Retrospective Cohort Study Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Jun 15, 2024; 15(6): 1212-1225
Published online Jun 15, 2024. doi: 10.4239/wjd.v15.i6.1212
Evaluating new biomarkers for diabetic nephropathy: Role of α2-macroglobulin, podocalyxin, α-L-fucosidase, retinol-binding protein-4, and cystatin C
Jing-Jing Li, Department of Infectious Diseases, Inner Mongolia Medical University, Hohhot First Hospital, Hohhot 010000, Inner Mongolia Autonomous Region, China
Ru-La Sa, Zhao-Li Yan, Department of Endocrinology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
Yu Zhang, Department of Dermatology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot 010000, Inner Mongolia Autonomous Region, China
ORCID number: Zhao-Li Yan (0009-0009-4202-3706).
Author contributions: Li JJ and Sa RL designed the research; Li JJ, Zhang Y, and Yan ZL performed the research; Zhang Y and Yan ZL contributed new reagents/analytic tools; Li JJ and Sa RL analyzed the data; Li JJ, Sa RL, and Zhang Y wrote the paper.
Supported by the Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2022MS08057.
Institutional review board statement: The study was reviewed and approved by the Ethics Committee of the Affiliated Hospital of Inner Mongolia Medical University (Approval No. WZ2024004).
Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.
Conflict-of-interest statement: The author declares no conflict of interest.
Data sharing statement: No additional data are available.
STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised according to the STROBE Statement—checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Zhao-Li Yan, FAASLD, Chief Doctor, Research Fellow, Department of Endocrinology, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Road, Hohhot 010000, Inner Mongolia Autonomous Region, China. aliceyzl@126.com
Received: January 7, 2024
Revised: February 27, 2024
Accepted: April 30, 2024
Published online: June 15, 2024
Processing time: 154 Days and 5.4 Hours

Abstract
BACKGROUND

The intricate relationship between type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) presents a challenge in understanding the significance of various biomarkers in diagnosis.

AIM

To elucidate the roles and diagnostic values of α2-macroglobulin (α2-MG), podocalyxin (PCX), α-L-fucosidase (AFU), retinol-binding protein-4 (RBP-4), and cystatin C (CysC) in DN.

METHODS

From December 2018 to December 2020, 203 T2DM patients were enrolled in the study. Of these, 115 were diagnosed with DN (115 patients), while the remaining 88 patients were classified as non-DN. The urinary levels of α2-MG, PCX, and AFU and the serum concentrations RBP-4 and CysC were measured in conjunction with other relevant clinical indicators to evaluate their potential correlations and diagnostic utility.

RESULTS

After adjustments for age and gender, significant positive correlations were observed between the biomarkers CysC, RBP-4, α2-MG/urinary creatinine (UCr), PCX/UCr, and AFU/UCr, and clinical indicators such as urinary albumin-to-creatinine ratio (UACR), serum creatinine, urea, 24-h total urine protein, and neutrophil-to-lymphocyte ratio (NLR). Conversely, these biomarkers exhibited negative correlations with the estimated glomerular filtration rate (P < 0.05). Receiver operating characteristic (ROC) curve analysis further demonstrated the diagnostic performance of these biomarkers, with UACR showcasing the highest area under the ROC curve (AUCROC) at 0.97.

CONCLUSION

This study underscores the diagnostic significance of α2-MG, PCX, and AFU in the development of DN. The biomarkers RBP-4, CysC, PCX, AFU, and α2-MG provide promising diagnostic insights, while UACR is the most potent diagnostic biomarker in assessing DN.

Key Words: α2-macroglobulin; Podocalysin; α-L-fucosidase; Retinol binding protein-4; Cystatin C; Diabetic nephropathy

Core Tip: This study elucidates the diagnostic value of α2-macroglobulin (α2-MG), podocalyxin (PCX), α-L-fucosidase (AFU), retinol-binding protein-4 (RBP-4), and cystatin C (CysC) in type 2 diabetes mellitus and diabetic nephropathy (DN). It reveals that these biomarkers, especially urinary albumin to creatinine ratio (UACR), are strongly correlated with renal damage indicators. The research demonstrates the superior diagnostic capability of UACR for DN, while highlighting the importance of α2-MG, PCX, AFU, RBP-4, and CysC as complementary diagnostic tools. These findings provide valuable insights into the mechanisms of DN and enhance diagnostic accuracy in clinical practice.



INTRODUCTION

Diabetes mellitus (DM) is a widespread metabolic disorder characterized by defects in insulin secretion, insulin action, or both, leading to hyperglycemia[1]. The rising incidence of type 2 diabetes mellitus (T2DM) positions it as a formidable challenge to global public health. Currently, T2DM affects approximately 6.4% of the population worldwide, with projections indicating that this number will increase to over 693 million by 2045[2]. This escalation diminishes the quality of life for affected individuals and increases their risk for several complications. Among these, diabetic nephropathy (DN) stands out as a major microvascular complication, significantly contributing to morbidity among patients with T2DM[3,4].

For the understanding and effective diagnosis of DN, biomarkers such as α-2-macroglobulin (α2-MG), podocalyxin (PCX), and α-L-fucosidase (AFU) have gained prominence. Notably, α2-MG, a noteworthy plasma proteinase inhibitor, remains undetectable in urine during the early stages of DN. This condition is primarily attributed to its large molecular weight, which restricts its passage through the glomerular filtration membrane[5,6]. Conversely, PCX, which is essential to the structural integrity of the podocyte glycocalyx, plays a vital role in maintaining podocyte morphology and the functionality of the slit diaphragm[7,8]. Elevated urinary levels of PCX are indicative of podocyte damage. Additionally, AFU, a lysosomal glycosidase predominantly located in renal tubular epithelial cells, exhibits increased urinary concentrations in DN, reflecting damage to these cells[9].

While microalbuminuria has traditionally been the cornerstone for DN diagnosis, its efficacy in detecting early DN and monitoring progression has been questioned. Evidence suggests that some diabetic individuals exhibit a marked estimated glomerular filtration rate (eGFR) decline and glomerular lesions despite normal urinary albumin excretion rates. This finding challenges the reliance solely on microalbuminuria for DN diagnosis[10,11]. Consequently, the search for more sensitive and specific biomarkers has intensified, aiming to provide a more comprehensive diagnostic framework.

This study, therefore, aims to evaluate a spectrum of clinical indicators, including α2-MG, PCX, AFU, retinol binding protein-4 (RBP-4), and Cystatin C (CysC), in the urine of T2DM patients with and without DN. By examining these biomarkers, we aspire to refine the diagnostic accuracy of DN, thereby offering a nuanced approach to early detection and management. This endeavor is not only of scientific merit but also holds substantial clinical value, potentially improving patient outcomes and mitigating the burden of T2DM complications.

MATERIALS AND METHODS
Patient enrollment and study design

This research was conducted as a retrospective cohort study at the Inpatient Department of The Affiliated Hospital of Inner Mongolia Medical University between December 2018 and December 2020. Patients admitted during this period were screened, and those diagnosed with T2DM were selected for further analysis. Of these, 88 patients were identified with non-DN (NDN) and 115 with DN. Prior to their inclusion, participants were informed of the study objectives and protocols, and consent was obtained. The study design and protocols received approval from the Ethics Committee of the Affiliated Hospital of Inner Mongolia Medical University. Data were collected using a structured questionnaire that gathered essential clinical and demographic information from the participants.

Inclusion criteria

Participants were eligible for the study if they met the diagnostic criteria for T2DM, as outlined in Table 1. The diagnosis of DN was determined based on either a reduction in glomerular filtration rate (GFR) or an elevated urinary albumin to creatinine ratio (UACR). Specifically, DN was identified when the GFR decreased to an eGFR below 60 mL·min-1·1.73 m-2, or when the UACR exceeded 30 mg/g in two out of three repeated examinations conducted 3-6 months, excluding other factors such as infections[12].

Table 1 Diagnostic criteria for diabetes (World Health Organization, 1999).
Diagnostic criteria
Venous plasma glucose levels (mmol/L)
Diabetic symptoms and random blood glucose≥ 11.1 mmol/L
Fasting plasma glucose≥ 7.0 mmol/L
Plasma glucose 2 h after oral glucose tolerance test≥ 11.1 mmol/L
Exclusion criteria

Individuals were excluded from the study if they exhibited a rapid decrease in eGFR, a marked increase in UACR, or presented with nephrotic syndrome. Additionally, those who demonstrated a reduction in eGFR exceeding 30% within 2-3 months following treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers were also omitted from the study. Exclusion criteria were further extended to severe liver function abnormalities, indicated by levels of glutamic-pyruvic transaminase or glutamic-oxalacetic transaminase rising above three times the upper normal limit, or gamma-glutamyltransferase levels exceeding five times the upper normal limit. Moreover, the presence of active urinary sediment, characterized by the detection of red blood cells, white blood cells, or cellular casts, the existence of renal diseases not related to DN, severe cardiac and cerebrovascular conditions, a medical history of malignancies and autoimmune disorders, and acute conditions such as diabetic ketoacidosis, diabetic hyperosmolar coma, severe infections, or other states of physiological stress, were also considered valid reasons for exclusion from the research.

Biochemical index assessment

In the morning, 3 mL of fresh fasting peripheral blood was drawn from each participant. The specimen was subjected to centrifugation at 3000 rpm for 15 min. Concurrently, a 5 mL specimen of the initial clean morning urine (midstream collection) was obtained and subjected to centrifugation at 1500 rpm for 10 min. Following centrifugation, the supernatants from both samples were collected and stored at -80 °C for subsequent analysis.

The investigation involved a detailed evaluation of several biochemical parameters, including hypersensitive C-reactive protein (hs-CRP), lymphocytes, neutrophils, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglyceride, fasting insulin, fasting plasma glucose (FPG), urea nitrogen (urea), glycosylated hemoglobin, urinary microalbuminuria, uric acid, serum creatinine (Scr), 24-h total urine protein (UTP/24 h), and urinary creatinine (UCr). The concentrations of RBP-4 and CysC were measured using immunoturbidimetric methods. Furthermore, the quantification of α2-MG, PCX, and AFU concentrations was carried out using ELISA kits provided by CUSABIO BIOTECH CO, Ltd. (China).

U- denoted the protein content in urine samples. To mitigate the influence of urine concentration variability on the test outcomes, the levels of urinary α2-MG, PCX, and AFU were normalized by dividing the concentrations of these biomarkers by the corresponding UCr values.

Calculation indicators

Insulin resistance, indicated by homeostasis model assessment of insulin resistance (HOMA2-IR), was determined using the HOMA Insulin Resistance Index Calculator v2.2.3. Inputs for FPG and fasting insulin were processed through the software available at (http://www.dtu.ox.ac.uk/HOMACalculator/). The NLR was established by dividing the total number of neutrophils by the number of lymphocytes. The eGFR calculation was performed using the CKD-EPI formula[13], which is widely recognized for its accuracy in estimating renal function. The body mass index (BMI) of participants was calculated using the standard formula: BMI (kg/m2) = Weight (kg)/height (m2).

