effects on microbiome
Observed outcomes
Metformin[45]Enhances SCFA production, normalizes Firmicutes/Bacteroides ratioIncreased GLP-1 levels, improved insulin secretion
Sulfonylureas[46,47]Conflicting data on impactVariable influence on microbiome, potential increase in phenylalanine and tryptophan levels
Alpha-glucosidase inhibitors[48]Increases nutrient availability for beneficial bacteriaGrowth of beneficial microbes like Bacteroides, improvement in T2DM prognostic factors
GLP-1 agonists[49,50]Changes in gastric emptying rates influence microbiotaReduction in obesity-promoting organisms, increase in beneficial microbes like Bifidobacterium
SGLT-2 inhibitors[51]Alters microbial ratios favorablyReduction in Firmicutes/Bacteroides ratio, enhanced fatty acid production
Table 3 Impact of diet and exercise on the gut microbiome in type 2 diabetes mellitus
Factor
Description
Beneficial effects
DietHigh fiber plant-based foods[4,52]Decrease in insulin resistance, stabilization of blood glucose levels, reduction in serum cholesterol
High-fat and protein diets[53]Increase in pro-inflammatory markers; variable effects based on protein source (plant vs animal)
Mediterranean diet[54]Improvement in SCFA production, enhanced insulin sensitivity, increased beneficial genera like Roseburia
ExerciseLow-intensity physical activity[55-57]Favorable shifts in microbiota composition, improvement in metabolic health markers
Table 4 Summary of global studies of the gut microbiome in type 2 diabetes mellitus
Ref.
Place of study
Probiotics used
Observed effects
Kumari et al[62], 2021IndiaLactobacillus spp.Decreased HbA1C, insulin resistance, TNF-α, IL-1β
Lactococcus spp.
Propionibacterium spp.
Bifidobacterium spp.
Zhao et al[63], 2020ChinaSelenium enhancedDecreased FG, HbA1C, and insulin levels and improves glucose tolerance and lipid profile
Bifidobacterium spp.
Palacios et al[64], 2020AustraliaLactobacillus plantarumDecreased FG, HbA1C, and insulin resistance
Lactobacillus bulgaricus
Lactobacillus gasseri
Bifidobacterium breve
Bifidobacterium animalis sbsp. lactis
Bifidobacterium bifidum
S. thermophiles
S. boulardii
Razmpoosh et al[65], 2019IranLactobacillus acidophilusDecreased FG, insulin resistance, and increased HDL cholesterol
Lactobacillus casei
Lactobacillus rhamnosus
Lactobacillus bulgaricus
Bifidobacterium breve
Bifidobacterium longum
Streptococcus thermophilus
Madempudi et al[66], 2019IndiaLactobacillus salivariusDecreased HbA1C and effects on lipid profile are not significant
Lactobacillus casei
Lactobacillus plantarum
Lactobacillus acidophilus
Bifidobacterium breve
Bifidobacterium coagulans
Sabico et al[67], 2019Saudi ArabiaBifidobacterium bifidum W23Decreased FG, insulin resistance, total cholesterol, and triglycerides
Bifidobacterium lactis W52
Lactobacillus acidophilus W37
Lactobacillus brevis W63
Lactobacillus casei W56
Lactobacillus salivarius W24
Lactobacillus lactis W19
Lactobacillus lacis W58
Mazruei Arani et al[68], 2019IranBacillus coagulans T4Decreased FG, insulin resistance, CRP, and improves lipid profile
Mohseni et al[37], 2018IranLactobacillus acidophilusDecreased FG, insulin resistance, inflammatory markers, and improves lipid profile
Bifidobacterium bifidum
Lactobacillus casei
Lactobacillus fementum
Kobyliak et al[61], 2018Ukraine14 probiotic strains of LactobacillusDecreased HbA1C and insulin resistance
Lactococcus
Bifidobacterium spp.
Propionibacterium
Acetobacter
Kassaian et al[69], 2018IranLactobacillus acidophilusDecreased FG, HbA1C, and insulin resistance
Bifidobacterium lactis
Bifidobacterium bifidum
Bifidobacterium longum
Mohseni et al[37], 2018IranBifidobacterium bifidumDecrease FG, insulin resistance, total cholesterol, and increased GSH level
Lactobacillus casei
Lactobacillus acidophilus
Mofidi et al[35], 2017IranLactobacillus caseiDecreased FG and triglycerides
Lactobacillus rhamnosus
Streptococcus thermophilus
Bifidobacterium breve
Lactobacillus acidophilus
Bifidobacterium longum
Lactobacillus bulgaricus
Firouzi et al[36], 2017MalaysiaLactobacillus acidophilusDecreased HbA1C and does not affect lipid profile
Lactobacillus casei
Lactobacillus lactis
Bifidobacterium bifidum
Bifidobacterium longum
Bifidobacterium infantis
Tajabadi-Ebrahimi et al[33], 2017IranLactobacillus acidophilusDecreased FG, increased insulin sensitivity, and does not affect lipid profile
Lactobacillus casei
Bifidobacterium bifidum
Ebrahimi et al[70], 2017IranLactobacillus spp.Decreased FG, HbA1C, and no effect on lipid profile
Bifidobacterium spp.
