Published online Sep 15, 2024. doi: 10.4239/wjd.v15.i9.1847
Revised: May 13, 2024
Accepted: June 13, 2024
Published online: September 15, 2024
Processing time: 148 Days and 10.4 Hours
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy (DCM) treatment by dipeptidyl peptidase-4 (DPP-4) inhibitors. Zhang et al studied teneligliptin, a DPP-4 inhibitor used for diabetes management, and its potential cardioprotective effects in a diabetic mouse model. They suggested teneligliptin administration may reverse established markers of DCM, including cardiac hypertrophy and compromised function. It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice. Macrophages play crucial roles in DCM pathogenesis. Chronic hyperglycemia disturbs the balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, favoring a pro-inflammatory state contributing to heart damage. Here, we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment. These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome. Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve car
Core Tip: Targeting macrophage function could be introduced as a new approach for managing diabetic cardiomyopathy. Chronic hyperglycemia interrupts the balance between pro-inflammatory and anti-inflammatory subtypes of macrophages, promoting inflammation and tissue damage. The dipeptidyl peptidase-4 inhibitors, used for diabetes, might offer cardioprotective benefits by influencing macrophage activity and promoting an anti-inflammatory environment.