Statistical analysis

Statistical analyses were conducted using SPSS software (version 20.0). The normality of continuous variables was assessed using the single-sample Kolmogorov-Smirnov (K-S) test. Variables adhering to a normal distribution were depicted as mean ± SD. The median and interquartile range were reported for data that did not follow a normal distribution, denoted as P50 (25th percentile, 75th percentile). Variance consistency across samples was verified using Levene’s test.

A two-independent samples T-test was employed for datasets exhibiting normal distribution and homogeneity of variances. Variables that did not meet these criteria were analyzed with the Mann-Whitney U rank-sum test. Categorical data were represented as frequencies and percentages n (%) and analyzed using the chi-square test.

A partial correlation analysis, adjusted for sex and age, was used to explore relationships between serum and urine biomarkers and other clinical measures. The diagnostic capabilities of each indicator for DN were assessed using receiver operating characteristic (ROC) curve analysis. Statistical significance was attributed to P < 0.05.

RESULTS
Biochemical and clinical differences between DN and NDN groups

We conducted an extensive biostatistical analysis to explore the differences between patients with DN and those without DN (NDN), as detailed in Table 2. The gender distribution was roughly similar across both groups; however, the median age of patients in the DN group was significantly higher, suggesting a potential age-related onset of DN (P = 0.021). Moreover, the incidence of hypertension was significantly elevated in the DN group, further emphasizing a potential link between hypertension and diabetic renal disease (P < 0.001).

Table 2 Comparison of clinical and laboratory parameters between diabetic nephropathy and non-diabetic nephropathy patients.
Parameters
NDN (n = 88)
DN (n = 115)
F/Z value
P value
Age, yr57.03 ± 10.3460.57 ± 11.05a0.6800.021
Sex, male, n (%)58 (65.90)75 (65.20)0.0110.918
BMI, kg/m225.69 ± 2.6726.35 ± 3.727.6950.192
Hypertension, present, n (%)41 (46.60)97 (84.30)a32.650< 0.001
Course, yr8 (3.75, 15.00)12 (8.00, 20.00)a3.666< 0.001
FPG, mmol/L6.80 (5.60, 8.10)6.80 (5.68, 8.70)0.4690.639
HbA1c, %8.82 ± 1.778.70 ± 2.396.6760.681
NLR1.72 (1.34, 2.14)2.19 (1.70, 3.19)a4.547< 0.001
hs-CRP, mg/L1.55 (0.72, 3.37)2.60 (0.95, 7.20)a2.2930.022
TC, mmol/L4.35 ± 1.034.71 ± 1.53a8.0090.045
TG, mmol/L1.64 (1.08, 2.26)1.65 (1.12, 2.66)1.0640.287
LDL-C, mmol/L2.53 ± 0.772.61 ± 0.963.1810.544
HDL-C, mmol/L0.99 ± 0.200.96 ± 0.231.2280.265
Urea, mmol/L5.50 (4.63, 6.30)7.60 (5.80, 11.93)a6.726< 0.001
CysC, mg/L0.53 (0.45, 0.72)1.18 (0.65, 1.99)a7.419< 0.001
RBP-4, mg/L39.99 (30.69, 46.30)53.20 (41.00, 73.00)a6.284< 0.001
Scr, μmol/L68.00 (59.00, 79.75)105.00 (70.00, 199.00)a6.525< 0.001
eGFR, mL·min-1·1.73 m-295.99 (90.11, 104.82)57.01 (27.22, 93.84)a6.561< 0.001
UACR, mg/g6.30 (3.70, 15.45)446.20 (114.10, 1086.20)a11.542< 0.001
UTP/24 h, g/24 h0.04 (0.02, 0.08)1.31 (0.34, 4.07)a11.624< 0.001
U-α2-MG/UCr, mg/g1.20 (0.86, 2.02)5.78 (2.00, 17.31)a8.110< 0.001
U-PCX/UCr, μg/g2.91 (1.48, 5.04)12.83 (6.25, 42.27)a8.817< 0.001
U-AFU/UCr, nmol/g0.04 (0.03, 0.07)0.34 (0.05, 2.14)a7.105< 0.001

Biochemically, the levels of RBP-4, CysC, PCX/UCr, AFU/UCr, and α2-MG/UCr were markedly elevated in the DN group. These indicators are often associated with renal damage, a decrease in the GFR, and an enhanced inflammatory response (P < 0.05). Notably, CysC and RBP-4 have been recognized as sensitive biomarkers for early renal function impairment in recent years. Traditional renal function indicators, such as urea, Scr, eGFR, UACR, and UTP/24 h, also demonstrated significant disparities in the DN group compared to the NDN group, further affirming the compromised renal functions in patients with DN.

Therefore, these findings validate the pronounced differences in multiple biochemical and clinical indicators between DN and NDN and provide an experimental basis for further in-depth studies into the pathophysiological mechanisms of DN.

Analysis of the correlations among key biochemical biomarkers in DN

With adjustments for demographic factors (gender and age), several significant positive correlations were observed among key biochemical biomarkers in DN (Figure 1). The UACR, a pivotal biomarker measuring urinary protein excretion, exhibited significant positive correlations with RBP-4, CysC, U-PCX/UCr, U-α2-MG/UCr, and U-AFU/UCr (Table 3). These observations suggested that increases in these biochemical biomarkers correlate with rising urinary protein levels, indicative of potential renal function impairment or structural damage.

Figure 1
Figure 1 Correlation analysis of biomarkers and clinical indicators in diabetic nephropathy. A: Correlation heatmap of selected biomarkers and clinical indicators, where color intensity reflects correlation strength; deep blue for strong positive and lighter shades for weaker correlations; B: Significance heatmap for biomarker and clinical indicator correlations, with color depth indicating P value magnitude; darker blue for lower P values and higher significance, lighter for higher P values or nonsignificance. α2-MG: α2-macroglobulin; PCX: Podocalysin; AFU: α-L-fucosidase; RBP-4: Retinol binding protein-4; CysC: Cystatin C; UACR: Urinary albumin/creatinine ratio.
Table 3 Partial correlation analysis between cystatin C, retinol-binding protein-4, U-α2- macroglobulin, U-podocalyxin, U-α-L-fucosidase, and clinical indicators.
IndicatorCysC

RBP-4

U-α2-MG/UCr

U-PCX/UCr

U-AFU/UCr

r
P value
r
P value
r
P value
r
P value
r
P value
UACR0.730< 0.0010.625< 0.0010.805< 0.0010.639< 0.0010.780< 0.001
eGFR-0.816< 0.001-0.702< 0.001-0.711< 0.001-0.604< 0.001-0.742< 0.001
CysC1.000-0.693< 0.0010.710< 0.0010.645< 0.0010.692< 0.001
RBP-40.693< 0.0011.000-0.530< 0.0010.432< 0.0010.588< 0.001
U-α2-MG/UCr0.710< 0.0010.530< 0.0011.000-0.820< 0.0010.874< 0.001
U-PCX/UCr0.645< 0.0010.432< 0.0010.820< 0.0011.000-0.746< 0.001
U-AFU/UCr0.692< 0.0010.588< 0.0010.874< 0.0010.746< 0.0011.000-
Scr0.953< 0.0010.680< 0.0010.755< 0.0010.645< 0.0010.715< 0.001
Urea0.799< 0.0010.651< 0.0010.657< 0.0010.568< 0.0010.703< 0.001
UTP/24 h0.665< 0.0010.506< 0.0010.740< 0.0010.523< 0.0010.743< 0.001
NLR0.417< 0.0010.1670.0180.311< 0.0010.299< 0.0010.313< 0.001
hs-CRP0.0670.3430.0790.2670.0940.1860.1110.1180.0870.222

Furthermore, eGFR, a reflection of renal function, presented significant negative correlations with all the biomarkers mentioned earlier. This finding implies that as renal function diminishes, the concentrations of these biochemical biomarkers ascend, underlining their importance in the early detection of renal injury. Scr and urea, considered traditional renal function biomarkers, displayed strong positive correlations with RBP-4, CysC, U-PCX/UCr, U-α2-MG/UCr, and U-AFU/UCr. This finding reinforced the effect of these new biochemical biomarkers on assessing renal function. While NLR and hs-CRP were recognized as inflammation biomarkers, their correlations with the previously mentioned biochemical biomarkers remained undetermined. NLR demonstrated significant positive correlations with all biomarkers, whereas hs-CRP mostly lacked statistical significance in its correlations with most biomarkers.

Hence, the specified biochemical biomarkers, especially RBP-4, CysC, U-PCX/UCr, U-α2-MG/UCr, and U-AFU/UCr, not only exhibit strong correlations with traditional renal function biomarkers like UACR, eGFR, Scr, and urea, but also underscore their significance in the early identification and assessment of renal injury.

Evaluation of the value and precision of various biomarkers in the early diagnosis of DN

In the diagnosis of chronic kidney disease, commonly adopted criteria include eGFR values less than 60 mL·min-1·1.73 m-2 or UACR values exceeding or equal to 30 mg/g. To further delineate the diagnostic value of these biomarkers for DN, we conducted a ROC curve analysis, contrasting the sensitivity, specificity, and area under the ROC curve (AUCROC) values of various indicators (Table 4). Initially, the UACR as a singular biomarker demonstrated outstanding efficacy in DN diagnosis. The optimal diagnostic threshold for UACR was identified at 29.5 mg/g, whereupon exceeding this threshold, the sensitivity and specificity for diagnosing DN were recorded at 95% and 98%. This high accuracy in confirming and excluding DN with this biomarker is indicated by its AUCROC value at 0.97 (Figure 2), approaching perfection and further attesting to its pivotal role in DN diagnosis.

Figure 2
Figure 2 Diagnostic performance of biomarkers in early diagnosis of diabetic nephropathy. A: Bar graph comparing area under the receiver operating characteristic (ROC) curve values for biomarkers in the diagnosis of diabetic nephropathy; B: ROC curve analysis for individual biomarkers; C: ROC curve analysis for combined biomarkers. ROC: Receiver operating characteristic.
Table 4 Evaluation of area under the curve and its 95% confidence interval for various indicators.
Indicators waiting to be measured
AUC
Standard error
P value
95% confidence interval
UACR0.970.01< 0.001(0.95, 1.00)
eGFR0.770.03< 0.001(0.70, 0.84)
CysC0.800.03< 0.001(0.75, 0.86)
RBP-40.760.03< 0.001(0.69, 0.82)
U-α2-MG/UCr0.830.03< 0.001(0.78, 0.89)
U-PCX/UCr0.860.03< 0.001(0.81, 0.91)
U-AFU/UCr0.790.03< 0.001(0.73, 0.85)
U-α2-MG/UCr + U-PCX/UCr0.880.03< 0.001(0.83, 0.93)
U-PCX/UCr + U-AFU/UCr0.880.03< 0.001(0.84, 0.93)
U-α2-MG/UCr + U-AFU/UCr0.860.03< 0.001(0.80, 0.91)
U-α2-MG/UCr + U-PCX/UCr + U-AFU/UCr0.890.03< 0.001(0.85, 0.94)

Subsequently, the effectiveness of a combination of multiple biomarkers, such as U-α2-MG/UCr and U-PCX/UCr, for DN diagnosis was evaluated. This combination confirmed exceptionally efficacious, with the combined sensitivity and specificity in diagnosing DN recorded at 86% and 76% (Table 5). While these figures were marginally lower than the singular UACR biomarker, their AUCROC value of 0.88 confirmed the substantial effectiveness of this combination in DN diagnosis.

