Published online Nov 15, 2022. doi: 10.4239/wjd.v13.i11.962
Peer-review started: September 14, 2022
First decision: October 5, 2022
Revised: October 22, 2022
Accepted: October 31, 2022
Article in press: October 31, 2022
Published online: November 15, 2022
Processing time: 57 Days and 12.7 Hours
The adverse consequences resulting from diabetes are often presented as severe complications. Diabetic wounds are one of the most commonly occurring complications in diabetes, and the control and treatment of this is costly. Due to a series of pathophysiological mechanisms, diabetic wounds remain in the inflammatory phase for a prolonged period of time, and face difficulty in entering the proliferative phase, thus leading to chronic non-healing wounds. The current consensus on the treatment of diabetic wounds is through multidisciplinary comprehensive management, however, standard wound treatment methods are still limited and therefore, more effective methods are required. In recent years, defensins have been found to play diverse roles in a variety of diseases; however, the molecular mechanisms underlying these activities are still largely unknown. Defensins can be constitutively or inductively produced in the skin, therefore, their local distribution is affected by the microenvironment of these diabetic wounds. Current evidence suggests that defensins are involved in the diabetic wound pathogenesis, and can potentially promote the early completion of each stage, thus making research on defensins a promising area for developing novel treatments for diabetic wounds. In this review, we describe the complex function of human defensins in the development of diabetic wounds, and suggest potential thera-peutic benefits.
Core Tip: Although previous studies have suggested that defensins have a function in the promotion of wound healing, their mechanism is still unclear. In this review, we discuss the potential role of various defensins in refractory diabetic wounds and their properties, including immunoregulation, promotion of re-epithelialization, collagen deposition, vascular regeneration, and neurological recovery, as well as antimicrobial activity.