Copyright
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Mar 15, 2023; 14(3): 159-169
Published online Mar 15, 2023. doi: 10.4239/wjd.v14.i3.159
Published online Mar 15, 2023. doi: 10.4239/wjd.v14.i3.159
Carbamylated lipoproteins in diabetes
Damien Denimal, Department of Biochemistry, University Hospital of Dijon, Dijon 21079, France
Damien Denimal, INSERM LNC UMR1231, University of Burgundy, Dijon 21078, France
Author contributions: Denimal D contributed to conception and design of the work, performed the research of the literature, drafted the manuscript and prepared the figures.
Conflict-of-interest statement: The author reports no relevant conflicts of interest for this review.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Damien Denimal, PharmD, PhD, Assistant Professor, Department of Biochemistry, University Hospital of Dijon, 2 rue Ducoudray, BP 37013, Dijon 21079, France. damien.denimal@u-bourgogne.fr
Received: October 27, 2022
Peer-review started: October 27, 2022
First decision: December 26, 2022
Revised: December 27, 2022
Accepted: February 10, 2023
Article in press: February 10, 2023
Published online: March 15, 2023
Processing time: 139 Days and 1.2 Hours
Peer-review started: October 27, 2022
First decision: December 26, 2022
Revised: December 27, 2022
Accepted: February 10, 2023
Article in press: February 10, 2023
Published online: March 15, 2023
Processing time: 139 Days and 1.2 Hours
Core Tip
Core Tip: There is growing evidence that carbamylation of lipoproteins occurring in diabetes contributes to the pathophysiology of atherosclerosis, and therefore plays a role in the cardiovascular risk. Numerous studies have demonstrated that carbamylated low-density lipoproteins (LDL) is more atherogenic than native LDL, citing, for instance, its role in foam cell formation or ability to damage endothelial function. In addition, carbamylated high-density lipoproteins exhibits reduced antiatherogenic properties, especially in terms of the capacity to induce cholesterol efflux from macrophages and to protect endothelium.