Published online Jul 25, 2016. doi: 10.4239/wjd.v7.i14.290
Peer-review started: March 28, 2016
First decision: May 16, 2016
Revised: May 29, 2016
Accepted: June 27, 2016
Article in press: June 29, 2016
Published online: July 25, 2016
Processing time: 116 Days and 4.9 Hours
Diabetic kidney disease (DKD) is one of the most common diabetic complications, as well as the leading cause of chronic kidney disease and end-stage renal disease around the world. To prevent the dreadful consequence, development of new assays for diagnostic of DKD has always been the priority in the research field of diabetic complications. At present, urinary albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) are the standard methods for assessing glomerular damage and renal function changes in clinical practice. However, due to diverse tissue involvement in different individuals, the so-called “non-albuminuric renal impairment” is not uncommon, especially in patients with type 2 diabetes. On the other hand, the precision of creatinine-based GFR estimates is limited in hyperfiltration status. These facts make albuminuria and eGFR less reliable indicators for early-stage DKD. In recent years, considerable progress has been made in the understanding of the pathogenesis of DKD, along with the elucidation of its genetic profiles and phenotypic expression of different molecules. With the help of ever-evolving technologies, it has gradually become plausible to apply the thriving information in clinical practice. The strength and weakness of several novel biomarkers, genomic, proteomic and metabolomic signatures in assisting the early diagnosis of DKD will be discussed in this article.
Core tip: Estimated glomerular filtration rate (eGFR) and albuminuria are currently the standard method for detecting diabetic kidney disease (DKD). Creatinine-based GFR estimates are affected by muscle mass and diet pattern, as well as the formula chosen. Albuminuria majorly reflects glomerular dysfunction, and is less sensitive to tubulointerstitial and vascular damages. These facts limit the application of eGFR and albuminuria in the early diagnosis of DKD, especially in heterogeneous type 2 diabetic patients. Through the assistance of genetic information for screening of susceptible patients, together with novel biomarkers to reflect diverse renal tissue damage, early diagnosis of DKD could be facilitated.