Published online Feb 15, 2015. doi: 10.4239/wjd.v6.i1.136
Peer-review started: April 24, 2014
First decision: May 20, 2014
Revised: November 11, 2014
Accepted: November 27, 2014
Article in press: December 1, 2014
Published online: February 15, 2015
Processing time: 282 Days and 4.9 Hours
Sodium-glucose cotransporter 2 (SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus (T2DM), urinary glucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin (highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and anti-obesity agent.
Core tip: Ipragliflozin is highly selective for sodium-glucose cotransporter 2 (SGLT2) inhibitor. Twelve weeks of ipragliflozin 50 mg/d vs placebo decreased HbA1c and body weight by 0.65% and 0.66 kg, respectively, in Western patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. The highly selective SGLT2 inhibitor ipragliflozin improves glycemic control and reduces body weight, and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin has potential as a novel anti-diabetic and anti-obesity agent.