Review
Copyright ©The Author(s) 2021.
World J Diabetes. Jun 15, 2021; 12(6): 730-744
Published online Jun 15, 2021. doi: 10.4239/wjd.v12.i6.730
Table 1 The effects of diet-derived gut bacterial metabolites on the pathogenesis of insulin resistance in various organs
Category
Metabolite
Target organ
Effects
Ref.
Carbohydrate
Fiber-derivedAcetateSkeletal muscleIncreased lipid oxidation in vivoYamashita et al[75]
LiverDecreased lipogenesis in vivoden Besten et al[47] and Yamashita et al[51]
Increased lipid oxidation in vivoden Besten et al[47], Yamashita et al[51], Kondo et al[52] and Sahuri-Arisoylu et al[53]
Adipose tissueStimulated adipogenesis in vitroGe et al[60]
Inhibited lipolysis in vitro and in vivoHong et al[59], Ge et al[60] and Jocken et al[61]
Increased browning in vitro and in vivoSahuri-Arisoylu et al[53] and Hanatani et al[73]
Whole bodyIncreased energy expenditure and fat oxidation in vivo and in humansden Besten et al[47], Canfora et al[77] and van der Beek et al[78]
PropionateLiverSuppressed gluconeogenesis in vitroYoshida et al[29]
Decreased lipogenesis in vivoden Besten et al[47]
Increased lipid oxidation in vivoden Besten et al[47]
Adipose tissueIncreased adipogenesis in vitroGe et al[60]
inhibit lipolysis in vitro and in vivoHong et al[59] and Ge et al[60]
Improved inflammation in ex vivoAl-Lahham et al[66]
IntestinePromoted gluconeogenesis in vivoDe Vadder et al[91]
Whole bodyIncreased energy expenditure and fat oxidation in vivo and in humansden Besten et al[47], Canfora et al[77] and Chambers et al[79]
ButyrateSkeletal muscleIncreased lipid oxidation in vitro and in vivoGao et al[48]
LiverDecreased lipogenesis in vivoden Besten et al[47]
Increased lipid oxidation in vivoden Besten et al[47], Gao et al[48] and Mollica et al[49]
Adipose tissuedecreased lipolysis in vitroOhira et al[67]
Improved inflammation in vitroOhira et al[67]
Increased thermogenesis in vivoGao et al[48] and Li et al[74]
IntestinePromoted gluconeogenesis in vitro and in vivoDe Vadder et al[91]
Whole bodyIncreased energy expenditure and fat oxidation in vivo and in humansden Besten et al[47], Gao et al[48] and Canfora et al[77]
SuccinateIntestinePromoted gluconeogenesis in vivoDe Vadder et al[92]
Protein
Protein-derivedHydrogen sulfideLiverIncreased gluconeogenesis in vitroZhang et al[32]
Decreased glycogen synthesis in vitroZhang et al[32]
IndoleAdipose tissueIncreased inflammation in vivoVirtue et al[10]
Indole-3-carboxylic acidAdipose tissueIncreased inflammation in vivoVirtue et al[10]
Phenylacetic acidLiverIncreased lipogenesis in ex vivo and in vivoHoyles et al[46]
Lipid and others
Linoleic acid-derived10-oxo-12(Z)-octadecenoic acidAdipose tissueInduced adipogenesis in vitroGoto et al[55]
Increased thermogenesis in vivoKim et al[81]
Conjugated linoleic acidAdipose tissueIncreased energy expenditureTakahashi et al[82], Park et al[83] and Lee et al[84]
Ferulic acid-derivedFerulic acid 4-O-sulfate and Dihydroferulic acid 4-O-sulfateSkeletal muscleIncreased glucose uptake in vitroHoughton et al[19]
Resveratrol-derivedTrans-resveratrol 4’-O-glucuro-nide and Trans-resveratrol 3-O-sulfateSkeletal muscleIncreased glucose uptake in vitroHoughton et al[19]
Berries-derivedIsovanillic acid 3-O-sulfateSkeletal muscleIncreased glucose uptake in vitroHoughton et al[19]
Catecin-derived4-hydroxy-5-(3,4,5-trihydroxyphenyl) valeric acid, 5-(3,4,5-trihydroxyphenyl)-γ-valerolac-tone, and 5-(3-hydroxyphenyl) valeric acidSkeletal muscleIncreased glucose uptake in vitroTakagaki et al[22]
Catecin-derived5-(3,5-dihydroxyphenyl)-γ-valerolactoneSkeletal muscleIncreased glucose uptake in vitro and in vivoTakagaki et al[22]
Bacteria-derivedExtracellular vesiclesSkeletal muscleDecreased glucose uptake in vivoChoi et al[20]
Choline-derivedTrimethylamine N-oxideLiverIncreased gluconeogenesis in ex vivo and in vivoChen et al[33] and Gao et al[43]
Adipose tissuePromoted inflammation in vivoGao et al[43]