Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12(6): 730-744 [PMID: 34168724 DOI: 10.4239/wjd.v12.i6.730]
Corresponding Author of This Article
Hui-Young Lee, DVM, PhD, Associate Professor, Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea. hylee@gachon.ac.kr
Research Domain of This Article
Biochemistry & Molecular Biology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Diabetes. Jun 15, 2021; 12(6): 730-744 Published online Jun 15, 2021. doi: 10.4239/wjd.v12.i6.730
Mechanisms linking gut microbial metabolites to insulin resistance
Hye Rim Jang, Hui-Young Lee
Hye Rim Jang, Hui-Young Lee, Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
Hui-Young Lee, Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
Hui-Young Lee, Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
Author contributions: Jang HR and Lee HY wrote the manuscript; all authors have read and approved the final manuscript.
Supported byNational Research Foundation Funded by the Korean Ministry of Science, No. NRF-2018M3A9F3056405 and No. NRF-2020R1A2B5B01002789.
Conflict-of-interest statement: The authors declare no conflicts of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Hui-Young Lee, DVM, PhD, Associate Professor, Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea. hylee@gachon.ac.kr
Received: February 10, 2021 Peer-review started: February 10, 2021 First decision: March 8, 2021 Revised: March 23, 2021 Accepted: May 20, 2021 Article in press: May 20, 2021 Published online: June 15, 2021 Processing time: 114 Days and 11.7 Hours
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Core Tip: Since the gut microbiota has been implicated in host energy metabolism and metabolic diseases, understanding mechanisms linked to insulin resistance is a first step in discovery of new drugs and novel targets against metabolic diseases. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in major target tissues of insulin.