Table 5 Optimal diagnostic cut-off points and their sensitivity and specificity for various indicators.
Indicators
Optimal diagnostic cut-off points
Sensitivity
Specificity
Youden index
UACR29.500.950.980.93
eGFR74.410.960.580.54
CysC1.110.540.990.53
RBP-456.900.450.980.43
U-α2-MG/UCr3.900.550.990.54
U-PCX/UCr4.810.840.750.59
U-AFU/UCr0.180.630.920.55
U-α2-MG/UCr + U-PCX/UCr-0.860.760.62
U-PCX/UCr + U-AFU/UCr-0.750.860.61
U-α2-MG/UCr + U-AFU/UCr-0.680.900.58
U-α2-MG/UCr + U-PCX/UCr + U-AFU/UCr-0.890.750.64

In conclusion, whether used singularly or in combination, these biomarkers exhibit profound efficacy in DN diagnosis, offering promising insights for practical clinical application.

DISCUSSION

With the rising incidence of T2DM and DN, searching for effective diagnostic biomarkers has gained critical importance[14,15]. DN is the predominant chronic microvascular complication of diabetes and a leading contributor to end-stage renal disease. Traditionally, glomerular damage and increased permeability, manifested as proteinuria, have been recognized as primary indicators of DN. However, recent studies suggest that the proteinuria biomarkers currently in use may not accurately detect this condition in some diabetic patients[10,11]. Consequently, there is a need to explore more sensitive biomarkers to assess the severity and progression of DN. This study identified a positive correlation between the concentrations of biomarkers such as α2-MG, PCX, and AFU and the progression of DN, suggesting their potential as indicative molecules of DN. Notably, the AUCROC value for UACR reached 0.88, underscoring its potential as a highly promising indicator for DN progression.

This study revealed elevated levels of urinary α2-MG in patients with DN, indicating that urinary α2-MG levels rose with the aggravation of the condition. The major plasma proteinase inhibitor, α2-MG, is predominantly synthesized by hepatocytes and cells of the mononuclear phagocyte system. It plays a crucial role in regulating protease activity, nutritional support, signal transduction, and tissue reconstruction. Moreover, α2-MG is crucial in defending against infections and external toxins, as well as in regulating cytokines, hormones, and other bioactive lipid factors, thereby influencing a wide range of physiological and pathological processes[16]. In the context of DN, studies employing chromatographic analysis have demonstrated that urinary α2-MG retains its integrity, appearing in urine as a complete protein with a molecular weight identical to that in serum[17,18]. This finding underscores the stability of α2-MG and its potential utility in clinical diagnostics. Furthermore, the presence of α2-MG in urine is indicative of glomerular damage, which may result from enhanced filtration or the translocation of blood constituents into the urine. Thus, urinary α2-MG serves as a diagnostic marker capable of differentiating the causes of proteinuria.

Our investigation revealed elevated levels of PCX in the urine of patients with DN. Although urinary PCX does not surpass the urinary albumin to creatinine ratio (UACR) index in terms of diagnostic superiority, its value in identifying DN is more advantageous than many other biomarkers. PCX, a sialomucin associated with the CD34 family, is localized primarily in mesenchymal cells, the apical membrane area of podocytes, vascular endothelial cells, and platelets[19-21]. The surface charge of PCX is critical for maintaining the structure of the slit diaphragm by providing anti-adhesion properties. This function is essential for preventing the passage of negatively charged proteins through the slit diaphragm into the urine, thereby indicating specific barrier damage characteristic of DN[22]. Previous studies have shown that elevated urinary PCX levels can serve as an early marker for renal impairment in individuals with early-stage DN or lupus nephritis[23,24]. The detection of PCX in urine provides a non-invasive diagnostic approach, which is facilitated by straightforward sample collection methods. Additionally, the use of ELISA for measuring PCX offers several advantages, including affordability and high sensitivity, which make it suitable for widespread use in standard laboratory settings.

In this study, urinary levels of U-AFU/UCr were higher in the DN group than the NDN group. AFU is a lysosomal enzyme, initially identified in cell lysosomes and later recognized as a tumor biomarker for the diagnosis of hepatocellular carcinoma following the elevation reported in the serum of patients with hepatocellular carcinoma by Deugnier et al[25]. Subsequent research revealed its widespread distribution across various tissues, cells, and bodily fluids, with its primary function being the catalysis of the degradation metabolism of glycosylated oligosaccharides, glycoproteins, and other substances[26,27]. This substance is notably concentrated in the liver and kidneys, with a significant presence within the lysosomes of proximal renal tubular epithelial cells[27]. In our research, correlation analyses revealed positive associations between U-AFU/UCr and various markers such as CysC, UACR, RBP-4, U-PCX/UCr, U-α2-MG/UCr, Scr, UTP/24 h, urea, and NLR, while showing a negative relationship with eGFR, implying consistency with changes in renal function-related indicators. Thus, U-AFU/UCr can indicate the occurrence and extent of renal damage in DN. The AUCROC value for U-AFU/UCr was reported at 0.79, with a sensitivity of 63% and specificity of 92%. These findings demonstrated that while U-PCX/UCr and U-α2-MG/UCr presented lower diagnostic utility for DN, the sensitivity of U-AFU/UCr surpassed that of U-α2-MG/UCr and fell below U-PCX/UCr. Meanwhile, its specificity exceeded that of U-PCX/UCr but did not reach the specificity of U-α2-MG/UCr. The data highlight that each marker possesses unique strengths and weaknesses in the diagnostic process, and leveraging them collectively in clinical assessments can foster diagnostic accuracy.

Moreover, the levels of RBP-4 were found to be elevated in the DN group relative to the NDN group. RBP-4 exhibited positive correlations with UACR, CysC, Scr, urea, UTP/24 h, and the NLR, and a negative correlation with the eGFR, making it a reliable indicator of kidney functions[28]. With a molecular weight of 21 kDa, RBP-4 is predominantly found in insulin-responsive tissues, including skeletal muscle and adipose tissue. It forms a complex with retinol and transthyretin, facilitating the delivery of vitamin A to peripheral tissues. This complex is known to inhibit glomerular filtration. Approximately 4% of RBP-4 found in urine and 5% in serum manage to traverse the glomerular barrier and undergo reabsorption in the proximal convoluted tubules, positioning RBP-4 as an indicative marker of proximal tubular injury[29,30]. It is hypothesized that an increase in RBP-4 levels could be due to a diminished clearance rate, attributed to the decline in renal functionality. This results in a systemic accumulation of RBP-4 or a decreased efficiency in the renal clearance of the RBP-4 complex.

In our study, CysC levels were observed to be higher in the DN group than in the NDN group. CysC demonstrated positive correlations with UACR, RBP-4, SCr, urea, UTP/24 h, NLR, and hs-CRP, while showing an inverse relationship with eGFR, reinforcing its association with inflammation markers and renal health indicators. CysC, with a molecular weight of 13.3 kDa, is synthesized consistently in all nucleated cells. It undergoes unimpeded filtration by the glomeruli, followed by reabsorption and complete metabolism in the proximal tubules. Hence, CysC is acknowledged as a straightforward, reliable, and precise indicator of GFR. The AUCROC value for RBP-4 (0.70) and CysC (0.78) surpassed that of α2-MG, AFU, and PCX, indicating their superior clinical utility in diagnosing DN. The diagnostic accuracy of these biomarkers improves further when used in conjunction with other markers, highlighting their potential for enhancing DN diagnosis in clinical settings.

Lastly, the study identified elevated levels of PCX, AFU, and α2-MG in the DN group, which correlated with the progression of renal function. When used individually, the AUCROC value for these biomarkers outperformed RBP-4 and CysC, each displaying distinct advantages in sensitivity and specificity. The combination of these three indicators yields a higher diagnostic value, serving as a complement to the diagnosis of proteinuria and eGFR.

However, this study is subject to certain limitations. The method of sample storage may have led to the degradation or denaturation of some proteins, potentially affecting the results. Additionally, the limited sample size may restrict the generalizability of the findings, necessitating further validation with a larger cohort. Given these preliminary findings, future research should explore the trends of these biomarkers at various stages of DN and their interactions with other potential factors, such as genetics and lifestyle. Large-scale, multicentric studies could provide more stable and reliable data. Moreover, it was observed that indicators such as PCX, AFU, and α2-MG did not exhibit superiority over the UACR, which is currently used for diagnosis. This observation could be attributed to the high diagnostic value of UACR itself or to the limited sample size of this study, which may not fully reflect the comprehensive diagnostic capabilities of the newer biomarkers. Such insights underscore the need for continued investigation into the utility of these biomarkers in enhancing the accuracy of DN diagnosis.

CONCLUSION

DN, as a primary complication of T2DM, has emerged as a significant public health concern. The covert progression of DN and the lack of sensitive biomarkers currently impede early intervention and optimal treatment for patients. This research has highlighted the importance of α2-MG, PCX, AFU, RBP-4, and CysC in the onset and progression of DN, with UACR demonstrating the highest diagnostic value among all biomarkers (Figure 3). These findings provide potential viable biomarkers for the early diagnosis of DN and offer possible indications for early intervention in patients. Furthermore, our findings offer new insights into the mechanisms underlying the progression of DN and valuable references for future diagnostics and treatment strategies.

