Published online Jan 15, 2024. doi: 10.4239/wjd.v15.i1.43
Peer-review started: August 24, 2023
First decision: November 9, 2023
Revised: November 25, 2023
Accepted: December 25, 2023
Article in press: December 25, 2023
Published online: January 15, 2024
Processing time: 141 Days and 9.9 Hours
Hyperglycemia is the main pathophysiological feature of diabetes, and its complications are the key factors of death and disability in patients with diabetes. Diabetic nephropathy (DN) is a microvascular complication and is one of the main complications of diabetes. The initial prediction of DN is beneficial for taking measures to prevent and delay the occurrence and progression of corresponding complications. Machine learning has been widely used to construct predictive models for diabetic complications.
Patients with type 2 diabetes mellitus (T2DM) complicated by DN are at high risk of mortality. We explored the factors affecting the complications of DN to establish three prediction models commonly used in medicine, compared the prediction effects, and selected the optimal model to provide a basis for clinical identification of patients with T2DM complicated with DN.
This study aimed to explore the factors influencing T2DM complicated with DN and use these factors to construct a prediction model for DN. The prediction effect of random forest is the best among the three models of nomogram, decision tree, and random forest and may become a useful tool for the early recognition of the risk of DN.
We retrospectively analyzed the clinical data of 210 patients with T2DM treated at our hospital between August 2019 and August 2022. Factors influencing DN were analyzed, and nomograms, decision trees, and random forest prediction models were established to compare their prediction efficiency. These three prediction methods are widely used in the medical field and have advantages and limitations. At the same time, through research, we can select a more suitable model to predict the complication risk of DN.
Fasting blood glucose, serum creatinine, glycosylated hemoglobin, diabetic retinopathy, and the duration of diabetes were independent factors influencing DN. Among the established nomograms, decision trees, and random forest pre
In this study, the predictive performances of three models were compared. The random forest model performed best in predicting the risk of DN in patients with T2DM and may be a useful alternative tool for diagnosing T2DM.
Future studies should include larger and more comprehensive samples, conduct multi-center studies, further improve existing algorithms, and consider the combination of multiple algorithms to construct a more complete and accurate prediction model.