Published online Jan 15, 2023. doi: 10.4239/wjd.v14.i1.35
Peer-review started: October 3, 2022
First decision: November 18, 2022
Revised: November 22, 2022
Accepted: December 21, 2022
Article in press: December 21, 2022
Published online: January 15, 2023
Processing time: 92 Days and 4.3 Hours
Type 2 diabetes mellitus (T2DM) increases the risk of many lethal and debilitating conditions. Among them, foot ulceration due to neuropathy, vascular disease, or trauma affects the quality of life of millions in the United States and around the world. Physiological wound healing is stalled in the inflammatory phase by the chronicity of inflammation without proceeding to the resolution phase. Despite advanced treatment, diabetic foot ulcers (DFUs) are associated with a risk of amputation. Thus, there is a need for novel therapies to address chronic inflammation, decreased angiogenesis, and impaired granulation tissue formation contributing to the non-healing of DFUs. Studies have shown promising results with resolvins (Rv) and anti-inflammatory therapies that resolve inflammation and enhance tissue healing. But many of these studies have encountered difficulty in the delivery of Rv in terms of efficiency, tissue targetability, and immunogenicity. This review summarized the perspective of optimizing the therapeutic application of Rv and cytokines by pairing them with exosomes as a novel strategy for targeted tissue delivery to treat non-healing chronic DFUs. The articles discussing the T2DM disease state, current research on Rv for treating inflammation, the role of Rv in enhancing wound healing, and exosomes as a delivery vehicle were critically reviewed to find support for the proposition of using Rv and exosomes in combination for DFUs therapy. The literature reviewed suggests the beneficial role of Rv and exosomes and exosomes loaded with anti-inflammatory agents as promising therapeutic agents in ulcer healing.
Core Tip: Nonhealing diabetic foot ulcers (DFUs) are a debilitating condition with the risk of amputation despite the advanced treatment strategies. Chronic inflammation, decreased granulation tissue formation, and decreased angiogenesis underlies the pathogenesis of nonhealing. Targeted delivery of therapeutics targeting immune cell infiltration and chronic inflammation with loaded exosomes may increase the efficacy of treatment. We herein discuss the potential of exosomes loaded with resolvins and drugs targeting inflammatory cytokines to promote DFUs healing.