Streptococcus thermophilus and fructo-oligosaccharide
Asemi et al[71], 2016IranProbiotic: Lactobacillus sporogenesDecreased in serum insulin, insulin resistance, triglycerides and increased GSH levels
Prebiotic: Inulin, beta-carotene
Madjd et al[72], 2016IranLactobacillus acidophilus LA5Decreased HbA1C, 2-h postprandial glucose, insulin resistance, total cholesterol, and LDL levels
Bifidobacterium lactis BB12
Karamali et al[73], 2016IranLactobacillus acidophilusDecreased fasting glucose, insulin resistance, triglycerides, VLDL, and increased insulin sensitivity
Lactobacillus casei
Bifidobacterium bifidum
Ostadrahimi et al[74], 2015IranLactobacillus acidophilusDecreased HbA1C, and FG and does not affect lipid profile
Lactobacillus casei
Bifidobacterium lactis
Eslamparast et al[75], 2014IranLactobacillus caseiDecreased FG, insulin resistance and has no effect on lipid profile
Lactobacillus rhamnosus
Streptococcus thermophilus
Bifidobacterium breve
Lactobacillus acidophilus
Bifidobacterium longum
Lactobacillus bulgaricus
Rajkumar et al[76], 2014IndiaBifidobacterium longumDecreased FG, insulin resistance, total cholesterol, triglycerides, LDL, VLDL, and increased HDL levels
Bifidobacterium infantis
Bifidobacterium breve
Lactobacillus acidophilus
Lactobacillus paracasei
Lactobacillus bulgaricus
Lactobacillus plantarum
Streptococcus thermophilus
Ivey et al[77], 2014AustraliaLactobacillus acidophilus La5Increased FG and insulin resistance
Bifidobacterium lactis Bb12
Mohamadshahi et al[78], 2014IranBifidobacterium lactis Bb12Decreased HbA1C
Lactobacillus acidophilus
Asemi et al[79], 2014IranProbiotic: Viable & heat-resistant Lactobacillus sporogenesDecreased FG, HbA1C, insulin resistance, and inflammatory markers
Prebiotic: Inulin
Asemi et al[34], 2013IranLactobacillus spp.Decreased FG and increased insulin levels, total GSH levels, and LDL levels
Bifidobacterium spp.
Streptococcus spp.
Fructo-oligosaccharide
Mazloom et al[80], 2013IranLactobacillus acidophilusDecreased FG, insulin resistance, and improves fasting insulin
Lactobacillus bulgaricus
Lactobacillus bifidum
Lactobacillus casei
Shavakhi et al[81], 2013IranLactobacillus acidophilusDecreased FG, triglycerides, and total cholesterol
Lactobacillus casei
Lactobacillus rhamnosus
Lactobacillus bulgaricus
Bifidobacterium breve
Bifidobacterium longum
Streptococcus thermophilus
Asemi et al[82], 2013IranLactobacillus acidophilus LA5Decreased insulin resistance
Bifidobacterium animalis BB12
Asemi et al[34], 2013IranLactobacillus acidophilusDecreased FG, increased insulin resistance, and LDL levels
Lactobacillus casei
Lactobacillus rhamnosus
Lactobacillus bulgaricus
Bifidobacterium breve
Bifidobacterium longum
Streptococcus thermophiles
Moroti et al[31], 2012BrazilLactobacillus acidophilusDecreased FG and increased HDL levels
Bifidobacterium bifidum
Ejtahed et al[83], 2012IranLactobacillus acidophilus La5Decreased FG and HbA1C and does not affect lipid profile
Bifidobacterium lactis Bb12
Laitinen et al[84], 2009FinlandLactobacillus rhamnosus GGDecreased FG, insulin resistance, and increased insulin sensitivity
Bifidobacterium lactis Bb12
Table 5 Limitations and future directions in gut microbiome research for type 2 diabetes mellitus
Limitations
Description
Future directions
Variability in microbial compositionIndividual differences in microbiome composition complicate standard treatment outcomesPersonalized microbiome interventions: Develop treatments based on individual microbiome assessments to optimize efficacy
Lack of standardizationInconsistencies in probiotic formulations affect study comparability and clinical applicabilityStandardization of products: Establish regulations and standards for probiotic formulations to ensure quality and consistency
Short-term focusMost studies have short duration and do not address long-term safety and effectivenessLongitudinal studies: Conduct long-term studies to assess the sustained effects and safety of microbiome-based interventions
Incomplete mechanistic understandingThe pathways through which the microbiome influences diabetes are not fully elucidatedMechanistic research: Deepen research into the biochemical interactions within the gut microbiome that affect diabetes pathogenesis and treatment
Drug-microbiome interactionsPotential interactions between probiotics and anti-diabetic medications are not well understoodInteraction studies: Explore how probiotics interact with common diabetic medications to refine treatment protocols
Regulatory hurdlesThe global regulatory landscape for probiotics and microbiome therapies varies significantlyHarmonize regulations: Work toward an international consensus on the regulation of microbiome therapies to facilitate global research and application