Basic Study
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. May 15, 2024; 15(5): 988-1000
Published online May 15, 2024. doi: 10.4239/wjd.v15.i5.988
Estrogen restores disordered lipid metabolism in visceral fat of prediabetic mice
Su-Huan Liu, Zhao-Shui Shangguan, Paiziliya Maitiaximu, Zhi-Peng Li, Xin-Xin Chen, Can-Dong Li
Su-Huan Liu, Can-Dong Li, Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
Su-Huan Liu, Zhao-Shui Shangguan, Paiziliya Maitiaximu, Zhi-Peng Li, Xin-Xin Chen, Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
Co-first authors: Su-Huan Liu and Zhao-Shui Shangguan.
Author contributions: Liu SH was responsible for conceptualization, data collection and analysis, draft preparation, and funding acquisition; Shangguan ZS, Maitiaximu P, Li ZP, and Chen XX were responsible for data collection and analysis; Li CD was responsible for supervision and reviewing. Liu SH and Shangguan ZS contributed equally to this work as co-first authors. The reason for designating Liu SH and Shangguan ZS as co-first authors is because the research was performed as a collaborative effort, to which Liu SH and Shangguan ZS contributed efforts of equal substance throughout the research process.
Supported by National Natural Science Foundation of China, No. 81270901 and No. 81970672.
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Xiamen University (Approval No. XMULAC20190105).
Conflict-of-interest statement: The authors declare no conflict of interest for this article.
Data sharing statement: Materials, data, and associated protocols will be promptly available upon request.
ARRIVE guidelines statement: The authors have read the ARRIVE Guidelines, and the manuscript was prepared and revised according to the ARRIVE Guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Can-Dong Li, MD, PhD, Chief Doctor, President, Professor, Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou 350122, China. fjzylcd@126.com
Received: December 31, 2023
Peer-review started: December 31, 2023
First decision: January 17, 2024
Revised: January 26, 2024
Accepted: March 11, 2024
Article in press: March 11, 2024
Published online: May 15, 2024
Processing time: 131 Days and 6.4 Hours
ARTICLE HIGHLIGHTS
Research background

The prevalence of visceral obesity among adolescents and young adults is surging, significantly heightening their risk of metabolic diseases, such as type 2 diabetes. While estrogen [17β-estradiol (E2)] is known to offer protection against obesity through diverse mechanisms, its specific impact on visceral adipose tissue (VAT) remains to be fully elucidated.

Research motivation

To investigate the impact of E2 on the gene expression profile within VAT of late pubertal prediabetic mice.

Research objectives

To elucidate the local and direct effects of E2 on VAT and uncover the underlying molecular mechanisms in a prediabetic mouse model.

Research methods

Female C57BL/6 mice were used to create an E2 deficient prediabetes model through ovariectomy (OVX) followed by high-fat diet (HFD) feeding. Metabolic parameters were monitored. Gene expression profiles in VAT were assessed using Whole Mouse Genome Oligo Microarray. Pathway analyses were conducted with the Kyoto Encyclopedia of Genes and Genomes. Expression of key lipid metabolic genes was confirmed by RT-PCR. Morphological alterations in VAT were examined via HE staining.

Research results

HFD modestly elevated the weights of visceral (VAT) and subcutaneous adipose tissue (SAT), a testament to the protective role of endogenous E2. In stark contrast, OVX markedly boosted VAT weight and the VAT/SAT weight ratio, effects that were mitigated by subsequent E2 treatment. OVX led to the down-regulation of genes implicated in both fatty acid biosynthesis and oxidation, signaling a comprehensive slowdown in lipid metabolism. Remarkably, E2 treatment fully reversed these alterations.

Research conclusions

OVX intensified the visceral adiposity triggered by HFD feeding, leading to a universally diminished lipid metabolism in the absence of E2. Treatment with E2 effectively reversed this condition, shedding light on the mechanistic insights and the therapeutic promise of E2 in combating visceral obesity.

Research perspectives

Mitochondria play a pivotal role in fatty acid elongation and oxidation. Investigating the influence of E2 on mitochondrial fatty acid metabolism is therefore crucial.