Minireviews
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Sep 15, 2024; 15(9): 1874-1888
Published online Sep 15, 2024. doi: 10.4239/wjd.v15.i9.1874
Gut microbiome: A revolution in type II diabetes mellitus
Madhan Jeyaraman, Tejaswin Mariappan, Naveen Jeyaraman, Sathish Muthu, Swaminathan Ramasubramanian, Gabriel Silva Santos, Lucas Furtado da Fonseca, José Fábio Lana
Madhan Jeyaraman, Naveen Jeyaraman, Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
Madhan Jeyaraman, Gabriel Silva Santos, Lucas Furtado da Fonseca, José Fábio Lana, Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
Madhan Jeyaraman, Sathish Muthu, Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
Tejaswin Mariappan, Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
Sathish Muthu, Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
Sathish Muthu, Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
Swaminathan Ramasubramanian, Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
Author contributions: Jeyaraman M, Mariappan T, and Jeyaraman N contributed to conceptualization; Mariappan T and Ramasubramanian S contributed to acquiring clinical data and performing the data analysis; Jeyaraman M, Mariappan T, and Ramasubramanian S contributed to manuscript writing; Jeyaraman M, Santos GS, da Fonseca LF, and Lana JF helped in manuscript revision; Muthu S contributed to image acquisition; Jeyaraman M contributed to proofreading; Jeyaraman M and Lana JF contributed to administration; All authors have agreed to the final version to be published and agree to be accountable for all aspects of the work.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Madhan Jeyaraman, MS, PhD, Assistant Professor, Research Associate, Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Velappanchavadi, Chennai 600077, Tamil Nadu, India. madhanjeyaraman@gmail.com
Received: April 18, 2024
Revised: June 11, 2024
Accepted: July 18, 2024
Published online: September 15, 2024
Processing time: 130 Days and 21.9 Hours
Abstract

Type II diabetes mellitus (T2DM) has experienced a dramatic increase globally across countries of various income levels over the past three decades. The persistent prevalence of T2DM is attributed to a complex interplay of genetic and environmental factors. While numerous pharmaceutical therapies have been developed, there remains an urgent need for innovative treatment approaches that offer effectiveness without significant adverse effects. In this context, the exploration of the gut microbiome presents a promising avenue. Research has increasingly shown that the gut microbiome of individuals with T2DM exhibits distinct differences compared to healthy individuals, suggesting its potential role in the disease’s pathogenesis and progression. This emerging field offers diverse applications, particularly in modifying the gut environment through the administration of prebiotics, probiotics, and fecal microbiome transfer. These inter-ventions aim to restore a healthy microbiome balance, which could potentially alleviate or even reverse the metabolic dysfunctions associated with T2DM. Although current results from clinical trials have not yet shown dramatic effects on diabetes management, the groundwork has been laid for deeper investigation. Ongoing and future clinical trials are critical to advancing our understanding of the microbiome’s impact on diabetes. By further elucidating the mechanisms through which microbiome alterations influence insulin resistance and glucose metabolism, researchers can develop more targeted interventions. The potential to harness the gut microbiome in developing new therapeutic strategies offers a compelling prospect to transform the treatment landscape of T2DM, potentially reducing the disease’s burden significantly with approaches that are less reliant on traditional pharmaceuticals and more focused on holistic, systemic health improvements.

Keywords: Type II diabetes; Gut microbiome; Probiotics; Prebiotics; Fecal microbiota transplantation

Core Tip: Type II diabetes mellitus (T2DM) has surged globally, driven by genetic and environmental factors. Amidst pharmaceutical options, exploring the gut microbiome stands out. Research reveals distinct microbiome differences in T2DM, suggesting its role in pathogenesis. Interventions such as prebiotics, probiotics, and fecal transfers aim to restore balance. While clinical trials have not shown dramatic effects yet, ongoing research holds promise. Understanding microbiome mechanisms could revolutionize T2DM treatment, emphasizing holistic health approaches.