Published online Dec 15, 2022. doi: 10.4239/wjd.v13.i12.1001
Peer-review started: August 21, 2022
First decision: October 21, 2022
Revised: October 26, 2022
Accepted: November 18, 2022
Article in press: November 18, 2022
Published online: December 15, 2022
Processing time: 111 Days and 2.1 Hours
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in patients with diabetes. The increasing incidence of DFU has resulted in huge pressure worldwide. Diagnosing and treating this condition are therefore of great importance to control morbidity and improve prognosis. Finding new markers with potential diagnostic and therapeutic utility in DFU has gathered increasing interest. Wound healing is a process divided into three stages: Inflammation, proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small protected molecules transcribed from the genome without protein translation function, have emerged as important regulators of diabetes complications. The deregulation of ncRNAs may be linked to accelerated DFU development and delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes in diabetic wound healing. Herein, we summarize the role of microRNAs, long ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their potential use as novel therapeutic targets.
Core Tip: Non-coding RNAs (ncRNAs) have emerged as important regulators of diabetic foot and wound healing. NcRNAs can be used for therapeutic purposes in diabetic wound healing. In this study, we summarize the roles of microRNAs, long ncRNAs, and circular RNAs in diverse stages of diabetic foot ulcer wound healing and their potential use as novel therapeutic targets.