Quentin V, Singh M, Nguyen LS. A review of potential mechanisms and uses of SGLT2 inhibitors in ischemia-reperfusion phenomena. World J Diabetes 2022; 13(9): 683-695 [PMID: 36188147 DOI: 10.4239/wjd.v13.i9.683]
Corresponding Author of This Article
Lee S Nguyen, MD, PhD, Doctor, Senior Researcher, Research and Innovation, CMC Ambroise Paré, 25-27 Boulevard Victor Hugo, Neuilly-sur-Seine 92200, France. nguyen.lee@icloud.com
Research Domain of This Article
Cardiac & Cardiovascular Systems
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Diabetes. Sep 15, 2022; 13(9): 683-695 Published online Sep 15, 2022. doi: 10.4239/wjd.v13.i9.683
A review of potential mechanisms and uses of SGLT2 inhibitors in ischemia-reperfusion phenomena
Victor Quentin, Manveer Singh, Lee S Nguyen
Victor Quentin, Manveer Singh, Intensive Care Medicine, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
Lee S Nguyen, Research and Innovation, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
Author contributions: Quentin V and Singh M co-wrote the manuscript, Nguyen LS supervised the study and provided critical reviewing.
Conflict-of-interest statement: None.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Lee S Nguyen, MD, PhD, Doctor, Senior Researcher, Research and Innovation, CMC Ambroise Paré, 25-27 Boulevard Victor Hugo, Neuilly-sur-Seine 92200, France. nguyen.lee@icloud.com
Received: April 25, 2022 Peer-review started: April 25, 2022 First decision: May 30, 2022 Revised: June 13, 2022 Accepted: August 16, 2022 Article in press: August 16, 2022 Published online: September 15, 2022 Processing time: 137 Days and 6.1 Hours
Core Tip
Core Tip: The antidiabetic drug-class sodium-glucose cotransporter-2 inhibitors (SGLT2i) showed efficacy in decreasing mortality in patients with chronic heart failure, in whom ischemia counts among the first cause. Remarkably, this benefit was observed independently from diabetic status. This feature, yielded from several randomized controlled trials, suggests additional effects from SGLT2i beyond isolated glycemia control. Indeed, previous in-vitro and animal models analyzed altogether suggests the role of the inhibition of the Na+/H+ exchanger, which holds a pivotal role in ischemia/reperfusion injuries. In this review, we aim to summarize evidence which associate SGLT2i and ischemia/reperfusion injuries, by first listing known mechanisms which portend the latter, and second, hypothesize how the former may interact with these mechanisms.