Cai SS, Zheng TY, Wang KY, Zhu HP. Clinical study of different prediction models in predicting diabetic nephropathy in patients with type 2 diabetes mellitus. World J Diabetes 2024; 15(1): 43-52 [PMID: 38313855 DOI: 10.4239/wjd.v15.i1.43]
Corresponding Author of This Article
Hui-Ping Zhu, MM, Associate Chief Physician, Reader in Health Technology Assessment, Department of Nephrology, The First People’s Hospital of Wenling, No. 333 Chuan’an South Road, Chengxi Street, Wenling 317500, Zhejiang Province, China. zhuhuiping2261@163.com
Research Domain of This Article
Endocrinology & Metabolism
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Diabetes. Jan 15, 2024; 15(1): 43-52 Published online Jan 15, 2024. doi: 10.4239/wjd.v15.i1.43
Table 1 Results of univariate analysis of diabetic nephropathy in patients with type 2 diabetes [n (%)/mean ± SD]
Indicators
DN group (n = 74)
Non-DN group (n = 136)
t/χ²
P value
Age
56.01 ± 9.41
57.42 ± 8.15
-1.129
0.260
Sex
1.150
0.284
Male
27 (36.49)
60 (44.12)
Female
47 (63.51)
76 (55.88)
BMI (kg/m2)
24.60 ± 3.92
23.73 ± 2.94
1.673
0.097
Duration of diabetes (yr)
5.28 ± 1.34
4.86 ± 0.76
2.507
0.014
History of hypertension
0.465
0.495
Yes
24 (32.43)
38 (27.94)
No
50 (67.57)
98 (72.06)
DR
8.761
0.003
Yes
34 (45.95)
24 (17.65)
No
40 (54.05)
112 (82.35)
Coronary heart disease
0.350
0.554
Yes
19 (25.68)
30 (22.06)
No
55 (74.32)
106 (77.94)
FBG (mmol/L)
8.18 ± 1.67
7.71 ± 1.14
2.160
0.033
Scr (μmol/L)
91.25 ± 14.72
84.61 ± 9.80
3.485
0.001
HbAlc (%)
7.04 ± 1.33
6.29 ± 1.05
4.239
< 0.001
BUN (mmol/L)
7.10 ± 0.96
6.78 ± 1.13
2.111
0.036
TC (mmol/L)
4.81 ± 0.89
4.83 ± 0.97
–0.189
0.851
TG (mmol/L)
1.78 ± 0.4
1.72 ± 0.38
1.090
0.277
HDL-C (mmol/L)
1.41 ± 0.31
1.45 ± 0.32
−0.972
0.332
LDL-C (mmol/L)
3.31 ± 0.57
3.33 ± 0.86
−0.185
0.853
Table 2 Variable assignment
Factors
Variables of interest
Assignment of value
Concurrent DN or not
Y
Yes = 1, No = 0
Duration of diabetes (yr)
× 1
Numerical value
FBG (mmol/L)
× 2
Numerical value
Scr (μmol/L)
× 3
Numerical value
HbAlc (%)
× 4
Numerical value
BUN (mmol/L)
× 5
Numerical value
DR
× 6
Yes = 1, No = 0
Table 3 Results of multivariate analysis of diabetic nephropathy in patients with type 2 diabetes
Factors
B
SE
Wald
P value
OR
95%CI
Duration of diabetes (yr)
0.352
0.164
4.619
0.032
1.421
1.031-1.959
FBG (mmol/L)
0.272
0.128
4.518
0.034
1.312
1.021-1.685
Scr (μmol/L)
0.063
0.015
16.745
< 0.001
1.065
1.033-1.097
HbAlc (%)
0.707
0.161
19.31
< 0.001
2.029
1.480-2.781
BUN (mmol/L)
0.250
0.158
2.507
0.113
1.283
0.942-1.748
DR
0.883
0.360
6.035
0.014
2.419
1.196-4.894
Table 4 Efficacy of three model validation sets in predicting concurrent diabetic nephropathy in patients with type 2 diabetes
Model
Accuracy
Sensitivity
Specificity
Rate of recall
Rate of precision
AUC (95%CI)
Nomogram
0.746
0.710
0.844
0.906
0.690
0.811 (0.700-0.923)
Decision tree
0.714
0.710
0.875
0.906
0.659
0.735 (0.602-0.869)
Random forest
0.730
0.806
0.844
0.906
0.674
0.850 (0.750-0.950)
Citation: Cai SS, Zheng TY, Wang KY, Zhu HP. Clinical study of different prediction models in predicting diabetic nephropathy in patients with type 2 diabetes mellitus. World J Diabetes 2024; 15(1): 43-52