Published online Nov 15, 2022. doi: 10.4239/wjd.v13.i11.986
Peer-review started: June 13, 2022
First decision: August 1, 2022
Revised: August 20, 2022
Accepted: October 27, 2022
Article in press: October 27, 2022
Published online: November 15, 2022
Processing time: 151 Days and 1.9 Hours
Diabetic retinopathy (DR) is the driving force of blindness in patients with type 2 diabetes mellitus (T2DM). DR has a high prevalence and lacks effective therapeutic strategies, underscoring the need for early prevention and treatment. Yunnan province, located in the southwest plateau of China, has a high pre-valence of DR and an underdeveloped economy.
To build a clinical prediction model that will enable early prevention and treatment of DR.
In this cross-sectional study, 1654 Han population with T2DM were divided into groups without (n = 826) and with DR (n = 828) based on fundus photography. The DR group was further subdivided into non-proliferative DR (n = 403) and proliferative DR (n = 425) groups. A univariate analysis and logistic regression analysis were conducted and a clinical decision tree model was constructed.
Diabetes duration ≥ 10 years, female sex, standing- or supine systolic blood pressure (SBP) ≥ 140 mmHg, and cholesterol ≥ 6.22 mmol/L were risk factors for DR in logistic regression analysis (odds ratio = 2.118, 1.520, 1.417, 1.881, and 1.591, respectively). A greater severity of chronic kidney disease (CKD) or hemoglobin A 1c increased the risk of DR in patients with T2DM. In the decision tree model, diabetes duration was the primary risk factor affecting the occurrence of DR in patients with T2DM, followed by CKD stage, supine SBP, standing SBP, and body mass index (BMI). DR classification outcomes were obtained by evaluating standing SBP or BMI according to the CKD stage for diabetes duration < 10 years and by evaluating CKD stage according to the supine SBP for diabetes duration ≥ 10 years.
Based on the simple and intuitive decision tree model constructed in this study, DR classification outcomes were easily obtained by evaluating diabetes duration, CKD stage, supine or standing SBP, and BMI.
Core Tip: Due to the underdeveloped economy and higher prevalence of diabetic retinopathy (DR), Yunnan province is facing a serious task of prevention. Based on a large sample of the Han population with type 2 diabetes mellitus in Yunnan province, this study constructed a cost-effective predictive model that may facilitate the timely and individualized estimation of DR risk.