Figure 3
Figure 3 Molecular biomarkers and their role in diagnosing diabetic nephropathy. This figure provides a visual overview of the key molecular biomarkers implicated in diabetic nephropathy, highlighting their significance and potential utility in the early diagnosis and monitoring of the disease. α2-MG: α2-macroglobulin; PCX: Podocalysin; AFU: α-L-fucosidase; RBP-4: Retinol binding protein-4; CysC: Cystatin C; UACR: Urinary albumin/creatinine ratio; DN: Diabetic nephropathy.
Footnotes

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Endocrinology and metabolism

Country/Territory of origin: China

Peer-review report’s classification

Scientific Quality: Grade A, Grade B, Grade B

Novelty: Grade B

Creativity or Innovation: Grade B

Scientific Significance: Grade A

P-Reviewer: Ebraheim LLM, Egypt S-Editor: Chen YL L-Editor: A P-Editor: Xu ZH

References
1.  Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16:377-390.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 825]  [Cited by in F6Publishing: 698]  [Article Influence: 174.5]  [Reference Citation Analysis (0)]
2.  Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013;36:1047-1055.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 234]  [Cited by in F6Publishing: 241]  [Article Influence: 21.9]  [Reference Citation Analysis (0)]
3.  Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne). 2022;13:816400.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 20]  [Cited by in F6Publishing: 67]  [Article Influence: 33.5]  [Reference Citation Analysis (0)]
4.  Li X, Lu L, Hou W, Huang T, Chen X, Qi J, Zhao Y, Zhu M. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai). 2022;54:163-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 34]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
5.  Menon R, Otto EA, Hoover P, Eddy S, Mariani L, Godfrey B, Berthier CC, Eichinger F, Subramanian L, Harder J, Ju W, Nair V, Larkina M, Naik AS, Luo J, Jain S, Sealfon R, Troyanskaya O, Hacohen N, Hodgin JB, Kretzler M, Kpmp KPMP; Nephrotic Syndrome Study Network (NEPTUNE). Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight. 2020;5.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 70]  [Cited by in F6Publishing: 94]  [Article Influence: 23.5]  [Reference Citation Analysis (0)]
6.  Takada T, Kodera Y, Matsubara M, Kawashima Y, Maeda T, Fujita Y, Shichiri M. Serum monomeric α2-macroglobulin as a clinical biomarker in diabetes. Atherosclerosis. 2013;228:270-276.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 13]  [Article Influence: 1.2]  [Reference Citation Analysis (0)]
7.  Wang R, Yao C, Liu F. Association between Renal Podocalyxin Expression and Renal Dysfunction in Patients with Diabetic Nephropathy: A Single-Center, Retrospective Case-Control Study. Biomed Res Int. 2020;2020:7350781.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
8.  Feng JK, Lu YF, Li J, Qi YH, Yi ML, Ma DY. Upregulation of salivary α2 macroglobulin in patients with type 2 diabetes mellitus. Genet Mol Res. 2015;14:2268-2274.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
9.  Park S, Bivona BJ, Kobori H, Seth DM, Chappell MC, Lazartigues E, Harrison-Bernard LM. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am J Physiol Renal Physiol. 2010;298:F37-F48.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 72]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
10.  Rossing P, Hougaard P, Parving HH. Progression of microalbuminuria in type 1 diabetes: ten-year prospective observational study. Kidney Int. 2005;68:1446-1450.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 42]  [Cited by in F6Publishing: 47]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
11.  Chen Y, Lee K, Ni Z, He JC. Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Dis (Basel). 2020;6:215-225.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 101]  [Cited by in F6Publishing: 81]  [Article Influence: 20.3]  [Reference Citation Analysis (0)]
12.  Chinese Diabetes Society; National Office for Primary Diabetes Care. [National guidelines for the prevention and control of diabetes in primary care (2022)]. Zhonghua Nei Ke Za Zhi. 2022;61:249-262.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
13.  Ferraro PM, Lombardi G, Gambaro G. Impact of the new, race-free CKD-EPI equation on prevalence and clinical outcomes of CKD in northeastern Italy: the INCIPE study. J Nephrol. 2022;35:1767-1769.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 1]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
14.  Zhang L, Wang Z, Zhang X, Zhao L, Chu J, Li H, Sun W, Yang C, Wang H, Dai W, Yan S, Chen X, Xu D. Alterations of the Gut Microbiota in Patients with Diabetic Nephropathy. Microbiol Spectr. 2022;10:e0032422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 43]  [Reference Citation Analysis (0)]
15.  Wong YH, Wong SH, Wong XT, Yap QY, Yip KY, Wong LZ, Chellappan DK, Bhattamisra SK, Candasamy M. Genetic associated complications of type 2 diabetes mellitus. Panminerva Med. 2022;64:274-288.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 3]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
16.  Garcia-Ferrer I, Marrero A, Gomis-Rüth FX, Goulas T. α(2)-Macroglobulins: Structure and Function. Subcell Biochem. 2017;83:149-183.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 29]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
17.  Narita T, Sasaki H, Hosoba M, Miura T, Yoshioka N, Morii T, Shimotomai T, Koshimura J, Fujita H, Kakei M, Ito S. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients. Diabetes Care. 2004;27:1176-1181.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 69]  [Cited by in F6Publishing: 71]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
18.  Narita T, Fujita H, Koshimura J, Meguro H, Kitazato H, Shimotomai T, Kagaya E, Suzuki K, Murata M, Usami A, Ito S. Glycemic control reverses increases in urinary excretions of immunoglobulin G and ceruloplasmin in type 2 diabetic patients with normoalbuminuria. Horm Metab Res. 2001;33:370-378.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 14]  [Article Influence: 0.6]  [Reference Citation Analysis (1)]
19.  Heng S, Samarajeewa N, Aberkane A, Essahib W, Van de Velde H, Scelwyn M, Hull ML, Vollenhoven B, Rombauts LJ, Nie G. Podocalyxin inhibits human embryo implantation in vitro and luminal podocalyxin in putative receptive endometrium is associated with implantation failure in fertility treatment. Fertil Steril. 2021;116:1391-1401.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 6]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
20.  Nagano H, Ogata S, Ito S, Masuda T, Ohtsuki S. Knockdown of Podocalyxin Post-Transcriptionally Induces the Expression and Activity of ABCB1/MDR1 in Human Brain Microvascular Endothelial Cells. J Pharm Sci. 2022;111:1812-1819.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
21.  Le Tran N, Wang Y, Nie G. Podocalyxin in Normal Tissue and Epithelial Cancer. Cancers (Basel). 2021;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 18]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
22.  Hara M, Yamagata K, Tomino Y, Saito A, Hirayama Y, Ogasawara S, Kurosawa H, Sekine S, Yan K. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia. 2012;55:2913-2919.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 97]  [Cited by in F6Publishing: 103]  [Article Influence: 8.6]  [Reference Citation Analysis (0)]
23.  Ikuma D, Hiromura K, Kajiyama H, Suwa J, Ikeuchi H, Sakairi T, Kaneko Y, Maeshima A, Kurosawa H, Hirayama Y, Yokota K, Araki Y, Sato K, Asanuma YF, Akiyama Y, Hara M, Nojima Y, Mimura T. The correlation of urinary podocytes and podocalyxin with histological features of lupus nephritis. Lupus. 2018;27:484-493.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 9]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
24.  Perez-Hernandez J, Olivares MD, Forner MJ, Chaves FJ, Cortes R, Redon J. Urinary dedifferentiated podocytes as a non-invasive biomarker of lupus nephritis. Nephrol Dial Transplant. 2016;31:780-789.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 33]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
25.  Leray G, Deugnier Y, Jouanolle AM, Lehry D, Bretagne JF, Campion JP, Brissot P, Le Treut A. Biochemical aspects of alpha-L-fucosidase in hepatocellular carcinoma. Hepatology. 1989;9:249-252.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 16]  [Cited by in F6Publishing: 18]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
26.  El-Shayeb AF, El-Habachi NM, Mansour AR, Zaghloul MS. Serum midkine is a more sensitive predictor for hepatocellular carcinoma than Dickkopf-1 and alpha-L-fucosidase in cirrhotic HCV patients. Medicine (Baltimore). 2021;100:e25112.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
27.  Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, Agrewala JN, Agrotis A, Aguilar PV, Ahmad ST, Ahmed ZM, Ahumada-Castro U, Aits S, Aizawa S, Akkoc Y, Akoumianaki T, Akpinar HA, Al-Abd AM, Al-Akra L, Al-Gharaibeh A, Alaoui-Jamali MA, Alberti S, Alcocer-Gómez E, Alessandri C, Ali M, Alim Al-Bari MA, Aliwaini S, Alizadeh J, Almacellas E, Almasan A, Alonso A, Alonso GD, Altan-Bonnet N, Altieri DC, Álvarez ÉMC, Alves S, Alves da Costa C, Alzaharna MM, Amadio M, Amantini C, Amaral C, Ambrosio S, Amer AO, Ammanathan V, An Z, Andersen SU, Andrabi SA, Andrade-Silva M, Andres AM, Angelini S, Ann D, Anozie UC, Ansari MY, Antas P, Antebi A, Antón Z, Anwar T, Apetoh L, Apostolova N, Araki T, Araki Y, Arasaki K, Araújo WL, Araya J, Arden C, Arévalo MA, Arguelles S, Arias E, Arikkath J, Arimoto H, Ariosa AR, Armstrong-James D, Arnauné-Pelloquin L, Aroca A, Arroyo DS, Arsov I, Artero R, Asaro DML, Aschner M, Ashrafizadeh M, Ashur-Fabian O, Atanasov AG, Au AK, Auberger P, Auner HW, Aurelian L, Autelli R, Avagliano L, Ávalos Y, Aveic S, Aveleira CA, Avin-Wittenberg T, Aydin Y, Ayton S, Ayyadevara S, Azzopardi M, Baba M, Backer JM, Backues SK, Bae DH, Bae ON, Bae SH, Baehrecke EH, Baek A, Baek SH, Bagetta G, Bagniewska-Zadworna A, Bai H, Bai J, Bai X, Bai Y, Bairagi N, Baksi S, Balbi T, Baldari CT, Balduini W, Ballabio A, Ballester M, Balazadeh S, Balzan R, Bandopadhyay R, Banerjee S, Bánréti Á, Bao Y, Baptista MS, Baracca A, Barbati C, Bargiela A, Barilà D, Barlow PG, Barmada SJ, Barreiro E, Barreto GE, Bartek J, Bartel B, Bartolome A, Barve GR, Basagoudanavar SH, Bassham DC, Bast RC Jr, Basu A, Batoko H, Batten I, Baulieu EE, Baumgarner BL, Bayry J, Beale R, Beau I, Beaumatin F, Bechara LRG, Beck GR Jr, Beers MF, Begun J, Behrends C, Behrens GMN, Bei R, Bejarano E, Bel S, Behl C, Belaid A, Belgareh-Touzé N, Bellarosa C, Belleudi F, Belló Pérez M, Bello-Morales R, Beltran JSO, Beltran S, Benbrook DM, Bendorius M, Benitez BA, Benito-Cuesta I, Bensalem J, Berchtold MW, Berezowska S, Bergamaschi D, Bergami M, Bergmann A, Berliocchi L, Berlioz-Torrent C, Bernard A, Berthoux L, Besirli CG, Besteiro S, Betin VM, Beyaert R, Bezbradica JS, Bhaskar K, Bhatia-Kissova I, Bhattacharya R, Bhattacharya S, Bhattacharyya S, Bhuiyan MS, Bhutia SK, Bi L, Bi X, Biden TJ, Bijian K, Billes VA, Binart N, Bincoletto C, Birgisdottir AB, Bjorkoy G, Blanco G, Blas-Garcia A, Blasiak J, Blomgran R, Blomgren K, Blum JS, Boada-Romero E, Boban M, Boesze-Battaglia K, Boeuf P, Boland B, Bomont P, Bonaldo P, Bonam SR, Bonfili L, Bonifacino JS, Boone BA, Bootman MD, Bordi M, Borner C, Bornhauser BC, Borthakur G, Bosch J, Bose S, Botana LM, Botas J, Boulanger CM, Boulton ME, Bourdenx M, Bourgeois B, Bourke NM, Bousquet G, Boya P, Bozhkov PV, Bozi LHM, Bozkurt TO, Brackney DE, Brandts CH, Braun RJ, Braus GH, Bravo-Sagua R, Bravo-San Pedro JM, Brest P, Bringer MA, Briones-Herrera A, Broaddus VC, Brodersen P, Brodsky JL, Brody SL, Bronson PG, Bronstein JM, Brown CN, Brown RE, Brum PC, Brumell JH, Brunetti-Pierri N, Bruno D, Bryson-Richardson RJ, Bucci C, Buchrieser C, Bueno M, Buitrago-Molina LE, Buraschi S, Buch S, Buchan JR, Buckingham EM, Budak H, Budini M, Bultynck G, Burada F, Burgoyne JR, Burón MI, Bustos V, Büttner S, Butturini E, Byrd A, Cabas I, Cabrera-Benitez S, Cadwell K, Cai J, Cai L, Cai Q, Cairó M, Calbet JA, Caldwell GA, Caldwell KA, Call JA, Calvani R, Calvo AC, Calvo-Rubio Barrera M, Camara NO, Camonis JH, Camougrand N, Campanella M, Campbell EM, Campbell-Valois FX, Campello S, Campesi I, Campos JC, Camuzard O, Cancino J, Candido de Almeida D, Canesi L, Caniggia I, Canonico B, Cantí C, Cao B, Caraglia M, Caramés B, Carchman EH, Cardenal-Muñoz E, Cardenas C, Cardenas L, Cardoso SM, Carew JS, Carle GF, Carleton G, Carloni S, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carosi JM, Carra S, Carrier A, Carrier L, Carroll B, Carter AB, Carvalho AN, Casanova M, Casas C, Casas J, Cassioli C, Castillo EF, Castillo K, Castillo-Lluva S, Castoldi F, Castori M, Castro AF, Castro-Caldas M, Castro-Hernandez J, Castro-Obregon S, Catz SD, Cavadas C, Cavaliere F, Cavallini G, Cavinato M, Cayuela ML, Cebollada Rica P, Cecarini V, Cecconi F, Cechowska-Pasko M, Cenci S, Ceperuelo-Mallafré V, Cerqueira JJ, Cerutti JM, Cervia D, Cetintas VB, Cetrullo S, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chakrabarti O, Chakraborty T, Chami M, Chamilos G, Chan DW, Chan EYW, Chan ED, Chan HYE, Chan HH, Chan H, Chan MTV, Chan YS, Chandra PK, Chang CP, Chang C, Chang HC, Chang K, Chao J, Chapman T, Charlet-Berguerand N, Chatterjee S, Chaube SK, Chaudhary A, Chauhan S, Chaum E, Checler F, Cheetham ME, Chen CS, Chen GC, Chen JF, Chen LL, Chen L, Chen M, Chen MK, Chen N, Chen Q, Chen RH, Chen S, Chen W, Chen XM, Chen XW, Chen X, Chen Y, Chen YG, Chen YJ, Chen YQ, Chen ZS, Chen Z, Chen ZH, Chen ZJ, Cheng H, Cheng J, Cheng SY, Cheng W, Cheng X, Cheng XT, Cheng Y, Cheng Z, Cheong H, Cheong JK, Chernyak BV, Cherry S, Cheung CFR, Cheung CHA, Cheung KH, Chevet E, Chi RJ, Chiang AKS, Chiaradonna F, Chiarelli R, Chiariello M, Chica N, Chiocca S, Chiong M, Chiou SH, Chiramel AI, Chiurchiù V, Cho DH, Choe SK, Choi AMK, Choi ME, Choudhury KR, Chow NS, Chu CT, Chua JP, Chua JJE, Chung H, Chung KP, Chung S, Chung SH, Chung YL, Cianfanelli V, Ciechomska IA, Cifuentes M, Cinque L, Cirak S, Cirone M, Clague MJ, Clarke R, Clementi E, Coccia EM, Codogno P, Cohen E, Cohen MM, Colasanti T, Colasuonno F, Colbert RA, Colell A, Čolić M, Coll NS, Collins MO, Colombo MI, Colón-Ramos DA, Combaret L, Comincini S, Cominetti MR, Consiglio A, Conte A, Conti F, Contu VR, Cookson MR, Coombs KM, Coppens I, Corasaniti MT, Corkery DP, Cordes N, Cortese K, Costa MDC, Costantino S, Costelli P, Coto-Montes A, Crack PJ, Crespo JL, Criollo A, Crippa V, Cristofani R, Csizmadia T, Cuadrado A, Cui B, Cui J, Cui Y, Culetto E, Cumino AC, Cybulsky AV, Czaja MJ, Czuczwar SJ, D'Adamo S, D'Amelio M, D'Arcangelo D, D'Lugos AC, D'Orazi G, da Silva JA, Dafsari HS, Dagda RK, Dagdas Y, Daglia M, Dai X, Dai Y, Dal Col J, Dalhaimer P, Dalla Valle L, Dallenga T, Dalmasso G, Damme M, Dando I, Dantuma NP, Darling AL, Das H, Dasarathy S, Dasari SK, Dash S, Daumke O, Dauphinee AN, Davies JS, Dávila VA, Davis RJ, Davis T, Dayalan Naidu S, De Amicis F, De Bosscher K, De Felice F, De Franceschi L, De Leonibus C, de Mattos Barbosa MG, De Meyer GRY, De Milito A, De Nunzio C, De Palma C, De Santi M, De Virgilio C, De Zio D, Debnath J, DeBosch BJ, Decuypere JP, Deehan MA, Deflorian G, DeGregori J, Dehay B, Del Rio G, Delaney JR, Delbridge LMD, Delorme-Axford E, Delpino MV, Demarchi F, Dembitz V, Demers ND, Deng H, Deng Z, Dengjel J, Dent P, Denton D, DePamphilis ML, Der CJ, Deretic V, Descoteaux A, Devis L, Devkota S, Devuyst O, Dewson G, Dharmasivam M, Dhiman R, di Bernardo D, Di Cristina M, Di Domenico F, Di Fazio P, Di Fonzo A, Di Guardo G, Di Guglielmo GM, Di Leo L, Di Malta C, Di Nardo A, Di Rienzo M, Di Sano F, Diallinas G, Diao J, Diaz-Araya G, Díaz-Laviada I, Dickinson JM, Diederich M, Dieudé M, Dikic I, Ding S, Ding WX, Dini L, Dinić J, Dinic M, Dinkova-Kostova AT, Dionne MS, Distler JHW, Diwan A, Dixon IMC, Djavaheri-Mergny M, Dobrinski I, Dobrovinskaya O, Dobrowolski R, Dobson RCJ, Đokić J, Dokmeci Emre S, Donadelli M, Dong B, Dong X, Dong Z, Dorn Ii GW, Dotsch V, Dou H, Dou J, Dowaidar M, Dridi S, Drucker L, Du A, Du C, Du G, Du HN, Du LL, du Toit A, Duan SB, Duan X, Duarte SP, Dubrovska A, Dunlop EA, Dupont N, Durán RV, Dwarakanath BS, Dyshlovoy SA, Ebrahimi-Fakhari D, Eckhart L, Edelstein CL, Efferth T, Eftekharpour E, Eichinger L, Eid N, Eisenberg T, Eissa NT, Eissa S, Ejarque M, El Andaloussi A, El-Hage N, El-Naggar S, Eleuteri AM, El-Shafey ES, Elgendy M, Eliopoulos AG, Elizalde MM, Elks PM, Elsasser HP, Elsherbiny ES, Emerling BM, Emre NCT, Eng CH, Engedal N, Engelbrecht AM, Engelsen AST, Enserink JM, Escalante R, Esclatine A, Escobar-Henriques M, Eskelinen EL, Espert L, Eusebio MO, Fabrias G, Fabrizi C, Facchiano A, Facchiano F, Fadeel B, Fader C, Faesen AC, Fairlie WD, Falcó A, Falkenburger BH, Fan D, Fan J, Fan Y, Fang EF, Fang Y, Fanto M, Farfel-Becker T, Faure M, Fazeli G, Fedele AO, Feldman AM, Feng D, Feng J, Feng L, Feng Y, Feng W, Fenz Araujo T, Ferguson TA, Fernández ÁF, Fernandez-Checa JC, Fernández-Veledo S, Fernie AR, Ferrante AW Jr, Ferraresi A, Ferrari MF, Ferreira JCB, Ferro-Novick S, Figueras A, Filadi R, Filigheddu N, Filippi-Chiela E, Filomeni G, Fimia GM, Fineschi V, Finetti F, Finkbeiner S, Fisher EA, Fisher PB, Flamigni F, Fliesler SJ, Flo TH, Florance I, Florey O, Florio T, Fodor E, Follo C, Fon EA, Forlino A, Fornai F, Fortini P, Fracassi A, Fraldi A, Franco B, Franco R, Franconi F, Frankel LB, Friedman SL, Fröhlich LF, Frühbeck G, Fuentes JM, Fujiki Y, Fujita N, Fujiwara Y, Fukuda M, Fulda S, Furic L, Furuya N, Fusco C, Gack MU, Gaffke L, Galadari S, Galasso A, Galindo MF, Gallolu Kankanamalage S, Galluzzi L, Galy V, Gammoh N, Gan B, Ganley IG, Gao F, Gao H, Gao M, Gao P, Gao SJ, Gao W, Gao X, Garcera A, Garcia MN, Garcia VE, García-Del Portillo F, Garcia-Escudero V, Garcia-Garcia A, Garcia-Macia M, García-Moreno D, Garcia-Ruiz C, García-Sanz P, Garg AD, Gargini R, Garofalo T, Garry RF, Gassen NC, Gatica D, Ge L, Ge W, Geiss-Friedlander R, Gelfi C, Genschik P, Gentle IE, Gerbino V, Gerhardt C, Germain K, Germain M, Gewirtz DA, Ghasemipour Afshar E, Ghavami S, Ghigo A, Ghosh M, Giamas G, Giampietri C, Giatromanolaki A, Gibson GE, Gibson SB, Ginet V, Giniger E, Giorgi C, Girao H, Girardin SE, Giridharan M, Giuliano S, Giulivi C, Giuriato S, Giustiniani J, Gluschko A, Goder V, Goginashvili A, Golab J, Goldstone DC, Golebiewska A, Gomes LR, Gomez R, Gómez-Sánchez R, Gomez-Puerto MC, Gomez-Sintes R, Gong Q, Goni FM, González-Gallego J, Gonzalez-Hernandez T, Gonzalez-Polo RA, Gonzalez-Reyes JA, González-Rodríguez P, Goping IS, Gorbatyuk MS, Gorbunov NV, Görgülü K, Gorojod RM, Gorski SM, Goruppi S, Gotor C, Gottlieb RA, Gozes I, Gozuacik D, Graef M, Gräler MH, Granatiero V, Grasso D, Gray JP, Green DR, Greenhough A, Gregory SL, Griffin EF, Grinstaff MW, Gros F, Grose C, Gross AS, Gruber F, Grumati P, Grune T, Gu X, Guan JL, Guardia CM, Guda K, Guerra F, Guerri C, Guha P, Guillén C, Gujar S, Gukovskaya A, Gukovsky I, Gunst J, Günther A, Guntur AR, Guo C, Guo H, Guo LW, Guo M, Gupta P, Gupta SK, Gupta S, Gupta VB, Gupta V, Gustafsson AB, Gutterman DD, H B R, Haapasalo A, Haber JE, Hać A, Hadano S, Hafrén AJ, Haidar M, Hall BS, Halldén G, Hamacher-Brady A, Hamann A, Hamasaki M, Han W, Hansen M, Hanson PI, Hao Z, Harada M, Harhaji-Trajkovic L, Hariharan N, Haroon N, Harris J, Hasegawa T, Hasima Nagoor N, Haspel JA, Haucke V, Hawkins WD, Hay BA, Haynes CM, Hayrabedyan SB, Hays TS, He C, He Q, He RR, He YW, He YY, Heakal Y, Heberle AM, Hejtmancik JF, Helgason GV, Henkel V, Herb M, Hergovich A, Herman-Antosiewicz A, Hernández A, Hernandez C, Hernandez-Diaz S, Hernandez-Gea V, Herpin A, Herreros J, Hervás JH, Hesselson D, Hetz C, Heussler VT, Higuchi Y, Hilfiker S, Hill JA, Hlavacek WS, Ho EA, Ho IHT, Ho PW, Ho SL, Ho WY, Hobbs GA, Hochstrasser M, Hoet PHM, Hofius D, Hofman P, Höhn A, Holmberg CI, Hombrebueno JR, Yi-Ren Hong CH, Hooper LV, Hoppe T, Horos R, Hoshida Y, Hsin IL, Hsu HY, Hu B, Hu D, Hu LF, Hu MC, Hu R, Hu W, Hu YC, Hu ZW, Hua F, Hua J, Hua Y, Huan C, Huang C, Huang H, Huang K, Huang MLH, Huang R, Huang S, Huang T, Huang X, Huang YJ, Huber TB, Hubert V, Hubner CA, Hughes SM, Hughes WE, Humbert M, Hummer G, Hurley JH, Hussain S, Hussey PJ, Hutabarat M, Hwang HY, Hwang S, Ieni A, Ikeda F, Imagawa Y, Imai Y, Imbriano C, Imoto M, Inman DM, Inoki K, Iovanna J, Iozzo RV, Ippolito G, Irazoqui JE, Iribarren P, Ishaq M, Ishikawa M, Ishimwe N, Isidoro C, Ismail N, Issazadeh-Navikas S, Itakura E, Ito D, Ivankovic D, Ivanova S, Iyer AKV, Izquierdo JM, Izumi M, Jäättelä M, Jabir MS, Jackson WT, Jacobo-Herrera N, Jacomin AC, Jacquin E, Jadiya P, Jaeschke H, Jagannath C, Jakobi AJ, Jakobsson J, Janji B, Jansen-Dürr P, Jansson PJ, Jantsch J, Januszewski S, Jassey A, Jean S, Jeltsch-David H, Jendelova P, Jenny A, Jensen TE, Jessen N, Jewell JL, Ji J, Jia L, Jia R, Jiang L, Jiang Q, Jiang R, Jiang T, Jiang X, Jiang Y, Jimenez-Sanchez M, Jin EJ, Jin F, Jin H, Jin L, Jin M, Jin S, Jo EK, Joffre C, Johansen T, Johnson GVW, Johnston SA, Jokitalo E, Jolly MK, Joosten LAB, Jordan J, Joseph B, Ju D, Ju JS, Ju J, Juárez E, Judith D, Juhász G, Jun Y, Jung CH, Jung SC, Jung YK, Jungbluth H, Jungverdorben J, Just S, Kaarniranta K, Kaasik A, Kabuta T, Kaganovich D, Kahana A, Kain R, Kajimura S, Kalamvoki M, Kalia M, Kalinowski DS, Kaludercic N, Kalvari I, Kaminska J, Kaminskyy VO, Kanamori H, Kanasaki K, Kang C, Kang R, Kang SS, Kaniyappan S, Kanki T, Kanneganti TD, Kanthasamy AG, Kanthasamy A, Kantorow M, Kapuy O, Karamouzis MV, Karim MR, Karmakar P, Katare RG, Kato M, Kaufmann SHE, Kauppinen A, Kaushal GP, Kaushik S, Kawasaki K, Kazan K, Ke PY, Keating DJ, Keber U, Kehrl JH, Keller KE, Keller CW, Kemper JK, Kenific CM, Kepp O, Kermorgant S, Kern A, Ketteler R, Keulers TG, Khalfin B, Khalil H, Khambu B, Khan SY, Khandelwal VKM, Khandia R, Kho W, Khobrekar NV, Khuansuwan S, Khundadze M, Killackey SA, Kim D, Kim DR, Kim DH, Kim DE, Kim EY, Kim EK, Kim HR, Kim HS, Hyung-Ryong Kim, Kim JH, Kim JK, Kim J, Kim KI, Kim PK, Kim SJ, Kimball SR, Kimchi A, Kimmelman AC, Kimura T, King MA, Kinghorn KJ, Kinsey CG, Kirkin V, Kirshenbaum LA, Kiselev SL, Kishi S, Kitamoto K, Kitaoka Y, Kitazato K, Kitsis RN, Kittler JT, Kjaerulff O, Klein PS, Klopstock T, Klucken J, Knævelsrud H, Knorr RL, Ko BCB, Ko F, Ko JL, Kobayashi H, Kobayashi S, Koch I, Koch JC, Koenig U, Kögel D, Koh YH, Koike M, Kohlwein SD, Kocaturk NM, Komatsu M, König J, Kono T, Kopp BT, Korcsmaros T, Korkmaz G, Korolchuk VI, Korsnes MS, Koskela A, Kota J, Kotake Y, Kotler ML, Kou Y, Koukourakis MI, Koustas E, Kovacs AL, Kovács T, Koya D, Kozako T, Kraft C, Krainc D, Krämer H, Krasnodembskaya AD, Kretz-Remy C, Kroemer G, Ktistakis NT, Kuchitsu K, Kuenen S, Kuerschner L, Kukar T, Kumar A, Kumar D, Kumar S, Kume S, Kumsta C, Kundu CN, Kundu M, Kunnumakkara AB, Kurgan L, Kutateladze TG, Kutlu O, Kwak S, Kwon HJ, Kwon TK, Kwon YT, Kyrmizi I, La Spada A, Labonté P, Ladoire S, Laface I, Lafont F, Lagace DC, Lahiri V, Lai Z, Laird AS, Lakkaraju A, Lamark T, Lan SH, Landajuela A, Lane DJR, Lane JD, Lang CH, Lange C, Langel Ü, Langer R, Lapaquette P, Laporte J, LaRusso NF, Lastres-Becker I, Lau WCY, Laurie GW, Lavandero S, Law BYK, Law HK, Layfield R, Le W, Le Stunff H, Leary AY, Lebrun JJ, Leck LYW, Leduc-Gaudet JP, Lee C, Lee CP, Lee DH, Lee EB, Lee EF, Lee GM, Lee HJ, Lee HK, Lee JM, Lee JS, Lee JA, Lee JY, Lee JH, Lee M, Lee MG, Lee MJ, Lee MS, Lee SY, Lee SJ, Lee SB, Lee WH, Lee YR, Lee YH, Lee Y, Lefebvre C, Legouis R, Lei YL, Lei Y, Leikin S, Leitinger G, Lemus L, Leng S, Lenoir O, Lenz G, Lenz HJ, Lenzi P, León Y, Leopoldino AM, Leschczyk C, Leskelä S, Letellier E, Leung CT, Leung PS, Leventhal JS, Levine B, Lewis PA, Ley K, Li B, Li DQ, Li J, Li K, Li L, Li M, Li PL, Li MQ, Li Q, Li S, Li T, Li W, Li X, Li YP, Li Y, Li Z, Lian J, Liang C, Liang Q, Liang W, Liang Y, Liao G, Liao L, Liao M, Liao YF, Librizzi M, Lie PPY, Lilly MA, Lim HJ, Lima TRR, Limana F, Lin C, Lin CW, Lin DS, Lin FC, Lin JD, Lin KM, Lin KH, Lin LT, Lin PH, Lin Q, Lin S, Lin SJ, Lin W, Lin X, Lin YX, Lin YS, Linden R, Lindner P, Ling SC, Lingor P, Linnemann AK, Liou YC, Lipinski MM, Lipovšek S, Lira VA, Lisiak N, Liton PB, Liu C, Liu CH, Liu CF, Liu F, Liu H, Liu HS, Liu HF, Liu J, Liu L, Liu M, Liu Q, Liu W, Liu XH, Liu X, Liu Y, Livingston JA, Lizard G, Lizcano JM, Ljubojevic-Holzer S, LLeonart ME, Llobet-Navàs D, Llorente A, Lo CH, Lobato-Márquez D, Long Q, Long YC, Loos B, Loos JA, López MG, López-Doménech G, López-Guerrero JA, López-Jiménez AT, López-Pérez Ó, López-Valero I, Lorenowicz MJ, Lorente M, Lorincz P, Lossi L, Lotersztajn S, Lovat PE, Lovell JF, Lovy A, Lőw P, Lu G, Lu H, Lu JH, Lu JJ, Lu M, Lu S, Luciani A, Lucocq JM, Ludovico P, Luftig MA, Luhr M, Luis-Ravelo D, Lum JJ, Luna-Dulcey L, Lund AH, Lund VK, Lünemann JD, Lüningschrör P, Luo H, Luo R, Luo S, Luo Z, Luparello C, Lüscher B, Luu L, Lyakhovich A, Lyamzaev KG, Lystad AH, Lytvynchuk L, Ma AC, Ma C, Ma M, Ma NF, Ma QH, Ma X, Ma Y, Ma Z, MacDougald OA, Macian F, MacIntosh GC, MacKeigan JP, Macleod KF, Maday S, Madeo F, Madesh M, Madl T, Madrigal-Matute J, Maeda A, Maejima Y, Magarinos M, Mahavadi P, Maiani E, Maiese K, Maiti P, Maiuri MC, Majello B, Major MB, Makareeva E, Malik F, Mallilankaraman K, Malorni W, Maloyan A, Mammadova N, Man GCW, Manai F, Mancias JD, Mandelkow EM, Mandell MA, Manfredi AA, Manjili MH, Manjithaya R, Manque P, Manshian BB, Manzano R, Manzoni C, Mao K, Marchese C, Marchetti S, Marconi AM, Marcucci F, Mardente S, Mareninova OA, Margeta M, Mari M, Marinelli S, Marinelli O, Mariño G, Mariotto S, Marshall RS, Marten MR, Martens S, Martin APJ, Martin KR, Martin S, Martín-Segura A, Martín-Acebes MA, Martin-Burriel I, Martin-Rincon M, Martin-Sanz P, Martina JA, Martinet W, Martinez A, Martinez J, Martinez Velazquez M, Martinez-Lopez N, Martinez-Vicente M, Martins DO, Martins JO, Martins WK, Martins-Marques T, Marzetti E, Masaldan S, Masclaux-Daubresse C, Mashek DG, Massa V, Massieu L, Masson GR, Masuelli L, Masyuk AI, Masyuk TV, Matarrese P, Matheu A, Matoba S, Matsuzaki S, Mattar P, Matte A, Mattoscio D, Mauriz JL, Mauthe M, Mauvezin C, Maverakis E, Maycotte P, Mayer J, Mazzoccoli G, Mazzoni C, Mazzulli JR, McCarty N, McDonald C, McGill MR, McKenna SL, McLaughlin B, McLoughlin F, McNiven MA, McWilliams TG, Mechta-Grigoriou F, Medeiros TC, Medina DL, Megeney LA, Megyeri K, Mehrpour M, Mehta JL, Meijer AJ, Meijer AH, Mejlvang J, Meléndez A, Melk A, Memisoglu G, Mendes AF, Meng D, Meng F, Meng T, Menna-Barreto R, Menon MB, Mercer C, Mercier AE, Mergny JL, Merighi A, Merkley SD, Merla G, Meske V, Mestre AC, Metur SP, Meyer C, Meyer H, Mi W, Mialet-Perez J, Miao J, Micale L, Miki Y, Milan E, Milczarek M, Miller DL, Miller SI, Miller S, Millward SW, Milosevic I, Minina EA, Mirzaei H, Mirzaei HR, Mirzaei M, Mishra A, Mishra N, Mishra PK, Misirkic Marjanovic M, Misasi R, Misra A, Misso G, Mitchell C, Mitou G, Miura T, Miyamoto S, Miyazaki M, Miyazaki T, Miyazawa K, Mizushima N, Mogensen TH, Mograbi B, Mohammadinejad R, Mohamud Y, Mohanty A, Mohapatra S, Möhlmann T, Mohmmed A, Moles A, Moley KH, Molinari M, Mollace V, Møller AB, Mollereau B, Mollinedo F, Montagna C, Monteiro MJ, Montella A, Montes LR, Montico B, Mony VK, Monzio Compagnoni G, Moore MN, Moosavi MA, Mora AL, Mora M, Morales-Alamo D, Moratalla R, Moreira PI, Morelli E, Moreno S, Moreno-Blas D, Moresi V, Morga B, Morgan AH, Morin F, Morishita H, Moritz OL, Moriyama M, Moriyasu Y, Morleo M, Morselli E, Moruno-Manchon JF, Moscat J, Mostowy S, Motori E, Moura AF, Moustaid-Moussa N, Mrakovcic M, Muciño-Hernández G, Mukherjee A, Mukhopadhyay S, Mulcahy Levy JM, Mulero V, Muller S, Münch C, Munjal A, Munoz-Canoves P, Muñoz-Galdeano T, Münz C, Murakawa T, Muratori C, Murphy BM, Murphy JP, Murthy A, Myöhänen TT, Mysorekar IU, Mytych J, Nabavi SM, Nabissi M, Nagy P, Nah J, Nahimana A, Nakagawa I, Nakamura K, Nakatogawa H, Nandi SS, Nanjundan M, Nanni M, Napolitano G, Nardacci R, Narita M, Nassif M, Nathan I, Natsumeda M, Naude RJ, Naumann C, Naveiras O, Navid F, Nawrocki ST, Nazarko TY, Nazio F, Negoita F, Neill T, Neisch AL, Neri LM, Netea MG, Neubert P, Neufeld TP, Neumann D, Neutzner A, Newton PT, Ney PA, Nezis IP, Ng CCW, Ng TB, Nguyen HTT, Nguyen LT, Ni HM, Ní Cheallaigh C, Ni Z, Nicolao MC, Nicoli F, Nieto-Diaz M, Nilsson P, Ning S, Niranjan R, Nishimune H, Niso-Santano M, Nixon RA, Nobili A, Nobrega C, Noda T, Nogueira-Recalde U, Nolan TM, Nombela I, Novak I, Novoa B, Nozawa T, Nukina N, Nussbaum-Krammer C, Nylandsted J, O'Donovan TR, O'Leary SM, O'Rourke EJ, O'Sullivan MP, O'Sullivan TE, Oddo S, Oehme I, Ogawa M, Ogier-Denis E, Ogmundsdottir MH, Ogretmen B, Oh GT, Oh SH, Oh YJ, Ohama T, Ohashi Y, Ohmuraya M, Oikonomou V, Ojha R, Okamoto K, Okazawa H, Oku M, Oliván S, Oliveira JMA, Ollmann M, Olzmann JA, Omari S, Omary MB, Önal G, Ondrej M, Ong SB, Ong SG, Onnis A, Orellana JA, Orellana-Muñoz S, Ortega-Villaizan MDM, Ortiz-Gonzalez XR, Ortona E, Osiewacz HD, Osman AK, Osta R, Otegui MS, Otsu K, Ott C, Ottobrini L, Ou JJ, Outeiro TF, Oynebraten I, Ozturk M, Pagès G, Pahari S, Pajares M, Pajvani UB, Pal R, Paladino S, Pallet N, Palmieri M, Palmisano G, Palumbo C, Pampaloni F, Pan L, Pan Q, Pan W, Pan X, Panasyuk G, Pandey R, Pandey UB, Pandya V, Paneni F, Pang SY, Panzarini E, Papademetrio DL, Papaleo E, Papinski D, Papp D, Park EC, Park HT, Park JM, Park JI, Park JT, Park J, Park SC, Park SY, Parola AH, Parys JB, Pasquier A, Pasquier B, Passos JF, Pastore N, Patel HH, Patschan D, Pattingre S, Pedraza-Alva G, Pedraza-Chaverri J, Pedrozo Z, Pei G, Pei J, Peled-Zehavi H, Pellegrini JM, Pelletier J, Peñalva MA, Peng D, Peng Y, Penna F, Pennuto M, Pentimalli F, Pereira CM, Pereira GJS, Pereira LC, Pereira de Almeida L, Perera ND, Pérez-Lara Á, Perez-Oliva AB, Pérez-Pérez ME, Periyasamy P, Perl A, Perrotta C, Perrotta I, Pestell RG, Petersen M, Petrache I, Petrovski G, Pfirrmann T, Pfister AS, Philips JA, Pi H, Picca A, Pickrell AM, Picot S, Pierantoni GM, Pierdominici M, Pierre P, Pierrefite-Carle V, Pierzynowska K, Pietrocola F, Pietruczuk M, Pignata C, Pimentel-Muiños FX, Pinar M, Pinheiro RO, Pinkas-Kramarski R, Pinton P, Pircs K, Piya S, Pizzo P, Plantinga TS, Platta HW, Plaza-Zabala A, Plomann M, Plotnikov EY, Plun-Favreau H, Pluta R, Pocock R, Pöggeler S, Pohl C, Poirot M, Poletti A, Ponpuak M, Popelka H, Popova B, Porta H, Porte Alcon S, Portilla-Fernandez E, Post M, Potts MB, Poulton J, Powers T, Prahlad V, Prajsnar TK, Praticò D, Prencipe R, Priault M, Proikas-Cezanne T, Promponas VJ, Proud CG, Puertollano R, Puglielli L, Pulinilkunnil T, Puri D, Puri R, Puyal J, Qi X, Qi Y, Qian W, Qiang L, Qiu Y, Quadrilatero J, Quarleri J, Raben N, Rabinowich H, Ragona D, Ragusa MJ, Rahimi N, Rahmati M, Raia V, Raimundo N, Rajasekaran NS, Ramachandra Rao S, Rami A, Ramírez-Pardo I, Ramsden DB, Randow F, Rangarajan PN, Ranieri D, Rao H, Rao L, Rao R, Rathore S, Ratnayaka JA, Ratovitski EA, Ravanan P, Ravegnini G, Ray SK, Razani B, Rebecca V, Reggiori F, Régnier-Vigouroux A, Reichert AS, Reigada D, Reiling JH, Rein T, Reipert S, Rekha RS, Ren H, Ren J, Ren W, Renault T, Renga G, Reue K, Rewitz K, Ribeiro de Andrade Ramos B, Riazuddin SA, Ribeiro-Rodrigues TM, Ricci JE, Ricci R, Riccio V, Richardson DR, Rikihisa Y, Risbud MV, Risueño RM, Ritis K, Rizza S, Rizzuto R, Roberts HC, Roberts LD, Robinson KJ, Roccheri MC, Rocchi S, Rodney GG, Rodrigues T, Rodrigues Silva VR, Rodriguez A, Rodriguez-Barrueco R, Rodriguez-Henche N, Rodriguez-Rocha H, Roelofs J, Rogers RS, Rogov VV, Rojo AI, Rolka K, Romanello V, Romani L, Romano A, Romano PS, Romeo-Guitart D, Romero LC, Romero M, Roney JC, Rongo C, Roperto S, Rosenfeldt MT, Rosenstiel P, Rosenwald AG, Roth KA, Roth L, Roth S, Rouschop KMA, Roussel BD, Roux S, Rovere-Querini P, Roy A, Rozieres A, Ruano D, Rubinsztein DC, Rubtsova MP, Ruckdeschel K, Ruckenstuhl C, Rudolf E, Rudolf R, Ruggieri A, Ruparelia AA, Rusmini P, Russell RR, Russo GL, Russo M, Russo R, Ryabaya OO, Ryan KM, Ryu KY, Sabater-Arcis M, Sachdev U, Sacher M, Sachse C, Sadhu A, Sadoshima J, Safren N, Saftig P, Sagona AP, Sahay G, Sahebkar A, Sahin M, Sahin O, Sahni S, Saito N, Saito S, Saito T, Sakai R, Sakai Y, Sakamaki JI, Saksela K, Salazar G, Salazar-Degracia A, Salekdeh GH, Saluja AK, Sampaio-Marques B, Sanchez MC, Sanchez-Alcazar JA, Sanchez-Vera V, Sancho-Shimizu V, Sanderson JT, Sandri M, Santaguida S, Santambrogio L, Santana MM, Santoni G, Sanz A, Sanz P, Saran S, Sardiello M, Sargeant TJ, Sarin A, Sarkar C, Sarkar S, Sarrias MR, Sarmah DT, Sarparanta J, Sathyanarayan A, Sathyanarayanan R, Scaglione KM, Scatozza F, Schaefer L, Schafer ZT, Schaible UE, Schapira AHV, Scharl M, Schatzl HM, Schein CH, Scheper W, Scheuring D, Schiaffino MV, Schiappacassi M, Schindl R, Schlattner U, Schmidt O, Schmitt R, Schmidt SD, Schmitz I, Schmukler E, Schneider A, Schneider BE, Schober R, Schoijet AC, Schott MB, Schramm M, Schröder B, Schuh K, Schüller C, Schulze RJ, Schürmanns L, Schwamborn JC, Schwarten M, Scialo F, Sciarretta S, Scott MJ, Scotto KW, Scovassi AI, Scrima A, Scrivo A, Sebastian D, Sebti S, Sedej S, Segatori L, Segev N, Seglen PO, Seiliez I, Seki E, Selleck SB, Sellke FW, Selsby JT, Sendtner M, Senturk S, Seranova E, Sergi C, Serra-Moreno R, Sesaki H, Settembre C, Setty SRG, Sgarbi G, Sha O, Shacka JJ, Shah JA, Shang D, Shao C, Shao F, Sharbati S, Sharkey LM, Sharma D, Sharma G, Sharma K, Sharma P, Sharma S, Shen HM, Shen H, Shen J, Shen M, Shen W, Shen Z, Sheng R, Sheng Z, Sheng ZH, Shi J, Shi X, Shi YH, Shiba-Fukushima K, Shieh JJ, Shimada Y, Shimizu S, Shimozawa M, Shintani T, Shoemaker CJ, Shojaei S, Shoji I, Shravage BV, Shridhar V, Shu CW, Shu HB, Shui K, Shukla AK, Shutt TE, Sica V, Siddiqui A, Sierra A, Sierra-Torre V, Signorelli S, Sil P, Silva BJA, Silva JD, Silva-Pavez E, Silvente-Poirot S, Simmonds RE, Simon AK, Simon HU, Simons M, Singh A, Singh LP, Singh R, Singh SV, Singh SK, Singh SB, Singh S, Singh SP, Sinha D, Sinha RA, Sinha S, Sirko A, Sirohi K, Sivridis EL, Skendros P, Skirycz A, Slaninová I, Smaili SS, Smertenko A, Smith MD, Soenen SJ, Sohn EJ, Sok SPM, Solaini G, Soldati T, Soleimanpour SA, Soler RM, Solovchenko A, Somarelli JA, Sonawane A, Song F, Song HK, Song JX, Song K, Song Z, Soria LR, Sorice M, Soukas AA, Soukup SF, Sousa D, Sousa N, Spagnuolo PA, Spector SA, Srinivas Bharath MM, St Clair D, Stagni V, Staiano L, Stalnecker CA, Stankov MV, Stathopulos PB, Stefan K, Stefan SM, Stefanis L, Steffan JS, Steinkasserer A, Stenmark H, Sterneckert J, Stevens C, Stoka V, Storch S, Stork B, Strappazzon F, Strohecker AM, Stupack DG, Su H, Su LY, Su L, Suarez-Fontes AM, Subauste CS, Subbian S, Subirada PV, Sudhandiran G, Sue CM, Sui X, Summers C, Sun G, Sun J, Sun K, Sun MX, Sun Q, Sun Y, Sun Z, Sunahara KKS, Sundberg E, Susztak K, Sutovsky P, Suzuki H, Sweeney G, Symons JD, Sze SCW, Szewczyk NJ, Tabęcka-Łonczynska A, Tabolacci C, Tacke F, Taegtmeyer H, Tafani M, Tagaya M, Tai H, Tait SWG, Takahashi Y, Takats S, Talwar P, Tam C, Tam SY, Tampellini D, Tamura A, Tan CT, Tan EK, Tan YQ, Tanaka M, Tang D, Tang J, Tang TS, Tanida I, Tao Z, Taouis M, Tatenhorst L, Tavernarakis N, Taylor A, Taylor GA, Taylor JM, Tchetina E, Tee AR, Tegeder I, Teis D, Teixeira N, Teixeira-Clerc F, Tekirdag KA, Tencomnao T, Tenreiro S, Tepikin AV, Testillano PS, Tettamanti G, Tharaux PL, Thedieck K, Thekkinghat AA, Thellung S, Thinwa JW, Thirumalaikumar VP, Thomas SM, Thomes PG, Thorburn A, Thukral L, Thum T, Thumm M, Tian L, Tichy A, Till A, Timmerman V, Titorenko VI, Todi SV, Todorova K, Toivonen JM, Tomaipitinca L, Tomar D, Tomas-Zapico C, Tomić S, Tong BC, Tong C, Tong X, Tooze SA, Torgersen ML, Torii S, Torres-López L, Torriglia A, Towers CG, Towns R, Toyokuni S, Trajkovic V, Tramontano D, Tran QG, Travassos LH, Trelford CB, Tremel S, Trougakos IP, Tsao BP, Tschan MP, Tse HF, Tse TF, Tsugawa H, Tsvetkov AS, Tumbarello DA, Tumtas Y, Tuñón MJ, Turcotte S, Turk B, Turk V, Turner BJ, Tuxworth RI, Tyler JK, Tyutereva EV, Uchiyama Y, Ugun-Klusek A, Uhlig HH, Ułamek-Kozioł M, Ulasov IV, Umekawa M, Ungermann C, Unno R, Urbe S, Uribe-Carretero E, Üstün S, Uversky VN, Vaccari T, Vaccaro MI, Vahsen BF, Vakifahmetoglu-Norberg H, Valdor R, Valente MJ, Valko A, Vallee RB, Valverde AM, Van den Berghe G, van der Veen S, Van Kaer L, van Loosdregt J, van Wijk SJL, Vandenberghe W, Vanhorebeek I, Vannier-Santos MA, Vannini N, Vanrell MC, Vantaggiato C, Varano G, Varela-Nieto I, Varga M, Vasconcelos MH, Vats S, Vavvas DG, Vega-Naredo I, Vega-Rubin-de-Celis S, Velasco G, Velázquez AP, Vellai T, Vellenga E, Velotti F, Verdier M, Verginis P, Vergne I, Verkade P, Verma M, Verstreken P, Vervliet T, Vervoorts J, Vessoni AT, Victor VM, Vidal M, Vidoni C, Vieira OV, Vierstra RD, Viganó S, Vihinen H, Vijayan V, Vila M, Vilar M, Villalba JM, Villalobo A, Villarejo-Zori B, Villarroya F, Villarroya J, Vincent O, Vindis C, Viret C, Viscomi MT, Visnjic D, Vitale I, Vocadlo DJ, Voitsekhovskaja OV, Volonté C, Volta M, Vomero M, Von Haefen C, Vooijs MA, Voos W, Vucicevic L, Wade-Martins R, Waguri S, Waite KA, Wakatsuki S, Walker DW, Walker MJ, Walker SA, Walter J, Wandosell FG, Wang B, Wang CY, Wang C, Wang D, Wang F, Wang G, Wang H, Wang HG, Wang J, Wang K, Wang L, Wang MH, Wang M, Wang N, Wang P, Wang QJ, Wang Q, Wang QK, Wang QA, Wang WT, Wang W, Wang X, Wang Y, Wang YY, Wang Z, Warnes G, Warnsmann V, Watada H, Watanabe E, Watchon M, Wawrzyńska A, Weaver TE, Wegrzyn G, Wehman AM, Wei H, Wei L, Wei T, Wei Y, Weiergräber OH, Weihl CC, Weindl G, Weiskirchen R, Wells A, Wen RH, Wen X, Werner A, Weykopf B, Wheatley SP, Whitton JL, Whitworth AJ, Wiktorska K, Wildenberg ME, Wileman T, Wilkinson S, Willbold D, Williams B, Williams RSB, Williams RL, Williamson PR, Wilson RA, Winner B, Winsor NJ, Witkin SS, Wodrich H, Woehlbier U, Wollert T, Wong E, Wong JH, Wong RW, Wong VKW, Wong WW, Wu AG, Wu C, Wu J, Wu KK, Wu M, Wu SY, Wu S, Wu WKK, Wu X, Wu YW, Wu Y, Xavier RJ, Xia H, Xia L, Xia Z, Xiang G, Xiang J, Xiang M, Xiang W, Xiao B, Xiao G, Xiao H, Xiao HT, Xiao J, Xiao L, Xiao S, Xiao Y, Xie B, Xie CM, Xie M, Xie Y, Xie Z, Xilouri M, Xu C, Xu E, Xu H, Xu J, Xu L, Xu WW, Xu X, Xue Y, Yakhine-Diop SMS, Yamaguchi M, Yamaguchi O, Yamamoto A, Yamashina S, Yan S, Yan SJ, Yan Z, Yanagi Y, Yang C, Yang DS, Yang H, Yang HT, Yang JM, Yang J, Yang L, Yang M, Yang PM, Yang Q, Yang S, Yang SF, Yang W, Yang WY, Yang X, Yang Y, Yao H, Yao S, Yao X, Yao YG, Yao YM, Yasui T, Yazdankhah M, Yen PM, Yi C, Yin XM, Yin Y, Yin Z, Ying M, Ying Z, Yip CK, Yiu SPT, Yoo YH, Yoshida K, Yoshii SR, Yoshimori T, Yousefi B, Yu B, Yu H, Yu J, Yu L, Yu ML, Yu SW, Yu VC, Yu WH, Yu Z, Yuan J, Yuan LQ, Yuan S, Yuan SF, Yuan Y, Yuan Z, Yue J, Yue Z, Yun J, Yung RL, Zacks DN, Zaffagnini G, Zambelli VO, Zanella I, Zang QS, Zanivan S, Zappavigna S, Zaragoza P, Zarbalis KS, Zarebkohan A, Zarrouk A, Zeitlin SO, Zeng J, Zeng JD, Žerovnik E, Zhan L, Zhang B, Zhang DD, Zhang H, Zhang HL, Zhang J, Zhang JP, Zhang KYB, Zhang LW, Zhang L, Zhang M, Zhang P, Zhang S, Zhang W, Zhang X, Zhang XW, Zhang XD, Zhang Y, Zhang YD, Zhang YY, Zhang Z, Zhao H, Zhao L, Zhao S, Zhao T, Zhao XF, Zhao Y, Zheng G, Zheng K, Zheng L, Zheng S, Zheng XL, Zheng Y, Zheng ZG, Zhivotovsky B, Zhong Q, Zhou A, Zhou B, Zhou C, Zhou G, Zhou H, Zhou J, Zhou K, Zhou R, Zhou XJ, Zhou Y, Zhou ZY, Zhou Z, Zhu B, Zhu C, Zhu GQ, Zhu H, Zhu WG, Zhu Y, Zhuang H, Zhuang X, Zientara-Rytter K, Zimmermann CM, Ziviani E, Zoladek T, Zong WX, Zorov DB, Zorzano A, Zou W, Zou Z, Zuryn S, Zwerschke W, Brand-Saberi B, Dong XC, Kenchappa CS, Lin Y, Oshima S, Rong Y, Sluimer JC, Stallings CL, Tong CK. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021;17:1-382.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 887]  [Cited by in F6Publishing: 856]  [Article Influence: 285.3]  [Reference Citation Analysis (0)]
28.  Korbut AI, Romanov VV, Klimontov VV. Urinary Markers of Tubular Injury and Renal Fibrosis in Patients with Type 2 Diabetes and Different Phenotypes of Chronic Kidney Disease. Life (Basel). 2023;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
29.  Ziegelmeier M, Bachmann A, Seeger J, Lossner U, Kratzsch J, Blüher M, Stumvoll M, Fasshauer M. Serum levels of adipokine retinol-binding protein-4 in relation to renal function. Diabetes Care. 2007;30:2588-2592.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 62]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
30.  Chan A, Park L, Collins LF, Cooper C, Saag M, Dieterich D, Sulkowski M, Naggie S. Correlation Between Tenofovir Drug Levels and the Renal Biomarkers RBP-4 and ß2M in the ION-4 Study Cohort. Open Forum Infect Dis. 2019;6:ofy273.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]